一种石墨烯负载纳米镍热电薄膜的制备方法

文档序号:10529354阅读:539来源:国知局
一种石墨烯负载纳米镍热电薄膜的制备方法
【专利摘要】本发明公开了一种石墨烯负载纳米镍热电薄膜的制备方法。该方法以包括氧化石墨的制备,分散并通过溶剂热法将纳米镍离子成功负载到石墨烯片层表面。最后通过电沉积法制得性能热电薄膜。本发明的方法便捷,可以制备出电导性能优异的薄膜材料。
【专利说明】
一种石墨烯负载纳米镍热电薄膜的制备方法
技术领域
[0001 ] 本发明涉及吸波材料领域,尤其涉及的是一种石墨稀负载纳米镍热电薄膜的制备方法。
【背景技术】
[0002]随着科学技术与电子工业的发展,越来越多的电磁波辐射存在于我们的周围,经过研究表明,过量电磁波辐射除可引起神经系统、免疫系统、生殖系统和血液循环系统等发生障碍外,甚至可能诱发包括各类癌症在内的严重疾病。长期处于电磁波环境中,人体内被电磁波损伤且未来得及自我修复的组织和器官的损伤可以因长期积累而成为功能性病变,严重时可危及生命。
[0003]石墨烯,由于其独特的单层结构使其具有超轻的密度、大的比表面积、导电性能优良及高的介电常数等特点,使其成为一种新型吸波材料。另外,被氧化的石墨烯表面大量暴露的化学键在电磁场的作用下更容易产生外层电子的极化弛豫而衰减电磁波,为石墨烯在吸波领域的应用拓宽了前景,在石墨烯表面负载纳米镍离子,不仅可以提高材料磁性能,增强复合材料的磁损耗,有利于复合材料的阻抗匹配,而且纳米镍离子颗粒作为隔离介质减少石墨烯在干燥过程中重新堆叠呈三维石墨结构,对稳定石墨烯片层结构起着相当重要的作用。
[0004]本发明所要解决的技术问题是针对现有技术的不足,提供了一种石墨烯负载纳米镍热电薄膜的制备方法。
[0005]本发明的技术方案如下:
[0006]—种石墨烯负载纳米镍热电薄膜的制备方法,其特征在于,其步骤如下:
[0007]步骤一,预氧化石墨的制备
[0008]将石墨粉、过硫酸钾和P2O5加入浓硫酸中,形成混合物,所形成的混合物的PH值为1.5,将该混合物在60°C下搅拌l_2h,然后以5°C /min的速率升温至80°C下搅拌2_4h,最后以2 V /min升温至87°C搅拌l_2h,然后采用蒸馏水稀释该混合物,将该混合物的PH值稀释至3.6,放置36h后采用蒸馏水过滤,使得混合物PH值为6-7,后进行室温干燥,所述石墨粉、过硫酸钾、P2O5和浓硫酸的质量比为1-3: 1-2: 1-2: 5-10 ;
[0009]将干燥后的混合物加入到浓硝酸中搅拌45-60min,使得PH值为2-4,所述干燥后的混合物与浓硝酸的质量比为1-4: 50-100,搅拌均匀后在-8°C下第一次加入KMnO4,搅拌30min,之后降温至_12°C下第二次加入KMnO4,搅拌30min,最后降温至_15°C下第三次加入KMnO4,搅拌20min,得到预氧化的石墨混合物,所述第一次加入KMnO4,第二次加入KMnO4和第三次加入KMnO4的质量比为1: 2: 3,所述干燥后的混合物与总的KMnOd^比值为1-2: 10-15。
[0010]步骤二,表面处理的氧化石墨的制备
[0011]将步骤一所制的预氧化的石墨混合物放入保温箱中升温到40°C,反应3h,随后,加入与预氧化的石墨混合物体积一致量的第一蒸馏水,接着反应2.5h,将保温箱温度保温至40°C,再次加入第二蒸馏水和H2O2反应10-60min,所述第二蒸馏水的量是第一蒸馏水的1-1.5倍,第二蒸馏水和H2O2的体积比为4-20: 1,反应结束后进行离心分离lOmin,转速9500r/min,离心分离后产物用盐酸溶液洗涤,该盐酸溶液的体积为离心分离后产物体积的10-50倍,最后透析7-8天得到氧化石墨,将氧化石墨采用二甲亚砜超声溶解后加入N-羟基丁二酰亚胺和自制表面处理剂于35°C下搅拌2h,产物进行抽滤、洗涤、烘干,即得到表面处理的氧化石墨;
[0012]步骤三,分散
[0013]将步骤二所得到的表面处理的氧化石墨l_2g在-10-30°C下进行冰冻干燥后与1-1Og聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物一并放入500ml的乙二醇中超声分散形成均勾的第一分散液;同时将20-40ml氯化亚镍乙二醇溶液(0.lmol/ml),6?25g聚乙烯吡咯烷酮和10?50g NH4Ac溶解于500_1000mL的乙二醇中形成第二分散液,将第一分散液和第二分散液混合搅拌,并用氨水调节,使之成为PH值为9-11的澄清溶液;
[0014]步骤四,将10ml步骤三所得到的澄清溶液放入反应釜中,密封之后,加热到130°C,保温2h,之后以2-4°C /min的升温速率升温至150°C,保温4h,之后以3_6°C /min的升温速率升温至200°C,保温3h,然后以5-7°C /min的降温速度降温至180°C保温2h,最后再以3-6°C /min的升温速率升温至200°C,保温7h,待反应完成后,将反应釜取出,使之冷却到室温,所述降温速度为3-6°C /min,将所得的粉末离心分离lOmin,转速8000?1000r/min,采用无水乙醇和去离子水各洗涤三次,在50?70°C真空干燥24h,得到第一产物;
[0015]将5g第一产物和5-10g苯胺单体加入至十二烧基苯磺酸的溶液中,超声分散65min,形成第二产物,所述第一产物和十二烷基苯磺酸的质量比为1-1.5: 8-15 ;
[0016]将3g过硫酸铵溶解在80-120ml蒸馏水中,缓慢滴加到第二产物中,搅拌反应15h,反应结束后,抽滤,分别用蒸馏水、乙醇洗涤产物至滤液无色,50?70°C真空干燥24?36h,得到吸波材料。
[0017]步骤五,成膜,将该吸波材料添加至去离子水中,配置成浓度为5_25g/L的水溶液,首先采用机械搅拌10-15min,然后在超声波频率为30Hz的条件下超声分散30_50min,形成均匀的溶液,将该溶液放置于容器中待用;
[0018]选用Cu片作为基底材料,将该基底材料依次采用丙酮、去离子水、甲醇和去离子水,分别用超声波清洗5-10min,将清洗完毕的基底材料在90_120°C真空干燥10_30min,之后放入容器中做为负极,采用Fe片作为正极,将电泳仪调节为30-120V的恒压模式下沉积30-90min,既得热电薄膜。
[0019]所述石墨粉的粒径为15_30um。
[0020]步骤二中所述氧化石墨g、二甲亚砜ml、N-羟基丁二酰亚胺g和自制表面处理剂g的比值为0.2-0.5: 20-25: 2-5: 0.1_05,所述自制表面处理剂由二环己基碳二亚胺、十二烷基磺酸钠、聚苯乙烯磺酸钠和聚丙烯酸组成,所述二环己基碳二亚胺、十二烷基磺酸钠、聚苯乙烯磺酸钠和聚丙烯酸的质量比为1:1: 2: 3。
[0021]所述的所述步骤二中盐酸的浓度为体积比1: 10的盐酸溶液。
[0022]该吸波材料为层状纳米复合吸波材料,纳米镍粒子均匀生长在石墨烯片层中,在石墨稀片层上负载粒径约为20-100nm的纳米镍粒子,且聚苯胺包覆于负载有纳米镍粒子的石墨稀片层表面。
[0023]本发明所制得的吸波材料中石墨烯与纳米镍离子之间以化学键结合,结合很紧密,不会因为后期的搅拌等使得脱离,化学性能也稳定,聚苯胺包覆于负载有纳米镍粒子的石墨烯片层表面保护镍离子不被氧化,本发明吸波材料的饱和磁化强度为15.7-38.5emu/
[0024]
【申请人】经过大量研究本发明步骤一制备预氧化石墨时采用不同的升温速率升温至所需要的搅拌温度,在不同的搅拌温度下分阶段的搅拌,以及分阶段在不同的温度下加入KMnO4有助于预氧化石墨的制备,使得氧化更加彻底要高于普通一次性搅拌和加入KMnO 4的10-15%,并且有利于后期石墨烯的形成;
[0025]步骤二中对于氧化石墨做了进一步的表面处理,采用自制的表面处理剂,通过添加后能够够弥补石墨氧化物表面对于金属离子亲和力低的缺点,增加表面镍离子的负载量,也同时使得后面的镍离子在石墨表面的分散更加的均匀,其石墨的比表面积达到35-37m2/g ;
[0026]本发明步骤四中采用不同的升温速率升温至所需要的温度保温期间,经过一次降温保温,更加有助于石墨烯负载纳米镍吸波材料的形成,使得最终形成的吸波材料的吸波性能更强,强于普通方法形成的吸波材料的性能5-15%,并且所形成的三元复合吸波材料性能更加稳定;
[0027]本发明在制备过程中无需使用氮气或者氧气保护,无需高温条件,能够有效的降低合成成本,并且有效的提高了纳米颗粒在石墨中的分散均匀性,提高了产品的性能;
[0028]本发明石墨稀负载纳米镍吸波材料的饱和磁化强度为15.7-38.5emu/g,所制得的薄膜的电导率:4.29*10 3-8.56*10 3S/cm,导电性能优异。
【具体实施方式】
[0029]以下结合具体实施例,对本发明进行详细说明。
[0030]一种石墨烯负载纳米镍热电薄膜的制备方法,其特征在于,其步骤如下:
[0031]步骤一,预氧化石墨的制备
[0032]将石墨粉、过硫酸钾和P2O5加入浓硫酸中,形成混合物,所形成的混合物的PH值为
1.5,将该混合物在60°C下搅拌l_2h,然后以5°C /min的速率升温至80°C下搅拌2_4h,最后以2 V /min升温至87°C搅拌l_2h,然后采用蒸馏水稀释该混合物,将该混合物的PH值稀释至3.6,放置36h后采用蒸馏水过滤,使得混合物PH值为6-7,后进行室温干燥,所述石墨粉、过硫酸钾、P2O5和浓硫酸的质量比为1-3: 1-2: 1-2: 5-10 ;
[0033]将干燥后的混合物加入到浓硝酸中搅拌45-60min,使得PH值为2_4,所述干燥后的混合物与浓硝酸的质量比为1-4: 50-100,搅拌均匀后在-8°C下第一次加入KMnO4,搅拌30min,之后降温至_12°C下第二次加入KMnO4,搅拌30min,最后降温至_15°C下第三次加入KMnO4,搅拌20min,得到预氧化的石墨混合物,所述第一次加入KMnO4,第二次加入KMnO4和第三次加入KMnO4的质量比为1: 2: 3,所述干燥后的混合物与总的KMnOd^比值为1-2: 10-15。
[0034]步骤二,表面处理的氧化石墨的制备
[0035]将步骤一所制的预氧化的石墨混合物放入保温箱中升温到40°C,反应3h,随后,加入与预氧化的石墨混合物体积一致量的第一蒸馏水,接着反应2.5h,将保温箱温度保温至40°C,再次加入第二蒸馏水和H2O2反应10-60min,所述第二蒸馏水的量是第一蒸馏水的1-1.5倍,第二蒸馏水和H2O2的体积比为4-20: 1,反应结束后进行离心分离lOmin,转速9500r/min,离心分离后产物用盐酸溶液洗涤,该盐酸溶液的体积为离心分离后产物体积的10-50倍,最后透析7-8天得到氧化石墨,将氧化石墨采用二甲亚砜超声溶解后加入N-羟基丁二酰亚胺和自制表面处理剂于35°C下搅拌2h,产物进行抽滤、洗涤、烘干,即得到表面处理的氧化石墨;
[0036]步骤三,分散
[0037]将步骤二所得到的表面处理的氧化石墨l_2g在-10-30°C下进行冰冻干燥后与
1-1Og聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物一并放入500ml的乙二醇中超声分散形成均勾的第一分散液;同时将20-40ml氯化亚镍乙二醇溶液(0.lmol/ml),6?25g聚乙烯吡咯烷酮和10?50g NH4Ac溶解于500_1000mL的乙二醇中形成第二分散液,将第一分散液和第二分散液混合搅拌,并用氨水调节,使之成为PH值为9-11的澄清溶液;
[0038]步骤四,将10ml步骤三所得到的澄清溶液放入反应釜中,密封之后,加热到130°C,保温2h,之后以2-4°C /min的升温速率升温至150°C,保温4h,之后以3_6°C /min的升温速率升温至200°C,保温3h,然后以5-7°C /min的降温速度降温至180°C保温2h,最后再以3-6°C /min的升温速率升温至200°C,保温7h,待反应完成后,将反应釜取出,使之冷却到室温,所述降温速度为3-6°C /min,将所得的粉末离心分离lOmin,转速8000?1000r/min,采用无水乙醇和去离子水各洗涤三次,在50?70°C真空干燥24h,得到第一产物;
[0039]将5g第一产物和5-10g苯胺单体加入至十二烧基苯磺酸的溶液中,超声分散65min,形成第二产物,所述第一产物和十二烷基苯磺酸的质量比为1-1.5: 8-15 ;
[0040]将3g过硫酸铵溶解在80-120ml蒸馏水中,缓慢滴加到第二产物中,搅拌反应15h,反应结束后,抽滤,分别用蒸馏水、乙醇洗涤产物至滤液无色,50?70°C真空干燥24?36h,得到吸波材料。
[0041]步骤五,成膜,将该吸波材料添加至去离子水中,配置成浓度为5-25g/L的水溶液,首先采用机械搅拌10-15min,然后在超声波频率为30Hz的条件下超声分散30_50min,形成均匀的溶液,将该溶液放置于容器中待用;
[0042]选用Cu片作为基底材料,将该基底材料依次采用丙酮、去离子水、甲醇和去离子水,分别用超声波清洗5-10min,将清洗完毕的基底材料在90_120°C真空干燥10_30min,之后放入容器中做为负极,采用Fe片作为正极,将电泳仪调节为30-120V的恒压模式下沉积30-90min,既得热电薄膜。
[0043]所述石墨粉的粒径为15_30um。
[0044]步骤二中所述氧化石墨g、二甲亚砜ml、N-羟基丁二酰亚胺g和自制表面处理剂g的比值为0.2-0.5: 20-25: 2-5: 0.1_05,所述自制表面处理剂由二环己基碳二亚胺、十二烷基磺酸钠、聚苯乙烯磺酸钠和聚丙烯酸组成,所述二环己基碳二亚胺、十二烷基磺酸钠、聚苯乙烯磺酸钠和聚丙烯酸的质量比为1:1: 2: 3。
[0045]所述的所述步骤二中盐酸的浓度为体积比1: 10的盐酸溶液。
[0046]该吸波材料为层状纳米复合吸波材料,纳米镍粒子均匀生长在石墨烯片层中,在石墨稀片层上负载粒径约为20-100nm的纳米镍粒子,且聚苯胺包覆于负载有纳米镍粒子的石墨稀片层表面。
[0047]制得厚度为2mm的样品的反射损耗峰值为21.9dB,反射损耗-1OdB以下的吸收带宽高达4.6GHz,能够有效吸收该频段的电磁波。本发明石墨稀负载纳米镍吸波材料的饱和磁化强度为15.7-38.5emu/g,所制得的薄膜的电导率:4.29*10 3_8.56*10 3S/cm,导电性能优异。
[0048]应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。
【主权项】
1.一种石墨烯负载纳米镍热电薄膜的制备方法,其特征在于,其步骤如下: 步骤一,预氧化石墨的制备 将石墨粉、过硫酸钾和P2O5加入浓硫酸中,形成混合物,所形成的混合物的PH值为1.5,将该混合物在60°C下搅拌l_2h,然后以5°C /min的速率升温至80°C下搅拌2_4h,最后以20C /min升温至87°C搅拌l_2h,然后采用蒸馏水稀释该混合物,将该混合物的PH值稀释至3.6,放置36h后采用蒸馏水过滤,使得混合物PH值为6-7,后进行室温干燥,所述石墨粉、过硫酸钾、P2O5和浓硫酸的质量比为1-3: 1-2: 1-2: 5-10 ; 将干燥后的混合物加入到浓硝酸中搅拌45-60min,使得PH值为2_4,所述干燥后的混合物与浓硝酸的质量比为1-4: 50-100,搅拌均匀后在-8°C下第一次加入KMnO4,搅拌30min,之后降温至-12 °C下第二次加入KMnO4,搅拌30min,最后降温至-15°C下第三次加入KMnO4,搅拌20min,得到预氧化的石墨混合物,所述第一次加入KMnO4,第二次加入KMnO4和第三次加入KMnO4的质量比为1: 2: 3,所述干燥后的混合物与总的KMnOd^比值为1-2: 10-15。 步骤二,表面处理的氧化石墨的制备 将步骤一所制的预氧化的石墨混合物放入保温箱中升温到40°C,反应3h,随后,加入与预氧化的石墨混合物体积一致量的第一蒸馏水,接着反应2.5h,将保温箱温度保温至40°C,再次加入第二蒸馏水和H2O2反应10-60min,所述第二蒸馏水的量是第一蒸馏水的1-1.5倍,第二蒸馏水和H2O2的体积比为4-20: 1,反应结束后进行离心分离lOmin,转速9500r/min,离心分离后产物用盐酸溶液洗涤,该盐酸溶液的体积为离心分离后产物体积的10-50倍,最后透析7-8天得到氧化石墨,将氧化石墨采用二甲亚砜超声溶解后加入N-羟基丁二酰亚胺和自制表面处理剂于35°C下搅拌2h,产物进行抽滤、洗涤、烘干,即得到表面处理的氧化石墨; 步骤三,分散 将步骤二所得到的表面处理的氧化石墨l_2g在-10-30°C下进行冰冻干燥后与1-1Og聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物一并放入500ml的乙二醇中超声分散形成均匀的第一分散液;同时将20-40ml氯化亚镍乙二醇溶液(0.lmol/ml), 6?25g聚乙烯吡咯烷酮和10?50g NH4Ac溶解于500-1000mL的乙二醇中形成第二分散液,将第一分散液和第二分散液混合搅拌,并用氨水调节,使之成为PH值为9-11的澄清溶液; 步骤四,将10ml步骤三所得到的澄清溶液放入反应釜中,密封之后,加热到130°C,保温2h,之后以2-4°C /min的升温速率升温至150 °C,保温4h,之后以3_6°C /min的升温速率升温至200°C,保温3h,然后以5-7°C /min的降温速度降温至180°C保温2h,最后再以3-6 0C /min的升温速率升温至200 °C,保温7h,待反应完成后,将反应釜取出,使之冷却到室温,所述降温速度为3-6°C /min,将所得的粉末离心分离lOmin,转速8000?10000r/min,采用无水乙醇和去离子水各洗涤三次,在50?70°C真空干燥24h,得到第一产物; 将5g第一产物和5-10g苯胺单体加入至十二烧基苯磺酸的溶液中,超声分散65min,形成第二产物,所述第一产物和十二烷基苯磺酸的质量比为1-1.5: 8-15; 将3g过硫酸铵溶解在80-120ml蒸馏水中,缓慢滴加到第二产物中,搅拌反应15h,反应结束后,抽滤,分别用蒸馏水、乙醇洗涤产物至滤液无色,50?70°C真空干燥24?36h,得到吸波材料。 步骤五,成膜,将该吸波材料添加至去离子水中,配置成浓度为5-25g/L的水溶液,首先采用机械搅拌10-15min,然后在超声波频率为30Hz的条件下超声分散30_50min,形成均匀的溶液,将该溶液放置于容器中待用; 选用Cu片作为基底材料,将该基底材料依次采用丙酮、去离子水、甲醇和去离子水,分别用超声波清洗5-10min,将清洗完毕的基底材料在90-120°C真空干燥10_30min,之后放入容器中做为负极,采用Fe片作为正极,将电泳仪调节为30-120V的恒压模式下沉积30-90min,既得热电薄膜。2.根据权利要求1所述的制备方法,其特征在于,所述石墨粉的粒径为15-30um。3.根据权利要求1所述的制备方法,其特征在于,步骤二中所述氧化石墨g、二甲亚砜ml、N-羟基丁二酰亚胺g和自制表面处理剂g的比值为0.2-0.5: 20-25: 2-5: 0.1-05,所述自制表面处理剂由二环己基碳二亚胺、十二烷基磺酸钠、聚苯乙烯磺酸钠和聚丙烯酸组成,所述二环己基碳二亚胺、十二烷基磺酸钠、聚苯乙烯磺酸钠和聚丙烯酸的质量比为1:1: 2: 3ο4.根据权利要求1所述的制备方法,其特征在于,所述的所述步骤二中盐酸的浓度为体积比1: 10的盐酸溶液。5.根据权利要求1所述的纳米复合吸波材料,其特征在于,该吸波材料为层状纳米复合吸波材料,纳米镍粒子均匀生长在石墨烯片层中,在石墨烯片层上负载粒径约为20-100nm的纳米镍粒子,且聚苯胺包覆于负载有纳米镍粒子的石墨稀片层表面。
【文档编号】B22F9/24GK105887166SQ201510017295
【公开日】2016年8月24日
【申请日】2015年1月12日
【发明人】刘艳娇
【申请人】刘艳娇
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1