专利名称:一种超声辅助水热合成水溶性方形铁酸盐磁性纳米材料的方法
技术领域:
本发明涉及一种方形铁酸盐磁性纳米颗粒的合成方法,属于无机材料制备工艺领域。
背景技术:
磁性材料是用途广泛的功能材料,纳米磁性材料是20世纪70年代后逐步产生、发展、壮大而成为最富有生命力与宽广应用前景的新型磁性材料,已被广泛应用于导电磁性器件、磁流体、生物医药、催化剂载体等各个领域。例如,磁记录材料至今仍是信息工业的主体,磁记录工业的产值约1000亿美元;磁性液体用于磁盘驱动器的防尘密封、高真空旋转密封等,以及扬声器、阻尼器件、磁印刷等方面。纳米磁性材料的特性之所以不同于常规的磁性材料,是因为与磁性相关的特征物理长度恰好处于纳米量级。例如,磁单畴尺寸、超顺磁性临界尺寸、交换作用长度,以及电子平均自由程等大致处于1 IOOnm量级。当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质。纳米微晶金属软磁材料具有高磁导率、低损耗、高饱和磁化强度等优异的性能。20世纪70年代,Mofday等用荧光染料标记磁性复合微球,然后与抗体或外源凝集素偶联,最终实现了血红细胞和B淋巴细胞的选择性磁场分离。磁性分离技术不仅可用于细胞的分离,还可用于蛋白的提纯及核酸、 DNA等生物分子的分离、环境污染物的分离和分析等方面。因此,研究新型的铁酸盐磁性纳米颗粒的合成和性质的研究就有重要的实际应用价值,成为材料研究领域的热点。目前,合成尖晶石型铁酸盐的方法有多种,包括机械球磨法、水热法、微乳液法、超声沉淀法、水解法和高温溶剂热法等几种,而所合成的尖晶石型铁酸盐的种类也很广泛,如四氧化三铁、铁酸锰、铁酸钴、铁酸镁等。但是,这些方法在合成过程中存在一些问题,例如机械球磨法制备纳米材料(NanoStructured Materials,12卷,143页,1999年)的重现性好、操作简单,但生产周期长,颗粒细化难以达到纳米级要求。采用微乳液法制备I^e3O4,可有效避免颗粒之间发生团聚,因而得到的纳米粉体的粒径分布窄、形态规则、分散性能好,但是其成本偏高。水热过程可以制得磁性能和纯度较高的狗304颗粒,但是对由于需要高温高压,因此设备的要求较高。Sun等人在《美国化学会会志》(Journal of American Chemical Society, 1 卷,8204页,2002年)报道了采用溶剂热高温合成历经可控的磁性纳米Fii3O4, 该方法合成的狗304粒径可控,分不均勻,但是合成温度和原料成本较高,且离子的水溶性差,大规模工业化生产。开发一种成本低、尺寸可控性好,形貌均一,在水中分散性好,易于批量生产的铁酸盐磁性纳米材料是化工科技领域面临的一项挑战。
发明内容
本发明的目的是提供一种方形尖晶石型水溶性铁酸盐磁性纳米颗粒的合成方法, 该方法采用廉价易得的原料,利用微波辅助水热合成技术,大量的合成系列的铁酸盐磁性纳米微粒,合成了一系列的具有超顺磁性的方形水溶性磁性纳米材料。由于该方法易于放大,调控简单,产品性能优异,可控性强,将在磁流体、医药载体、水处理、环境污染物分析、 催化等领域拥有广阔的市场前景。本发明的技术方案如下一种微波合成尖晶石型铁酸盐化合物纳米颗粒的方法,其特征在于该方法按如下步骤进行。1. 一种合成方形!^e3O4磁性纳米颗粒的方法,其特征在于该方法按如下步骤进行1)将可溶性三价铁离子盐和可溶性二价铁离子盐加入到去离子水中,在超声的辅助作用下配成三价铁离子为0. 5 lmol L—1的澄清溶液,在超声作用下溶解后缓慢向其中滴加氢氧化钠的溶液,在30 50°C反应1 1.证控制最终溶液的pH = 10 12,整个过程需要通入氮气作为保护气。将溶液放入密闭加热容器中105 150°C条件下进行水热反应,加热时间5 Mh ;所述的可溶性三价铁离子盐为氯化铁、硝酸铁,所述的二价金属离子为锰、铜、镁、钙、锌、钡或铁,其可溶性盐为氯化物盐、硝酸盐。二价金属离子的摩尔总量与三价铁离子摩尔量的比例为1 2。2)将步骤1)中所得产物用磁分离技术分离后用去离子水和乙醇的混合液洗涤, 在60 80°C烘干,得到方形水溶性四氧化三铁磁性纳米颗粒。上述反应以化学方程式表示如下步骤进行
Fe2++Fe3++NaOH — Fe3O4本发明还提供了一种合成方形铁磁性纳米材料的方法,其特征在于该方法按如下步骤进行1)将可溶性三价铁离子盐加入到去离子水中,形成0. 5 lmol L—1的澄清溶液,然后将一种二价铁离子盐加入其中,在超声的作用下溶解形成澄清溶液,在超声作用下溶解后缓慢向其中滴加氢氧化钠或氨水的溶液,在30 50°C反应1 1.证控制最终溶液的pH =10 12,整个过程需要通入氮气作为保护气。将溶液放入密闭加热容器中105 150°C 条件下进行水热反应,加热时间5 Mh ;其中所述的可溶性三价铁离子盐为氯化铁、硝酸铁,所述的二价金属离子为锰、铜、镁、钙、锌、钡或铁,其可溶性盐为氯化物盐、硝酸盐。二价金属离子的摩尔总量与铁离子摩尔总量的比例为1 2。2)将步骤1)中所得产物用磁分离技术分离后用去离子水和乙醇的混合液洗涤, 在60 80°C烘干,得到方形四氧化三铁磁性纳米颗粒。上述反应以化学方程式表示如下步骤进行M2++Fe3++NaOH — MFe2O4其中M为锰、铜、镁、钙、锌、钡或铁本发明与现有技术相比,具有以下优点及突出性效果本发明采用可溶性三价铁离子、二价金属离子的可溶性盐,如氯酸盐、硝酸盐,及氢氧化钠或氨水为原料,采用微波辅助水热合成的方法,制备出了大量廉价的方形铁酸盐磁性纳米颗粒。产品的形貌均一且水中的分散性好,粒径分布窄。该方法的原料廉价易得,工艺简单,生产易于放大。铁酸盐现在广泛用于磁存储器件、生物载体、MRI,本发明可制备的产品类型多,质量稳定,原料廉价, 可控性好,因而具有广泛的应用前景。
图1为系列铁酸盐(Fe3O4、Mr^e2CV ZnFe2O4)纳米磁性颗粒的粉末X射线衍射图。图2为方形四氧化三铁纳米磁性颗粒的透射电子显微镜图。图3为方形Mr^e2O4的纳米磁性颗粒的透射电子显微镜图。图4为方形四氧化三铁纳米磁性颗粒分散在水中的照片。图5为方形四氧化三铁纳米磁性颗粒在磁铁的吸引下从水中分离的照片。
具体实施例方式以下为采用本发明制备系列方形水溶性铁酸盐纳米颗粒的实例。实施例1 取0. 02mol的!^eCl3和!^eCl2,加入到1升的三口烧瓶中,向其中加入40mL脱氧去离子水,开启超声,在搅拌作用30°C下使其溶解,溶解过程中通入氮气作为保护气。向上述溶液中缓慢滴加500mL 1. 5mol L—1脱氧后的氢氧化钠溶液,控制反应温度30°C,反应时间 1 1. 5h,整个过程中需要向三口瓶中通入氮气保护气,防止二价铁氧化,同时开启超声, 控制颗粒的粒径,防止团聚。反应结束时,溶液中的狗2+与!^3+的摩尔比为1 2,溶液的 pH为9 11之间。将反应液置于200毫升的水热反应釜中,100 105°C反应lh,溶液在磁铁的作用下,迅速从水中分离,将固体用去离子水洗涤,50 75°C干燥,制得粒径范围为 10 100纳米的方形水溶性磁性纳米四氧化三铁。其中的硝酸铁可以用氯化铁取代,氢氧化钠可以用氨水取代,经同样的过程可以制得类似产品。实施例2 称取0.02mol的FeCl3和0. Olmol的MnCl2,加入到1升的三口烧瓶中,向其中力口入40mL脱氧去离子水,开启超声,在搅拌作用45°C下使其溶解,溶解过程中通入氮气作为保护气。向上述溶液中缓慢滴加脱氧后的体积浓度为25 观%的氨水溶液后,控制反应温度30°C,反应时间1 1.证,整个过程中需要向三口瓶中通入氮气保护气,防止二价锰被空气氧化,使材料的磁性降低或失去。同时开启超声,控制颗粒的粒径,防止团聚。反应结束时,溶液中的Mn2+与!^3+的摩尔比为1 2,溶液的pH为9 11之间。将反应液置于200 毫升的水热反应釜中,110 115°C反应10h,溶液在磁铁的作用下,迅速从水中分离,将固体用去离子水洗涤,50 75°C干燥,制得粒径范围为50 200纳米的方形水溶性磁性纳米 MnFe2O4 颗粒。其中的二价、三价金属的氯酸盐可以用硝酸盐取代,氨水可以用氢氧化钠取代,经同样的过程可以制得类似产品。实施例3:称取0. 02mol的!^eCl3和0. Olmol的SiCl2,加入到1升的三口烧瓶中,向其中加入 40mL脱氧去离子水,开启超声,在搅拌作用30°C下使其溶解。向上述溶液中缓慢滴加脱氧后的体积浓度为25 的氨水溶液后,控制反应温度45°C,反应时间1 1. 5h,同时开启超声,控制颗粒的粒径,防止团聚。反应结束时,溶液中的Si2+与狗3+的摩尔比为1 2, 溶液的pH为9 11之间。将反应液置于200毫升的水热反应釜中,150 155°C反应10h, 溶液在磁铁的作用下,迅速从水中分离,将固体用去离子水洗涤,50 75°C干燥,制得粒径范围为10 200纳米的方形水溶性磁性纳米a^e204。其中的二价、三价金属的氯酸盐可以用硝酸盐取代,氨水可以用氢氧化钠取代,经同样的过程可以制得类似产品。实施例4称取0. 02mol的FeCl3和0. Olmol的CoCl2,加入到1升的三口烧瓶中,向其中加入40mL脱氧去离子水,开启超声,在搅拌作用45°C下使其溶解,溶解过程中通入氮气作为保护气。向上述溶液中缓慢滴加脱氧后的体积浓度为25 观%的氨水溶液后,控制反应温度30°C,反应时间1 1.证,整个过程中需要向三口瓶中通入氮气保护气,防止二价钴被空气氧化,使材料的磁性降低或失去。同时开启超声,控制颗粒的粒径,防止团聚。反应结束时,溶液中的Mn2+与!^3+的摩尔比为1 2,溶液的pH为9 11之间。将反应液置于200 毫升的水热反应釜中,130 150°C反应10h,溶液在磁铁的作用下,迅速从水中分离,将固体用去离子水洗涤,50 75°C干燥,制得粒径范围为50 300纳米的方形水溶性磁性纳米 CoFe2O4 颗粒。其中的二价、三价金属的氯酸盐可以用硝酸盐取代,氨水可以用氢氧化钠取代,经同样的过程可以制得类似产品。实施例5称取0.02mol的FeCl3和0. Olmol的MgCl2,加入到1升的三口烧瓶中,向其中加入40mL脱氧去离子水,开启超声,在搅拌作用45°C下使其溶解,溶解过程中通入氮气作为保护气。向上述溶液中缓慢滴加500mL 1. 5mol L—1脱氧后的氢氧化钠溶液,控制反应温度 30°C,反应时间1 1.5h,整个过程中需要向三口瓶中通入氮气保护气,防止二价钴被空气氧化,使材料的磁性降低或失去。同时开启超声,控制颗粒的粒径,防止团聚。反应结束时, 溶液中的Mn2+与!^3+的摩尔比为1 2,溶液的pH为9 11之间。将反应液置于200毫升的水热反应釜中,110 115°C反应lh,溶液在磁铁的作用下,迅速从水中分离,将固体用去离子水洗涤,50 75°C干燥,制得粒径范围为10 100纳米的方形水溶性磁性纳米MgFe2O4 颗粒。其中的二价、三价金属的氯酸盐可以用硝酸盐取代,氨水可以用氢氧化钠取代,经同样的过程可以制得类似产品。所得产品均用XRD和透射电子显微镜进行了表征。
权利要求
1.一种合成方形水溶性!^e3O4磁性纳米颗粒的方法,其特征在于该方法按如下步骤进行1)将可溶性三价铁离子盐和可溶性二价铁离子盐加入到去离子水中,在超声的辅助作用下配成三价铁离子为0. 5 lmol/L的澄清溶液,在超声作用下溶解后缓慢向其中滴加氢氧化钠的溶液,在30 50°C反应1 1.证控制最终溶液的pH = 10 12,整个过程需要通入氮气作为保护气。将溶液放入密闭加热容器中105 150°C条件下进行水热反应,加热时间5 24h ;所述的可溶性三价铁离子盐为氯化铁、硝酸铁,所述的二价金属离子为锰、 铜、镁、钙、锌、钡或铁,其可溶性盐为氯化物盐、硝酸盐。二价金属离子的摩尔总量与三价铁离子摩尔量的比例为1 2。2)将步骤1)中所得产物用磁分离技术分离后用去离子水和乙醇的混合液洗涤,在 60 80°C烘干,得到方形四氧化三铁磁性纳米颗粒。
2.一种合成方形铁酸盐磁性纳米颗粒的方法,其特征在于该方法按如下步骤进行1)将可溶性三价铁离子盐加入到去离子水中,形成0.5 lmol/L的澄清溶液,然后将一种二价铁离子盐加入其中,在超声的作用下溶解形成澄清溶液,在超声作用下溶解后缓慢向其中滴加氢氧化钠或氨水的溶液,在30 50°C反应1 1.证控制最终溶液的pH = 10 12,整个过程需要通入氮气作为保护气。将溶液放入密闭加热容器中105 150°C条件下进行水热反应,加热时间5 24h ;其中所述的可溶性三价铁离子盐为氯化铁、硝酸铁,所述的二价金属离子为锰、铜、镁、钙、锌、钡或铁,其可溶性盐为氯化物盐、硝酸盐。二价金属离子的摩尔总量与铁离子摩尔总量的比例为1 2。2)将步骤1)中所得产物用磁分离技术分离后用去离子水和乙醇的混合液洗涤,在 60 80°C烘干,得到方形水溶性四氧化三铁磁性纳米颗粒。
全文摘要
一种采用超声辅助水热技术合成系列水溶性方形铁酸盐磁性纳米材料的方法,属于无机材料制备工艺技术领域。本发明以可溶型三价铁离子盐和二价铁离子盐为原料,在氢氧化钠的溶液中,30~50℃超声辅助作用下进行反应,过程中通入氮气保护。之后在105~150℃下进行水热反应,形成方形Fe3O4纳米颗粒。在相同条件下,通过添加一种二价可溶性金属离子盐与可溶性三价铁离子盐共同进行反应,控制M2+(M=Cu2+、Mn2+、Fe2+、Ca2+、Ba2+、Mg2+、Zn2+)和Fe3+的摩尔比为1∶2,合成MFe2O4磁性纳米微粒。该方法原料价廉易得,设备简单,易于控制实现,产品质量稳定且水溶性好,操作安全可靠,适于工业放大生产。
文档编号B82Y40/00GK102464358SQ20101053688
公开日2012年5月23日 申请日期2010年11月5日 优先权日2010年11月5日
发明者张涛, 强志民, 鲍晓磊 申请人:中国科学院生态环境研究中心