专利名称:管内水力切割器的制作方法
技术领域:
本发明属于石油开采领域,具体地,涉及一种管内水力切割器,更具体地,涉及一种适用于油田采油井小直径油管内切割的水力切割工具。
背景技术:
近年来,随着石油化工行业的迅猛发展,石油开采和油田作业修井方面的技术革新也日新月异。然而,在高新技术快速发展的背后,也存在着令人不得不重视的一系列问题,进而引起了各种工程事故。随着油田开采的不断深入,许多油区已逐渐进入开发中后期,全国各地油田的井下油管变形、错断和卡阻等现象也逐年增多。为了满足修井的需要,近几年各油田有很多不同的新工艺、新工具出现。其中油管切割是较为有效的作业修井方式之一。只有对变形、遇阻的油管进行切割后才能打捞、修复。目前,国内外现有的内切割技术主要有:机械内割刀切割、化学切割以及聚能切割等。机械内割刀切割是用固定割刀,下到预定深度,而后把刀片张开,从地面旋转管柱以切割套管。国内1978年已引进了 140mill机械式套管内割刀,并完成了测绘和研制;同时还完成168mm套管内割刀研制。但油管的内径小,且油井井深都大于1000米,机械式套管内割刀无法使用。化学切割一般是用电流引燃炸药包,使化学药剂和催化剂混合并反应。从而产生具有强烈腐蚀性的液体,然后周向喷出,达到切割管材的目的。但由于喷出的流体为氟化物,具有强烈的毒性,因而限制了它的使用。聚能切割是利用聚能效应,在锥形空穴处敷以金属罩,金属罩在炸药装药爆轰作用下所形成的高速金属射流具有极高的侵彻能力来实现切割的。切割时,往往因装药量计算不准确而导致套管、油管损坏。
发明内容
为了解决现有技术所存在的不足,本发明提供一种管内水力切割器,减少由切断带来的副作用,提高切断效率,且操作方便,并可对小直径油管进行内切割。为实现上述目的,本发明采用以下技术方案:
一种管内水力切割器,包括水力锚、液压马达、减速增扭装置、螺旋杆、切刀、中心下锥体和导轨;水力锚下端与液压马达的上端连接,液压马达下端与减速增扭装置上部相连,减速增扭装置的下部与螺旋杆上端固定连接,螺旋杆上轴向固定有可绕其自由旋转的导轨;中心下锥体上设有内螺纹和轨道,中心下锥体与螺旋杆通过螺纹连接;切刀设置两个,每个切刀上端与导轨滑动连接,切刀内侧通过轨道与中心下锥体滑动连接。优选地,液压马达下端设有输出轴和行星轮固定轴。优选地,减速增扭装置包括主动轮、行星轮和外齿轮;主动轮和行星轮为圆柱形外啮合齿轮,外齿轮为圆柱形内啮合齿轮,主动轮与行星轮啮合,行星轮与外齿轮啮合;主动轮固定在液压马达输出轴上,外齿轮与液压马达的输出轴通过轴承连接,行星轮通过液压马达上的行星轮固定轴进行轴向固定,外齿轮下部设有连接槽。优选地,螺旋杆为带有螺纹的杆状结构,上端呈长方体状用于与减速增扭装置的外齿轮的连接槽固定连接,螺旋杆上部带有双螺母并且螺母间杆件光滑可用来安放导轨。优选地,导轨呈凹槽状并且中间设有一圆孔,导轨通过该圆孔置于螺旋杆上。优选地,中心下锥体为锥形结构,两侧设有轨道,内部带有轴向的内螺纹;中心下锥体与螺旋杆通过螺纹连接,中心下锥体与螺旋杆间连接光滑,并时常加油润滑。优选地,切刀上部和内侧带有凸状结构,切刀通过上部的凸状结构安放在导轨上并沿导轨滑动,切刀通过内侧的凸状结构安放在中心下锥体的轨道上并沿轨道滑动。优选地,螺旋杆的下端固定有底座。优选地,行星轮设有三个。优选地,切刀设有两个。本发明的有益效果如下:采用上述结构的切割器切割小直径油管,能直接下放到油管设定的位置进行切割;该切割器进行切割时,井口液压控制切割,操作简单,安全可靠,对作业现场条件要求低,不会引发其它意外伤害;使用该工具切割油管,断口光滑,不会对油管造成损坏,为油管的再利用提供了可靠的保障。
图1a是本发明的管内水力切割器的结构正视示意 图1b是本发明的管内水力切割器的剖面结构示意 图2是液压马达与减速增扭装置连接示意 图3a是减速增扭装置的轴侧示意 图3b是减速增扭装置的另一轴侧示意 图3c是减速增扭装置的俯视示意 图4是螺旋杆的结构示意 图5是导轨的结构示意 图6是中心下锥体的结构示意 图7a是切刀的立体示意 图7b是切刀的正视示意 图7c是切刀的左视不意 图7d是切刀的俯视示意 图8是底座的结构不意 图9a是管内水力切割器刚下放到油管中时的示意 图%是管内水力切割器刚开始切割油管时的示意 图9c是管内水力切割器切割油管完成时的示意图。图中:1、水力锚,2、液压马达,3、减速增扭装置,4、螺旋杆,5、切刀,6、中心下锥体,
7、底座,8、导轨,9、轨道,10、液压马达的输出轴,11、行星轮固定轴,12、轴承,13、主动轮,14、行星轮,15、外齿轮,16、连接槽。
具体实施方式
下面结合附图对本发明作进一步说明。如图la,图1b所示,管内水力切割器,包括水力锚1、液压马达2、减速增扭装置3、螺旋杆4、切刀5、中心下锥体6、底座7和导轨8 ;水力锚I上端与输入管线连接(图中未示意),下端与液压马达2的上端连接,水力锚I为管内水力切割器提供支撑,并承受切割管体时切刀5传来的切割反力;液压马达2下端与减速增扭装置3上部相连,液压马达2将井口液压泵提供的液压能转变为机械能,为管内水力切割器工作提供动力;减速增扭装置3的下部与螺旋杆4上端固定连接,减速增扭装置3起到减速增扭的作用;螺旋杆4上轴向固定有可绕其自由旋转的导轨8 ;中心下锥体6上设有轴向内螺纹和对称设置的两条轨道9,中心下锥体6与螺旋杆4通过螺纹连接;切刀5设置两个,每个切刀5上端与导轨8滑动连接,切刀5内侧通过轨道9与中心下锥体6滑动连接;螺旋杆4把液压马达2传递来的旋转运动转换为中心下锥体6的上下运动及附带旋转运动;中心下锥体6主要起到膨胀和收缩切刀5的作用,导轨8和轨道9主要起到约束切刀5运动的作用,切刀5主要起到切割油管的作用;底座7固定在螺旋杆4的下端,防止中心下锥体6脱落。水力锚I为现有技术,本发明采用寿光市海龙石油机械有限公司提供的KDB水力锚;水力锚I的上端与输入管线连接,下端与液压马达2连接。水力锚I的工作原理是:在流体压力的作用下,使水力锚卡在油管上,为整个切割器提供支撑。如图2所示,液压马达2为现有技术,本发明采用丹佛斯OML液压马达;液压马达2上端与水力锚I固定;液压马达2下端设有输出轴10和行星轮固定轴11,液压马达2将井口液压泵提供的液压能转变为机械能,为整个工具工作提供动力。如图2、图3a、图3b、图3c所示,减速增扭装置3包括主动轮13、行星轮14和外齿轮15 ;主动轮13和行星轮14为圆柱形外啮合齿轮,外齿轮15为圆柱形内啮合齿轮,行星轮14设有三个,主动轮13与行星轮14啮合,行星轮14与外齿轮15啮合;主动轮13固定在液压马达输出轴10上,工作时随轴转动,外齿轮15与液压马达2的输出轴10通过轴承12连接,保证减速增扭装置3不会脱落;行星轮14通过液压马达2上的行星轮固定轴11进行轴向固定,只能绕轴旋转,主要起传递运动的作用;外齿轮15下部设有连接槽16。减速增扭装置3的工作原理是,在马达电机不变的情况下,减速增扭装置3通过齿轮间的相互作用和外齿轮15与主动轮13的半径比来达到减速增扭的目的。如图4所示,螺旋杆4为带有螺纹的杆状结构,上端呈长方体状用于与减速增扭装置3的外齿轮15的连接槽16固定连接,外齿轮15可将增扭后的扭矩传递给螺旋杆4,并带动螺旋杆4转动。螺旋杆4上部带有双螺母并且螺母间杆件光滑可用来安放导轨8,导轨8轴向固定于螺旋杆4上的两个螺母间。如图5所示,导轨8呈凹槽状并且中间设有一圆孔,导轨8通过该圆孔置于螺旋杆4上,导轨8可以绕螺旋杆4自由转动,不能上下移动。如图6所示,中心下锥体6为锥形结构,两侧设有轨道9,内部带有轴向的内螺纹;中心下锥体6与螺旋杆4通过螺纹连接,当螺旋杆4转动时,中心下锥体6可在螺旋副的作用下实现上升和下降,中心下锥体与螺旋杆间连接光滑,并时常加油润滑,保证中心下锥体可在惯性作用下顺利上升和下降,不会卡住。螺旋杆4的下端固定有底座7 (如图8所示),可防止螺旋杆4倒转时,中心下锥体6滑出脱落。如图7a、7b、7c、7d所示,切刀5上部和内侧带有凸状结构,切刀5通过上部的凸状结构安放在导轨8上并沿导轨8滑动,切刀5通过内侧的凸状结构安放在中心下锥体6的轨道9上并沿轨道9滑动。切刀5在中心下锥体6的带动下实现切割功能:当中心下锥体6在螺旋副的作用下上升时,中心下锥体6会使切刀5在导轨8上向外运动,撑开切刀5,进行切割;当中心下锥体6在螺旋副的作用下下降时,中心下锥体6会使切刀5在导轨8上向内运动,收缩切刀5,收缩切刀5时,由于切刀5卡在油管上,不会造成中心下锥体6与螺旋杆4 一同转动的情况,收缩会很顺利。本发明的整体工作原理如图9a,图%,图9c所示,切割油管时,先将工具下放到指定位置,然后通过操作井口的控制器使水力锚I撑开,将整个工具固定在管壁上,为下一步的切割提供条件;切割时,控制井口的液压泵,使液压马达2正向旋转,将通过减速增扭装置3增扭后的扭矩传递给螺旋杆4,带动螺旋杆4 一同正向旋转。当螺旋杆4转动时,螺旋杆4与中心下锥体6间会产生一个相对运动,中心下锥体6会在与螺旋杆4之间的螺旋副的作用下上升,而切刀5会在中心下锥体6的推动下向外扩张撑开。当切刀5开始接触管壁进行切割时,切刀5进入管壁一定深度,切刀5上传递的压力使中心下锥体6和螺旋杆4的螺纹自锁时,中心下锥体6会在螺旋杆4的带动下一同旋转带动切刀5切割,切刀5的轴向运动和旋转切割是同时存在,连续不断的,直到切刀5切开管壁,运动停止。切割完成后,控制井口的液压泵使液压马达2反向旋转,螺旋杆4也会在带动下实现反向旋转,而中心下锥体6会在其与螺旋杆4间的螺旋副作用下下降,切刀5也会在中心下锥体6的带动下向内收缩,直至达到工具切割时的初始状态。油管的整个切割过程完成后,水力锚I收缩直径解卡,脱开油管,然后将工具从井口取出,再将切后的油管逐段取出,完成作业。
权利要求
1.一种管内水力切割器,包括水力锚、液压马达、减速增扭装置、螺旋杆、切刀、中心下锥体和导轨;其特征在于:水力锚下端与液压马达的上端连接,液压马达下端与减速增扭装置上部相连,减速增扭装置的下部与螺旋杆上端固定连接,螺旋杆上轴向固定有可绕其自由旋转的导轨;中心下锥体上设有内螺纹和轨道,中心下锥体与螺旋杆通过螺纹连接;切刀设置两个,每个切刀上端与导轨滑动连接,切刀内侧通过轨道与中心下锥体滑动连接。
2.根据权利要求1所述的管内水力切割器,其特征在于:液压马达下端设有输出轴和行星轮固定轴。
3.根据权利要求1-2所述的管内水力切割器,其特征在于:减速增扭装置包括主动轮、行星轮和外齿轮;主动轮和行星轮为圆柱形外啮合齿轮,外齿轮为圆柱形内啮合齿轮,主动轮与行星轮啮合,行星轮与外齿轮啮合;主动轮固定在液压马达输出轴上,外齿轮与液压马达的输出轴通过轴承连接,行星轮通过液压马达上的行星轮固定轴进行轴向固定,外齿轮下部设有连接槽。
4.根据权利要求1-3所述的管内水力切割器,其特征在于:螺旋杆为带有螺纹的杆状结构,上端呈长方体状用于与减速增扭装置的外齿轮的连接槽固定连接,螺旋杆上部带有双螺母并且螺母间杆件光滑可用来安放导轨。
5.根据权利要求1-4所述的管内水力切割器,其特征在于:导轨呈凹槽状并且中间设有一圆孔,导轨通过该圆孔置于螺旋杆上。
6.根据权利要求1-5所述的管内水力切割器,其特征在于:中心下锥体为锥形结构,两侧设有轨道,内部带有轴向的内螺纹;中心下锥体与螺旋杆通过螺纹连接,中心下锥体与螺旋杆间连接光滑,并时常加油润滑。
7.根据权利要求1-6所述的管内水力切割器,其特征在于:切刀上部和内侧带有凸状结构,切刀通过上部的凸状结构安放在导轨上并沿导轨滑动,切刀通过内侧的凸状结构安放在中心下锥体的轨道上并沿轨道滑动。
8.根据权利要求1-7所述的管内水力切割器,其特征在于:螺旋杆的下端固定有底座。
9.根据权利要求1-8所述的管内水力切割器,其特征在于:行星轮设有三个。
10.根据权利要求1-9所述的管内水力切割器,其特征在于:切刀设有两个。
全文摘要
本发明属于石油开采领域,具体地,涉及一种管内水力切割器。采用上述结构的切割器切割小直径油管,能直接下放到油管设定的位置进行切割;该切割器进行切割时,井口液压控制切割,操作简单,安全可靠,对作业现场条件要求低,不会引发其它意外伤害;使用该工具切割油管,断口光滑,不会对油管造成损坏,为油管的再利用提供了可靠的保障。采用上述结构的切割器切割小直径油管,能直接下放到油管设定的位置进行切割;该切割器进行切割时,井口液压控制切割,操作简单,安全可靠,对作业现场条件要求低,不会引发其它意外伤害;使用该工具切割油管,断口光滑,不会对油管造成损坏,为油管的再利用提供了可靠的保障。
文档编号E21B29/06GK103089181SQ20131001295
公开日2013年5月8日 申请日期2013年1月14日 优先权日2013年1月14日
发明者李玉坤, 朱海, 张峻, 杜丙国, 马清明, 张纪豪 申请人:中国石油大学(华东)