具有交换流体在线混合的血液处理系统和方法

文档序号:5453394阅读:382来源:国知局
专利名称:具有交换流体在线混合的血液处理系统和方法
技术领域
本发明涉及用于血液、血液组分或其它细胞物质的悬浮液的处理和采集系统和方法。
本发明的背景技术目前人们按惯例通常通过离心法将全血分离成其各种医疗组分,例如红血球、血小板以及血浆。
传统的血液处理方法采用耐用的离心设备结合通常由塑料制成的专用无菌处理系统。操作人员在进行处理之前把该一次性系统放在离心分离机上,用后将它们扔掉。
传统血液离心分离机的尺寸使得不容易在血液采集位置之间进行输送。另外,装入和卸下操作有时比较耗费时间并且乏味。
另外,需要这样进一步地改进用于采集血液组分的系统和方法它有助于应用在大容量、在线血液采集的情况中,在该情况下在相当短的时间内能够实现对危急需要的血液细胞组分如血浆、红血球和血小板的更高产出。
正如对于更小且更轻便的系统所强烈要求的一样,对这种流体处理系统的操作和性能要求变得更加复杂和完善。因此需要自动血液处理控制器,这些控制器能够采集并产生出更详细的信息并控制这些信号以帮助操作人员使处理和分离效率最大化。
发明概述本发明提供用于血液和血液组分的处理系统和方法,该系统和方法有助于形成具有简单而精确的控制功能的轻便灵活的处理平台。
具体而言,本发明提供在血液组分如红血球或血浆正在返回到血液供体的时候,利用在线混合交换流体例如生理盐水的血液处理系统和方法。
该交换流体的在线混合具有许多好处。例如,作为与血液组分混合的结果,该交换流体的温度在进入到血液供体的循环系统之前会上升。从而就能提高血液供体的舒适性。
由于交换流体与正在返回到血液供体上的血液细胞组分的在线混合,所以就降低了所返回的血液细胞组分的血球比容。这就允许使用较大规格(例如较小直径)的放血针,这就进一步提高了血液供体的舒适性。
在下面的说明书和附图中描述了本发明的其它特征和优点。
简要的


图1为具体显示了本发明特征的一个系统的透视图,显示出在使用之前不与处理设备连接的一次性处理装置;图2为在图1中所示的系统的透视图,显示出到离心分离器的位置以及泵和阀站的门是打开的,以便供处理装置的安装时使用;图3为在图1中所示的系统的透视图,显示出处理装置已完全安装在处理设备上并准备好使用;图4为装图1中所示的处理装置的箱子的右边正视透视图,其盖子关闭以便运送该设备;图5为血液处理回路的示意图,该回路可以被编程以进行多种与图1中所示的设备有关的不同血液处理程序;
图6为盒子的分解透视图,该盒子包含在图5中所示的可编程的血液处理回路,以及在图1中所示的处理设备上的泵和阀站,所述设备容纳该盒子以便使用;图7为在图6中所示的盒子的正面的平面图;图8为在图6中所示的盒子上的阀位置的放大的透视图;图9为在图6中所示的盒子的背面的平面图;图10为包含在图6所示盒子中的通用处理装置的平面图,并且该装置可以安装在图1所示的设备上,如图2和3中所示;图11为泵和阀站的顶部剖视图,其中装着图6中所示的盒子以便使用;图12为气动管道总成的示意图,它是图6中所示的泵和阀站的一部分,并且它供给正、负气压以把流体输送通过图7和9中所示的盒子;图13为装着该处理设备的箱子的透视正视图,其盖子打开以便该设备使用,并且显示出装在该箱子内部的各种处理元件的位置;图14为控制器的示意图,该控制器进行程序控制并且监测图1中所示的设备的功能;图15A、15B和15C为结合在图1所示的设备中的血液分离室的侧面示意图,显示出血浆和红血球采集管线以及相关的两个在线传感器,这两个传感器探测正常操作的情况(图15A)、溢出的情况(图15B)以及没溢出的情况(图15C)。
图16为夹具的透视图,该夹具在与血浆和红血球采集管线相连的时候使这些管子保持所要求的与所述在线传感器的观察对准,如图15A、15B和15C所示;图17为在图16中所示的夹具的透视图,并且安装有血浆细胞采集管线、红血球采集管线以及全血入口管,从而以一种有组织的并排阵列将这些管子集中在一起;图18为在图17中所示的夹具和管子在被设置成如图15A、15B和15C所示的观察对准两个传感器的时候的透视图;图19为感测站的示意图,在图15A、15B和15C所示的第一和第二传感器形成该感测站的一部分;
图20为通过第一和第二传感器所感测到的光密度随时间的曲线图;图21为模制的离心血液处理容器的分解顶部透视图,该容器可以与图1中所示的设备结合使用;图22为在图21中所示的模制的处理容器的底部透视图;图23为在图21中所示的模制的处理容器的顶视图;图24为在图21中所示的模制的处理容器的侧面剖视图;图24A为大体上沿着图24中的24A-24A线剖开的连接器的顶视图,该连接器以图24中所示的方式把脐部连接在该模制的处理容器上;图25为在图24中所示的模制的处理容器在把脐部连接在容器上之后的侧面剖视图;图26为图1中所示的处理设备的离心分离器站的透视图,并且安装有处理容器以便使用;图27为在图26中所示的离心分离器站及处理容器的另一个分解透视图;图28为在图26中所示的处理设备的离心分离器站的侧面剖视图,并且安装有处理容器以便使用;图29为如在图21到23中所示的模制的离心血液处理容器的顶视图,显示出用于将全血分离成血浆和红血球的一种流路布置;图30到33为如在图21到23中所示的模制的离心血液处理容器的顶视图,显示出用于将全血分离成血浆和红血球的另一种流路布置;图34为另一种血液处理回路的示意图,该回路能够被编程以结合在图1中所示的设备进行多种不同的血液处理程序;图35为盒子正面的平面图,该盒子含有在图34中所示的可编程的血液处理回路;图36为在图35中所示的盒子背面的平面图;图37A到37E为在图34中所示的血液处理回路的示意图,显示出盒子的程序设计,以进行与把全血处理成血浆和红血球有关的不同的流体流动作业;
图38A和38B为在图34中所示血液处理回路的示意图,显示出盒子的程序设计,以进行与把附加的溶液在线输送进从全血分离出的红血球中有关的液体流动作业;图39A和39B为在图34中所示的血液处理回路的示意图,显示出盒子的程序设计,以进行与把从全血中分离出的红血球在线输送通过一个过滤器以除去白血球有关的液体流动作业;图40为适于与在图1中所示的设备结合使用的一种磅秤的代表性实施例;图41为适于与在图1中所示的设备结合使用的另一种秤的代表性实施例;图42为用于气泵室的流速感测和控制系统的示意图,该系统采用了一个电极以在泵室内部形成一个电场;以及图43为气动管道总成的示意图,该总成是图6中所示的泵和阀站的一部分,并且该总成输送正负气压以将流体输送通过图35和36中所示的盒子。
在不脱离其精神或实质特点的情况下可以以几种形式来具体实现本发明。本发明的范围被限定在附加的权利要求中,而不是在它们之前的说明书中。因此所有落入在权利要求的等同技术方案的含义和范围内的实施例都将由权利要求所包含。优选实施例的说明图1显示出具体体现了本发明特征的流体处理系统10。该系统10能够用来处理各种流体。系统10尤其适用于处理全血和其它生物细胞物质的悬浮液。因此,所述的实施例显示了用于这个目的的系统10。Ⅰ.系统概述系统10包括三个基本部件。它们是(ⅰ)液体和血液流动组件12;(ⅱ)血液处理设备14,该设备与流动组件12相互作用以促成一种或多种血液组分的分离和采集;以及(ⅲ)控制器16,该控制器控制该相互作用以进行由操作人员所选定的血液处理和采集程序。
血液处理设备14和控制器16应该是能够长时间使用的耐用物品。在所述的优选实施例中,该血液处理设备14和控制器16安装在一个手提箱或盒36的内部。箱子36具有一个紧凑的着陆区,适用于在桌面或其它相对小的表面上安装和操作。该箱子36还应该能被容易地运输到采集场所。
该箱子36包括一个基部38和一个铰接盖40,该盖子可以打开(如图1所示)和关闭(如图4所示)。盖子40包括一个闩锁42,用来可松开地把关闭的盖子40锁上。该盖子40还包括一个把手44,操作人员可以抓住该把手以便在盖子40关闭的时候携带该箱子36。在使用中,基部38应该处在一个大体上水平的支撑面中。
箱子36例如可以通过模制被做成所要求的结构。箱子36最好由一种轻质而耐用的塑料材料制成。
流动组件12应该是一种经过消毒的专用的一次性物品。如图2所示,在开始进行给定的血液处理和采集程序之前,操作人员将流动组件12的各种部件装进与设备14相关的箱子36中。控制器16根据来自操作人员预定的规程的其它输入执行该程序。一旦完成该程序,操作人员使流动组件12脱离设备14。使装置12保持所采集的血液组分的部分脱离箱子36并且保留以便存放、输血或进一步处理。使装置12的剩下部分脱离箱子36并且把它扔掉。
如图1中所示的流动组件12包括一个设计用来与离心分离器结合使用的血液处理室18。因此,如图2所示,处理设备14包括一个离心分离器站20,该离心分离器站容纳这处理室18以便使用。如图2和3所示,离心分离器站20包括一个形成在基部38中的隔间。该离心分离器站20包括门22,该门用来打开或关闭隔间。门22打开以让处理室18能够装进。门22关闭以在操作期间封闭该处理室18。
离心分离器站20使处理室18转动。当转动的时候,该处理室18将从血液供体接收到的全血离心地分离成各种组分例如红血球、血浆以及含有血小板和白血球的血块黄层。
应该理解的是,系统10不必使血液离心地分离。系统10可以装有其它类型的血液分离设备,例如薄膜血液分离设备。Ⅱ.可编程的血液处理回路装置12限定了一个可编程的血液处理回路46。各种结构都是可能的。图5大致地显示出一种代表性的结构。图34大致地显示出另一种代表性的结构,这将在下面进行说明。
参照图5,回路46可以被编程以进行多种不同的血液处理程序,其中例如可以采集红血球,或者采集血浆,或者采集血浆和红血球,或者采集血块黄层。
回路46包括多个泵站PP(N),这些泵站通过一组管线阀V(N)采用一种流体流动通道F(N)的形式相互连接。该回路通过端口P(N)与血液处理装置的其余部分相连。
回路46包括一种流动通道的可编程网络,该网络包括11个通用端口P1到P8和P11到P13以及三个通用泵站PP1、PP2和PP3。通过管线阀V1到V14、V16到V18和V21到23的选择性操作,可以将任意通用端口P1到P8和P11到P13设置成与任意通用泵站PP1、PP2和PP3相通。通过这些通用阀的选择性操作,可以引导液流沿着两个阀之间的向前方向或相反方向通过任意的通用泵站,或沿着进出方向通过单个阀。
在所述的实施例中,该回路还包括一条包含两个端口P9和P10以及一个泵站PP4的单独的流动通道。该流动通道被称为“单独的”,这是因为在没有外部管道的情况下它不能被设置成与回路46中的任意其它流动通道直接相通。通过管线阀V15、V19和V20的选择性操作,就能够引导液流沿着两个阀之间的向前方向或者相反方向,或者沿着单个阀的进出方向通过泵站。
回路46可以被编程以给各种泵站指定专用的泵送功能。例如,在优选实施例中,通用泵站PP3可以用作一种通用的血液供体接口泵,而不管所进行的具体的血液处理程序,以便通过端口P8从血液供体抽出血液或将血液返回到血液供体。在这种设置中,泵站PP4可以用作一种专用的抗凝血剂泵,以便通过端口P10从来源中抽取抗凝血剂并通过端口P9使抗凝血剂经过计量之后进入血液中。
在该设置中,通用泵站PP1可以不用考虑所进行的具体的血液处理程序而用作一种专用的处理全血泵,以便将全血输送进血液分离器中。该专用的功能使血液供体接口泵PP3不再具有把全血输送到分离器的附加功能。因此,该处理程序中的全血泵PP1可以保持将血液连续地供应到血液分离器,而血液供体接口泵PP3能够同时用来通过单个放血针来抽血和将血液返回到血液供体。从而使处理时间最小。
在该设置中,通用泵站PP2可以不管所进行的具体血液处理程序而用作一种血浆泵,以便从血液分离器中输送血浆。这种能专用于单独的泵送功能的能力形成了一条进出分离器以及进出血液供体的连续的血流。
该回路46可以根据具体的血液处理程序的对象被编程,用来保留所有或一些血浆以便存放或分级,或者用来将所有或一些血浆返回到血液供体。该回路46还可以根据具体的血液处理程序被编程,用来保留所有或一些红血球以便存放或分级,或者用来将所有或一些红血球返回到血液供体。该回路46还可以根据具体的血液处理程序被编程,用来保留所有或一些血块黄层以便存放或分级,或者用来将所有或一些血块黄层返回到血液供体。
在优选的实施例中,可编程的流体回路46可以通过采用一个流体压力致动盒28(参见图6)来实现。该盒子28为给定血液处理程序所要求的所有泵送和阀功能提供了一个集中的可编程的集成平台。在所述的实施例中,流体压力包含正气压和负气压。还可以采用其它类型的流体压力。
如图6所示,盒子28与一个气动致动泵和阀站30相互作用,该气动致动泵和阀站安装在箱子36(参见图1)的盖子40中。盒子28在使用中安装在泵和阀站中。该泵和阀站30在盒子28上施加正气压和负气压以便引导液流穿过该回路。下面将提供进一步的细节。
盒子28可以采用各种形式。如所述的一样(参见图6),盒子28包括一个具有正面190和背面192的注塑体188。为了说明,正面190是盒子28在它安装在泵和阀站30中时避开操作人员的侧面。挠性膜片194和196分别覆盖在盒子的正面190和背面192上。
盒体188最好由一种刚性医用塑料材料制成。膜片194和196最好由医用塑料的挠性片制成。膜片194和196在它们的边缘周围密封到盒体188的正面和反面的周边。膜片194和196的内部区域也可以密封到盒体188的内部区域。
盒体188在正面190和背面192上都具有一组内部空腔(参见图7和9)。这些内部空间限定了在图5中大致所示的阀站和流动通道。在盒子28的背面设有一个额外的空腔以便形成一个容纳一种过滤材料200的站。在所述的实施例中,过滤材料200包括一种过度模制的网状过滤结构。该过滤材料200在使用期间用来除去在血液处理期间形成的凝块和细胞状集合物。
泵站PP1到PP4被形成为在盒体188的正面190上打开的井。竖立的边缘在周边包围着泵站的开口井。除了用于每一个泵站的一对间隔的通孔或端口202或204之外,这些泵井封闭在盒体188的背面上。端口202和204延伸通到盒体188的背面192上。不难看出,端口202或204可以使其相关的泵站用作一个入口或出口,或者同时用作出口和入口。
管线阀V1到V23同样形成为在盒子的正面190上是开口的井。图8显示出具有代表性的阀V(N)。竖立的边缘在周边包围着盒体188的正面190上的阀的开口井。除了每个阀都包括一对通孔或端口206和208之外,这些阀在盒子28的背面192上是封闭的。一个端口206在盒体188的背面192上与一条选定的液体通道相通。另一个端口208在盒体188的背面192上与另一条选定的通道相通。
在每一个阀中,一个阀座210在端口208周围延伸。阀座210在凹入阀井的表面下面是凹入的,这样端口208就基本上和凹入的阀井周围表面齐平,并且阀座210在阀井表面的下方延伸。
覆盖着盒子28正面190的挠性膜片194靠在包围着这些泵站和阀的竖立边缘上。通过在盒体188的这个侧面上均匀地施加正压,从而挠性膜片194压靠在这些竖立边缘上。正压力在这些泵站和阀周围形成周边密封。这又使这些泵和阀相互隔开并且与该系统的其余部分隔开。泵和阀站30为此会在盒体188的正面190上施加正压。
另外,在覆盖着这些被边缘密封的区域的膜片194上局部地施加的正流体压力和负流体压力,用来使该膜片在这些周边密封的区域中挠曲。这些在覆盖着泵站的膜片区域上局部地施加的正流体压力和负流体压力用来把液体排出泵站(通过施加正压)以及将液体抽进泵站(通过施加负压)。
在所述的实施例中,每个泵站PP1到PP4的底部包括一个凹入的轨道316(参见图7)。该轨道316在端口202和204之间延伸,并且还包括一条从顶部端口202开始以一个角度延伸的折道。该轨道316在端口202和204之间形成更好的液体流动连续性,尤其是在膜片区域受到作用在泵站底部上的正压力作用的时候。该轨道316还防止了膜片区域采集泵站内的空气。在泵站内部的空气被压入轨道316中,即使该膜片区域在该站中被降到最低点,在这里它也可以随时通过顶部端口202被排出泵站。
同样,在覆盖着阀的膜片区域上局部施加的正流体压力和负流体压力将用来使这些膜片区域座靠(通过施加正压)和不座靠(通过施加负压)在这些阀座上,从而关闭和打开相关的阀端口。该挠性膜片对应于所施加的负压弯曲到阀座210外面,以打开相应的端口。该挠性膜片对应于所施加的正压弯曲进阀座210里面,以关闭相应的端口。密封是通过强迫该挠性膜片弯曲进凹入的阀座210中以在端口208周围密封来实现的,该端口与阀井的壁齐平。挠性膜片在凹入的阀座210内在阀端口208周围形成一种边缘密封。
在操作中,泵和阀站30将局部的正流体压力和负流体压力施加到正面膜片104的这些区域上,以便打开和关闭这些阀端口。
除了液体通道F15、F23和F24被形成为在盒体188的正面190上开口的细长管道之外,液体通道F1到F38被形成为在盒体188的背面192上开口的细长管道。这些液体通道在图9中用阴影部分来表示以利于它们的观察。竖立边缘在周边包围着盒体188的正面190和背面192上的开口管道。
除了在这些通道穿过阀站端口或泵站端口的地方之外,液体通道F1到F38在盒体188的正面190上是封闭的。同样,除了在这些通道穿过与盒子28的背面192上的某个管道相通的同轴端口的地方之外,液体通道F1到F38在盒体188的背面192上是封闭的。
覆盖着盒体188的正面190和背面192的挠性膜片194和196靠在包围液体通道F1到F38的竖立边缘上。通过在盒体188的正面190和背面192上均匀地施加正压,挠性膜片194和196就座靠在竖立边缘上。这就沿着液体通道F1到F38形成边缘密封。在操作中,泵和阀站30为此将正压施加在膜片194和196上。
预模制的端口P1到P13沿着盒体188的两个侧缘延伸出。该盒子28垂直地安装以便用在泵和阀站30(参见图2)中。在这个取向中,端口P8到P13面对着下方,并且端口P1到P7是一个接着另一个垂直地叠放的并且面对着里面。
如图2所示,如将在下面所述的一样,端口P8到P13通过面对着下方从而与形成在基部38中的容器支撑托盘212取向。如将在下面更详细地所描述的一样,面对着里面的端口P1到P7与离心分离器站和一个容器秤站214取向。在端口P1到P4下面的端口P5到P7(这些端口用于处理室18)的取向防止了空气进入处理室18。
这些端口的有规律的取向提供了一个与箱子36的操作区域一致的集中的紧凑的装置。B.通用装置图10大致地显示出通用装置264,该装置通过由盒子28所提供的血液处理回路46的选择性编程能够进行几种不同的血液处理程序。
通用装置264包括一个供血管266,该管子(通过Y形连接器272和273)安装在具有附加的放血针268的管道300上。该供血管266与盒子28的端口P8相连。
还通过Y形连接器273安装有用于采集通过管子300抽出的在线血样的一个容器275。
抗凝血剂管270通过Y形连接器272与放血针268相连。抗凝血剂管270连接在盒子端口P9上。装有抗凝血剂的一个容器276通过一个管子274与盒子端口P10相连。抗凝血剂管270带着一种在外部的、手动操作的普通结构的管线夹282。
装红血球添加溶液的一个容器280通过一个管子278与盒子端口P3相连。管子278还带着一个外部手动操作的管线夹282。
装生理盐水的一个容器288通过一个管子284与盒子端口P12相连。
图10显示出装有流体的容器276、280和288,它们在装置264的加工过程中成一整体地安装。或者,所有或某些容器276、280和288可以与装置264分开提供。容器276、280和288可以通过普通的销钉连接器连接,或者装置264可以设计成通过一种合适的经消毒的连接在使用的时候提供单独容器的安装,从而保持一种消毒的封闭的血液处理环境。或者,管子274、278和284可以带有一种管线消毒过滤器和一种普通的销钉连接器以便在使用的时候插进容器端口,从而保持一个消毒的封闭的血液处理环境。
该装置264还包括管子290、292和294,这些管子延伸到一个脐部296上。当被安装在处理站的时候,该脐部296使转动的处理室18与盒子28相连而不需要转动密封。下面将提供该结构的进一步的细节。
管子290、292和294分别连接在盒子端口P5、P6和P7上。管子290将全血输送进处理室18中。管子292输送来自处理室18的血浆。管子294输送来自处理室18的红血球。
一个血浆采集容器304通过一个管子302与盒子端口P3相连。该采集容器304在使用中用作在处理程序中的血浆存储器。
一个红血球采集容器308通过一个管子306与盒子端口P2相连。该采集容器308在使用中用于接收第一单元红血球以便存储。
一个全血存储器312通过一个管子310与盒子端口P1相连。该采集容器312在使用中用作在处理程序中的全血存储器。它还可以用来容纳第二单元的红血球以便存储。
如图10中所示,没有管道与公用盒子端口P13和血块黄层端口P4相连。C.泵和阀站泵和阀站30包括一个盒子固定板216。门32被铰接以相对于盒子固定板216在暴露出盒子固定板216(图6中所示)的打开位置和盖住盒子固定板216(在图3中所示)的关闭位置之间移动。门32还包括一个带有闩锁把手220的偏心闩锁218。当门32关闭的时候,闩锁218开始与闩锁销222啮合。
如图11所示,门32的内表面带有一个弹性垫圈224。该垫圈224在门32关闭的时候接触盒子28的背面192。一个可膨胀气囊314位于垫圈224下面。
随着门32打开(参见图2),操作人员能够将盒子28装进盒子固定板216。关上门32并且插上闩锁218使垫圈224与盒子28背面192上的膜片196面对着接触。膨胀的气囊314强迫垫圈224紧密地密封啮合在膜片196上。从而该盒子28就以一种紧密的密封配合固定在盒子固定板216内。
用一个不能通过正常施加在闩锁把手220上的手动力来克服的力,气囊314的膨胀还相对于闩锁销222完全支撑着偏心闩锁218。门32被牢牢地锁住并且在气囊314膨胀的时候不能打开。在这种结构中,没有必要采用辅助的锁定装置或传感器以确保在血液处理期间让门32不能打开。
泵和阀站30还包括一个位于盒子固定板216中的管线总成226。该管线总成226包括一个模制的或机加工的塑料或金属体。膜片的正面194在门32关闭且气囊214膨胀的时候保持以紧密的啮合方式压在管线总成226上。
该管线总成226与气动压力源234相连,该压力源提供正气压和负气压。该气动压力源234装在管线总成226后面的盖子40的内部。
在所述的实施例中,压力源234包括两个压缩机C1和C2。然而,还可以采用一个或多个双头压缩机。如图12所示,一个压缩机C1通过管线226将负压提供到盒子28上。另一个压缩机C2通过管线226将正压提供到盒子28上。
如图12所示,管线226含有四个泵致动器PA1到PA4以及23个阀致动器VA1到VA23。泵致动器PA1到PA4和阀致动器VA1到VA23都是手动取向,以在盒子28的正面190上形成泵站PP1到PP4以及阀站V1到V23的镜像。
还有如图22所示,每个致动器PA1到PA4和VA1到VA23都包括一个端口228。端口228以由控制器16所控制的顺序输送来自压力源的正气压或负气压。这些正负气压脉冲使正面的膜片194挠曲以操纵盒子28中的泵室PP1到PP4以及阀站V1到V23。这样又使血液和处理液体流动穿过盒子28。
盒子固定板216最好包括一个伸展穿过管线总成226的弹性薄膜232(参见图6)。该薄膜232在安装进固定板216的时候用作活塞元件226和盒子28的膜片194之间的界面。薄膜232可以在覆盖泵和阀致动器PA1到PA4和VA1到VA23的区域中包括一个或多个小通孔(未示出)。这些孔的大小能够从管线总成226中把气动液压输送到盒子膜片194上。还有这些孔要足够小以阻碍液体的通过。薄膜232在管线总成226的暴露表面上形成一种挠性防溅罩。
该防溅罩薄膜232在盒子膜片194泄漏的情况下防止液体进入泵和阀致动器PA1到PA4和VA1到VA23。该防溅罩薄膜232还用作一种过滤器以防止微小物质进入管线总成226的泵和阀致动器。该防溅罩薄膜232在更换盒子28的时候可以进行循环性地擦拭清洁。
管线总减226包括一组电磁阀致动气动阀,这些阀与泵和阀致动器PA1到PA4和VA1到VA23在管线中相连。管线总成226在控制器16的控制下选择地为泵和阀致动器PA(N)和VA(N)提供不同的压力和真空能级。这些压力和真空能级被系统地施加在盒子28上以输送血液和处理液体。
在控制器16的控制下,管线总成226还为门气囊314(已经描述过)以及供血压力套头(未示出)和供血管线咬合器320提供压力能级。
如图1所示,供血管线咬合器320位于盒子36中,它紧挨着泵和阀站30下面并且与盒子28的端口P8和P9成一条直线。连接在端口P8上的供血管线266穿过该咬合器320。连接在端口P9上的抗凝血剂管线270也穿过该咬合器320。该咬合器320是一种弹簧负载的、通常关闭的夹紧阀,在该咬合器之间穿过有管线266和270。来自管线总成234的气压通过一个电磁阀提供给一个气囊(未示出)。该气囊在由于气压的缘故而膨胀的时候打开夹紧阀,从而打开管线266和270。在没有气压的情况下,电磁阀关闭并且气囊与大气相通。该咬合器320的弹簧负载的夹紧阀关闭从而封闭住管线266和270。
管线总成226在控制器16的控制下保持多种不同的压力和真空条件。在所述的实施例中,可以保持以下多种压力和真空条件(ⅰ)P高即强压力和P处理或处理压力是在管线总成226中所保持的最高压力。P高施加用来关闭盒子阀V1到V23。P处理施加用来驱动来自处理泵PP1和血浆泵PP2的液体传输。在该优选实施例的范围中对于P高和P处理所用的通常的压力值为500mmHg。
(ⅱ)P普或普通压力施加用来驱动来自供血接口泵PP3和抗凝血剂泵PP4的液体传输。在该优选实施例的范围中对于P普所用的通常的压力值为150mmHg。
(ⅲ)Pcuff或套头压力提供给供血压力套头。在该优选实施例的范围中对于Pcuff所用的通常的压力值为80mmHg。
(ⅳ)V高或强真空是施加在管线总成226中最深度的真空。V高施加用来打开阀V1到V23。在该优选实施例的范围中用于V高的通常的真空度为-350mmHg。
(ⅵ)V普或普通真空是施加用来驱动四个泵PP1到PP4中每一个的抽取功能。在该优选实施例的范围中用于V普的通常的真空度为-300mmHg。
(ⅶ)P门或门压力施加给气囊314以将盒子28封装进固定板216中。在该优选实施例的范围中用于P门的通常压力值为700mmHg。
对于每一种压力和真空量来说,允许±20mmHg的误差。
P处理用来操纵处理泵PP1,以将血液泵送进处理室18。P处理的大小必须足以克服大约为300mmHg的最小压力,该压力通常存在于处理室18内部。
同样,P处理用于血浆泵PP2,由于它必须在血浆需要被反向泵送进处理室18中的情况下具有类似的压力能力,如将在下面所描述的一样,例如在溢出情况期间。
P处理和P高在最高的压力下运行以确保与泵送一起使用的上游和下游阀不会在被施加用来操纵这些阀的压力的作用下被强制打开。流体通道F1到F38通过盒子28的这种级联的可相互连通的设计要求P处理-P高为所施加的最高压力。出于同样的原因,V普要求极小于V高,以确保PP1到PP4不会压倒上游或下游盒式阀V1到V23。
P普用来驱动供血接口泵PP3并且可以和AC泵PP4一样保持在一个较低的压力下。
一个主要的强压力管线322和一个主要的真空管线324在管线总成324中提供P高和V高。压力和真空源234连续地运转以便为强压力管线322提供P高并且为高度真空管线提供V高。
一个压力传感器S1监测强压力管线322中的P高。该传感器S1控制着一个电磁阀38。电磁阀38通常是关闭的。传感器S1打开电磁阀38以使P高达到其最大设定值。只要P高在其指定的压力范围中,电磁阀38就是关闭的,并且该电磁阀在P高降低到其最小可接受值下面的时候是打开的。
同样,在高度真空管线324中的一个压力传感器S5监测V高。传感器S5控制一个电磁阀39。电磁阀39通常是关闭的。传感器S5打开电磁阀39以使V高达到其最大设定值。只要V高在其指定的压力范围中,电磁阀39就是关闭的,并且该电磁阀在V高降低到其最小可接受值下面的时候是打开的。
一个普通压力管线326从强压力管线322中分出。在普通压力管线326中的一个传感器S2监测P普。传感器S2控制一个电磁阀30。电磁阀30通常是关闭的。传感器S2打开电磁阀30更新来自强压力管线322中的P普。只要P普在其指定的压力范围中,电磁阀30就是关闭的,并且该电磁阀在P普落在其指定的范围之外的时候是打开的。
一个处理压力管线328也从强压力管线322中分出。在处理压力管线328中的传感器S3监测P处理。传感器S3控制一个电磁阀36。电磁阀36通常是关闭的。传感器S3打开电磁阀36把来自强压力管线322中的P处理更新到P处理的最大值。只要P处理在其指定的压力范围中,电磁阀36就是关闭的,并且该电磁阀在P处理落在其指定的范围之外的时候是打开的。
一个普通真空管线330从高度真空管线324中分出。一个传感器S6监测普通真空管线330中的V普。传感器S6控制一个电磁阀31。电磁阀31通常是关闭的。传感器S6打开电磁阀31以把来自高度真空管线324中的V普更新到V普的最大值。只要V普在其指定的压力范围中,电磁阀31就是关闭的,并且该电磁阀在V普落在其指定的范围之外的时候是打开的。
在强压力管线322、处理压力管线328、普通压力管线326、高度真空管线324以及普通真空管线330中设有在线存储器R1到R5,这些存储器R1到R5确保如上所述的稳定的压力和真空调节是平稳的和可预知的。
一旦程序完成,电磁阀33和34分别为这些压力和真空提供一个出口。由于泵送和阀将持续地消耗压力和真空,所以电磁阀33和34通常是关闭的。一旦血液处理程序完成,电磁阀33和34打开以与管线总成相通。
电磁阀28、29、35、37和32具有使存储器R1到R5与把真空和压力供应到管线总成226上的空气管线隔离开的能力。这就提供了更快的压力/真空衰减反馈,这样就能完成盒子/管线总成密封完整性测试。这些电磁阀28、29、35、37和32通常是打开的,这样在没有关闭这些电磁阀28、29、35、37和32的指令的情况下压力不会在管线总成226中形成,并且系统压力和真空会在一种错误的模式中或在能量损失的情况下被排出。
电磁阀1到23提供P高或V高以驱动阀致动器VA1到V23。在无动力的状态下,这些电磁阀通常是打开的,以保持所有的盒式阀V1到V23关闭。
电磁阀24和25提供P处理和V普以驱动处理泵PP1和血浆泵PP2。在无动力的状态下,这些电磁阀是打开的,以保持泵PP1和PP2都关闭。
电磁阀26和27提供P普和V普以驱动供血接口泵PP3和AC泵PP4。在无动力的状态下,这些电磁阀是打开的,以保持泵PP3和PP4都关闭。
电磁阀43在处理程序期间提供门气囊314和强压力管线322的隔离。电磁阀43通常是打开的,并且在P门到达的时候关闭。一个传感器S7监测P门并在气囊压力低于P门的时候发出信号。由于盒子28在门气囊314被加压的时候不能离开固定板,所以电磁阀43在无动力的状态下是打开的以确保气囊314排气。
电磁阀42提供P高以打开安全咬合器阀320。任何会危及血液供体的错误模式将使释放(排气)电磁阀42以关闭咬合器320并隔离血液供体。同样地,能量的任何损失将使电磁阀42释放并且隔离开血液供体。
传感器S4监测Pcuff并且与电磁阀41(用于增加压力)以及电磁阀40(用于排气)相联,以在处理程序期间将血液供体套头保持在其指定的范围内。电磁阀40通常是打开的,这样套头管线将在系统出错或能量损失的情况下排气。电磁阀41通常是关闭的,以在能量损失或系统出错的情况下使血液供体与任何P高隔开。
图12显示出在用于血液供体接口泵致动器PA3的气动管线中的一个传感器S8。传感器S8为双向集中气流传感器,该传感器能够监测流动到血液供体接口泵致动器PA3的气流,以探测出血液供体管线中的阻塞。或者,如将在下面更详细地描述的一样,可以通过装在血液供体接口泵室PP3或任意或其它所有泵室PP1、PP2或PP4中的电极来感应出电场变化来探测出阻塞,以及能够计算流速和探测空气。
各种选择性的实施例都是可能的。例如,可以用于四个泵室的压力和真空可以被更改以包括更多或更少的不同量或不同组的“共享”压力和真空量。对于另一个实施例来说,由于复原弹簧在除去真空的情况下会使盒式阀返回到关闭位置,所以V高能够离开电磁阀2、5、8、18、19、21、22的通道。另外,如组合在一起所示的排气会以多种组合进行分离或组合。
还应该理解的是,任何在“通常打开”模式中所用的电磁阀可以被气动地改变路线以实现为“通常关闭”。同样,任何“通常关闭”的电磁阀可以被实现为“通常打开”。
作为可选实施例的另一个示例来说,如果P门和P高被设定为同样大小的话,则可以去掉强压力存储器R1。在这种设置中,门气囊314可以用作强压力存储器。在该设置中还可以去掉压力传感器S7和电磁阀43。Ⅲ.系统的其它处理控制部件如在图13可以极好地示出,箱子36包括用来其它紧凑地布置的部件以帮助血液处理。除了已经描述过的离心分离器站20以及泵和阀站30之外,箱子36还包括一个秤站238、一个操作人员界面站240以及一个或多个用于容器的托盘212或挂钩248。这些部件在箱子36中的布置可以变化。在所述的实施例中,和泵及阀站30一样,秤站238、控制器16及使用者接口站240位于箱子36的盖子40中。支撑托盘212靠近离心分离器站20,位于箱子36的基部38中。A.容器支撑部件秤站238包括一系列沿着盖子40顶部布置的容器挂钩/重量传感器246。在使用中(参见图2),容器304、308、312被悬挂在挂钩/重量传感器246上。
如将在下面更详细地描述的一样,容器容纳在处理期间分离出的血液组分。重量传感器246提供输出,该输出反应了随着时间的称重变化。该输出被输送到控制器16中。控制器16处理这些递增的称重变化,以获取流体处理体积和流速。该控制器产生出信号,以部分地根据所获取的处理体积来控制处理程序。控制器对控制处理程序的操作的进一步细节将在下面进行描述。
支撑托盘212包括在基部38中的模制的凹槽。这些托盘212容纳着容器276和280(参见图2)。在所述的实施例中,在盖子的侧面上还设有附加的转位式挂钩248。该挂钩248(参见图2)在处理期间支撑着容器288。在所述的实施例中,托盘212和挂钩248还包括重量传感器246。
重量传感器246可以构造成各种形状。在图40中所示的实施例中,秤包括结合进一个外壳400中的压力传感器404,在该外壳上安装有一个挂钩402。挂钩402的顶表面420与传感器404上的一个弹簧406连接。另一个弹簧418在施加一个由挂钩402承载的负载时受到压缩。该弹簧418抵抗着挂钩402的负载运动,直到该负载超过预定的重量(如2Kg)。此时,挂钩402到达在外壳400中的机械挡块408处,从而提供了过载保护。
在图41中所示的实施例中,一个支撑梁410通过弹簧414把由挂钩416施加的力传送到一个力传感器412上。这个设计实际上就消除了来自称重传感系统的摩擦。由梁所承载的负载的大小在特性上是线性的,并且称重传感系统可以随时进行校准以确定施加在挂钩416上的实际负载。B.控制器和操作人员界面站控制器16执行对系统10的处理控制和监测功能。如图14大致地所示,控制器16包括一个主处理单元(MPU)250,虽然可以采用其它类型的一般微处理器,该单元可以包括例如由英特尔公司制造的奔腾TM型微处理器。MPU250安装在箱子36的盖子40的内部(如图13所示)。
在优选的实施例冲,MPU250采用一般的实时多任务以给处理任务分配MPU循环。一个循环性计时中断器(例如每5毫秒)先占着执行的任务并且计划另一个准备执行的任务。如果要求重新计划的话,那么要计划处在就绪状态中的最优先的任务。否则,要确定在列表中处在就绪状态中的下一个任务。
如图14所示,MPU250包括一个应用控制管理器252。该应用控制管理器252管理着至少一个控制应用程序254的程序库的动作。每个控制应用程序254规定了用于进行以预定方式采用离心分离器站20及泵和阀站30的给定功能任务的程序。在所述的实施例中,应用程序254作为处理软件驻留在MPU250中的EPROM′s中。
应用程序254的数量254可以改变。在所述的实施例中,应用程序254包括至少一个临床应用程序。该应用程序包含用来进行一个规定临床处理程序的步骤。为了在所述的实施例中举例,应用程序254包括三个应用程序(1)双单元红血球采集程序;(2)血浆采集程序;(3)血浆/红血球采集程序。这些程序的细节将在下面进行说明。当然,可以包括附加的应用程序。
如图14所示,与该应用程序控制管理器252相联系的有几个从属处理单元。虽然从属处理单元的数量可以改变,但是所述的实施例显示出五个处理单元256(1)到256(5)。这些从属处理单元256(1)到256(5)又与低级别外围控制器258相联系以便控制管线总成226、重量传感器246、泵和阀站中的泵和阀致动器PA1到PA4以及VA1和VA23、用于离心分离器站20的马达、接口感应站332以及系统的其它功能硬件中的气压。
MPU250在EPROM′s中包含了用于外围控制器258的指令,这些指令在启动的时候被往下传到合适的从属处理单元256(1)到256(5)上。应用程序控制管理器252还将由起动的应用程序254所规定的操作参数下传到合适的从属处理单元256(1)到256(5)上。
采用该下载的信息,从属处理单元256(1)到256(5)继续产生出用于外围控制器258的设备指令,从而使得该硬件以指定的方式操作以进行该程序。外围控制器258将当前的硬件状态信息返回到合适的从属处理单元256(1)到256(5)上,这些处理单元又产生出必要的指令以保持由应用控制管理器252所规定的操作参数。
在所述的实施例中,一个从属处理单元256(2)执行一个环境控制者的功能。如果一个从属处理单元出现故障以及不能保持所要求的操作条件,处理单元256(2)就接收冗余的当前硬件状态信息并且报告给MPU250。
如图14所示,MPU250还包括一个交互式用户界面260,该界面让操作人员能够看见并理解针对系统10的操作的信息。该界面260与界面站240相连。该界面260让操作人员能够使用界面站240,以选择驻留在应用控制管理器252中的应用程序254,以及改变系统10的某些功能和性能标准。
如图13所示,界面站240包括装在盖子40中的一个界面屏幕262。该界面屏幕262以字母数字的格式以及以图象的形式显示了由操作人员观察的信息。在所述的优选实施例中,该界面屏幕262还用作输入装置。它通过普通的接触动作接收来自操作人员的输入。C.泵流量的在线监测1.重量监测采用磅秤246,在泵的上游或下游,控制器16就能够连续地确定出每次泵冲程流过的流体的实际体积并且修正任何与所要求流量的偏差。控制器16还能诊断出异常情况,例如流体通道中的泄漏和堵塞。这种监测的测量和控制在自动血浆分离交换法应用中是需要的,其中抗凝血剂必须在从血液供体抽血的时候用全血精确地进行计量,并且其中产品质量(如血球比容、血浆纯度)受泵流速的精确度的影响。
在盒子28中的泵PP1到PP4每个都提供一个相对稳定的额定冲程容积,即SV。给定泵的流速因此可以用下式表示 其中Q为泵的流速。
SV为冲程容积,即每次泵循环流过的体积。
T泵为流体流出泵室的时间。
T满流为泵充满流体的时间,并且T闲置为在泵空闲的时候的时间,也就是说,当没有流体运动出现的时候。
SV可以由泵和附加的下游和上游流体回路的相互作用来影响。这在回路理论中类似于非理想电流源和它看起来的负载的输入阻抗的相互作用。因此,实际的SV可以不同于名义上的SV。
因此在每单位时间的体积中的实际流体流量Q实可以以下式来表示 其中Q实是以每单位时间的体积计的实际流体流量。
SV理论为根据泵室几何形状计算出的理论上的冲程体积。k为校正系数,说明了泵和上游和下游压力之间的相互作用。
实际流率可以重量分析进行确定,采用上游或下游磅秤246根据下列关系式 其中
△Wt为在时间段△T期间由上游或下游磅秤246所探测到的流体重量上的改变,ρ为流体密度,△T为在磅秤246中探测到重量△Wt变化的时间段。
下列表达式是通过将等式(2)和(3)合并得到的 根据公式(4)计算K,然后调整T闲置,从而得到所需的流率,如下 控制器16频繁地更新k和T闲置的数值以便调节流速。
或者,控制器16可以改变T泵和/或T满流和/或T闲置以调节速率。
在这种布置中,将时间间隔组成部分T泵、T满流或T闲置中的一个或多个根据下列关系被调节到一个新的大小以获得Q要求: 其中Tn(调节)为在调节以获得所要求的流速Q要求之后的时间间隔组成部分的大小。
Tn(未调节)为没有进行调节的T冲程的其它时间间隔组成部分的大小。在调节以获得所要求的流率Q要求之后的经调节的冲程间隔为Tn(调节)和Tn(未调节)的总和。
控制器16还提供校正系数k作为诊断工具,以确定出不正常的操作情况。例如,如果k显著与其名义上的值不同的话,那么流体通道可能会出现泄漏或阻塞。同样,如果k的计算值与所期望的数值极不一样的话,那么泵的方向可能被反向。
通过磅秤246,即使这些泵没有使流体移动,控制器16也可以进行在线诊断。例如,如果不需要有流动时,磅秤检测到重量变化,那么在装置264中可能存在一个泄漏的阀或一种泄漏。
在计算K和T闲置和/或T泵和/或T满流时,控制器16可以依靠△Wt和/或△T的多次测量。可以采用多种取平均值和递归方法(例如递归最小二乘方、卡尔曼过滤等)来减小与估计方案相关的误差。
上述监测方法可以应用于其它稳定的冲程容积泵,例如蠕动泵等。
2.电子监测在一个选择性的布置(参见图42)中,控制器16包括位于盒子28上的每个泵站PP1到PP4的泵室中的一个金属电极422。电极422与一个电源424相连。电流通过每个电极422的通道在相应的泵室PP1到PP4内产生出一个电场。
将流体抽进并排出泵室PP1到PP4的膜片194的交变偏斜改变电场,从而导致穿过电极422的回路的总容量的改变。容量在流体被抽进泵室PP1到PP4的时候增加,并且容量在流体从泵室PP1到PP4中排出的时候减小。
控制器16包括一个与每个电极422相连的电容传感器426(例如Qprox E2S)。该电容传感器426记录了对于每个泵室PP1到PP4中的电极的电容的改变。用于一个给定电极422的电容信号在泵室充满了液体的时候(膜片位置194a)具有一个高的信号值,在泵室没有流体的时候(膜片位置194b)具有一个较低的信号值,并且在膜片占据着位置194a和194b之间的位置的时候具有中间范围的信号值。
在血液处理程序开始的时候,控制器16将每个传感器高信号值和低信号值之间的偏差校正到相应泵室的最大冲程体积SV。然后控制器16使在随后的抽出和排出循环期间所感应的最大和最小信号值之间的差异与通过泵室抽出和排出的流体体积相关联。该控制器16把经过一个样本时间段所泵送的流体体积加起来以产生出实际的流率。
控制器16将实际流率与所要求的流率相比较。如果存在一个偏差的话,那么控制器16改变输送到致动器PA1到PA4的气压脉冲,以调节T闲置和/或T泵和/或T满流,从而使该偏差最小化。
控制器16还用来根据电场的变化探测出不正常工作情况并且产生出警报输出。在所述的实施例中,控制器16监测低信号值的大小随着时间的过去而增加。该大小的增加反应出在泵室内部存在空气。
在所述的实施例中,控制器16还产生出传感器426的信号输出的一个导数。该导数的改变或没有导数反应出通过泵室PP1到PP4的流动的部分或完全阻塞。根据在泵室PP1到PP4的出口或入口处是否出现阻塞,该导数自身也可以以一种独特的方式改变。Ⅳ.血液处理程序A.双RBC采集程序(没有血浆采集)在该程序期间,来自血液供体的全血被离心地处理以产生出高达两个单位(大约500ml)的红血球以便采集。所有血浆组分被返回到血液供体。该程序简而言之被称作双红血球采集程序。
在进行双红血球采集程序以及任何血液采集程序之前,控制器16操纵管线总成28以进行一个适当的盒子28的密封性检查,以确定出在盒子28中是否有泄漏。一旦完成该盒子的密封性检查并且没有发现泄漏,控制器16开始所要求的血液采集程序。
该双红血球采集程序包括一个预采集循环、一个采集循环、一个后期采集循环以及一个存储准备循环。在预采集循环期间,在静脉穿刺之前装置264首先排出空气。在采集循环期间,处理从血液供体抽出的全血以采集两个单位的红血球,同时将血浆返回给血液供体。在后期采集循环期间,多余的血浆被返回给血液供体,并且该装置充满生理盐水。在存储准备循环期间,加入一种红血球存储溶液。
1.预采集循环a.抗凝血剂灌注在预采集循环的第一阶段中(AC灌注1),导向放血针268的管子200被夹紧关闭(参见图10)。该血液处理回路46(通过压力选择性应用到盒子的阀和泵站上)被编程以操纵血液供体接口泵PP3,从而通过抗凝血剂管270抽取抗凝血剂并且通过Y连接器272向上到血液供体管266(例如通过阀V13进入并且通过阀V11出去)。该回路还被编程以将残留在抗凝血剂管270、血液供体管266以及盒子中的空气输送到处理中的容器312。该阶段持续进行直到沿着血液供体管266的一个空气探测器298探测到液体,确保血液供体接口泵PP3的泵送功能。
在预采集循环(AC灌注2)的第二阶段中,该回路被编程以操纵抗凝血剂泵PP4以将抗凝血剂输送进处理容器312。处理容器中的重量是改变的。AC灌注2在抗凝血剂泵PP4将预定体积的抗凝血剂(例如10g)输送进处理容器312中的时候停止,从而确保了其泵送功能。
b.生理盐水的灌注在预采集循环(生理盐水灌注1)的第三阶段中,处理室46保持静止。回路被编程以操纵处理泵站PP1以通过处理泵PP1从生理盐水容器288中抽取生理盐水。这就产生出一个生理盐水通过静止的处理室46朝着正在处理的容器312的反向流动。因此,生理盐水通过阀V14被抽取通过处理室46从生理盐水容器288中进入到处理泵PP1。该生理盐水通过阀9从泵站PP1朝着正在处理的容器312排出。监测出生理盐水容器288中的重量变化。该阶段在记录下生理盐水容器288的预定重量改变的情况下停止,这就表示输送的生理盐水体积足以最初充满处理室46的大约一半(例如约60g)。
随着处理室46充满了一半灌注的生理盐水,开始进行预采集循环的第四阶段(生理盐水灌注2)。处理室46低速(例如大约300RPM)转动,同时回路持续以在生理盐水灌注3中同样的方式进行工作。额外的生理盐水通过阀V14被抽进泵站PP1并且通过阀V9被排出泵站PP1并进入到处理容器312中。监测处理容器312中的重量变化。该阶段在记录下生理盐水容器288的预定重量改变的情况下停止,这就表示输送的生理盐水体积足以基本上充满处理室46(例如约80g)。
在预采集循环(生理盐水灌注3)的第五阶段中,回路被编程以首先操纵正在处理的泵站PP1,以通过分离设备的所有输出端口输送来自处理容器312的生理盐水并通过血浆泵站PP2返回到生理盐水容器288。这就完成了处理室46和正在处理的泵站PP1的灌注(通过阀V9泵送进并且通过阀V14泵送出),同时灌注了血浆泵站,并且阀V7、V6、V10和V12是打开的以让生理盐水被动地流动。在这期间,处理室46转动的速率在0和300RPM之间连续地线性变化。监测处理容器312中的重量变化。当以这种方式输送了预定的初始体积的生理盐水的时候,回路被编程以关闭V7、打开阀V9和V14,并且开始通过血浆泵PP2将生理盐水泵送到生理盐水容器288,通过阀V12进入并且通过阀V10出去,从而让生理盐水能够被动地流经处理泵PP1。生理盐水以这种方式从处理容器312中返回到生理盐水容器288,直到重量感应表示预设定的最小体积的生理盐水进入到该处理容器312中。
在预采集循环的第六阶段(排出血液供体管线),该回路被编程以在静脉穿刺之前通过操纵血液供体接口泵PP3以将抗凝血剂泵送通过抗凝血剂泵PP4并进入到处理容器312中,从而排空来自静脉穿刺针的空气。
在预采集循环的第七阶段(静脉穿刺)中,该回路被编程以关闭所有的阀V1到V23,这样就能够完成静脉穿刺。
在预采集循环期间的回路的设计被总结在下表中。
表在预采集循环期间对血液处理回路的程序设定(双红血球采集程序)

说明。表示一开启阀;·表示一关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示一闲置的泵站(未使用);及□表示一在使用中的泵站。
c.采集循环ⅰ.血液灌注通过静脉穿刺,打开通向放血针268的导管300。在采集循环的第一阶段(血液灌注1),设定血液处理回路46的程序(通过压力对盒的阀或泵站上的选择性作用)来控制血液供体接口泵PP3(即进入通阀V13和排出通阀V11)和抗凝血剂泵PP4(即进入通阀V20和排出通阀V15)以经输血管270将抗凝血液抽入处理器312内。由于重量传感器的监控,因此这一阶段会持续进行直至增量的抗凝全血进入处理容器312。
在下一阶段(血液灌注2),设定血液处理回路46的程序来控制处理泵站PP1,以从处理容器312、经分离装置抽取抗凝血。在这一阶段期间,使由血液交换的生理盐水返回血液供体。这一阶段以抗凝全血注入分离装置。由于重量传感器的监控,因此这一阶段会持续进行直至增量的抗凝全血离开处理容器312。
B.在抽取全血或不抽取全血同时进行的血液分离在血液采集循环的下一阶段(血液分离同时抽取全血),设定血液处理回路46的程序以操纵血液供体接口泵PP3(即进入通阀V13和排出通阀V11);抗凝血剂泵PP4(即进入通阀V20和排出通阀V15);处理泵站PP1(即进入通阀V9和排出通阀V14)及血浆泵PP2(即进入通阀V12和排出通阀V10)。这种结构能将抗凝血液抽入处理容器312,同时从处理容器312将血液输入处理室以便分离。这种结构还可从处理室中抽取血浆送入血浆容器304,同时从处理室中抽取红血球送入红血球容器308。这一阶段将持续进行直至增量血浆被采集在血浆采集容器304(由重量传感器监控)或直至目标量的红血球被采集在红血球采集容器中(于重量传感器监控)。
如果在采集了目标量的血浆或红血球之前,处理容器312中的全血量达到预定最大阈值,那么应为另一阶段设定所述回路的程序(在没有提取全血情况下的血液分离),以便终止血液供体接口泵站PP3的操作(同时还关闭阀V13,V11,V18及V13)以终止处理容器312中全血的采集,同时仍继续血液的分离。如果在血液分离期间,全血量在处理容器312中达到预定最小阈值,但是在采集目标量的血浆或红血球之前,回路被编程以返回血液分离同时抽取全血的阶段,从而允许全血进入处理容器312。设定回路的程序,以在已采集必需量的血浆或直至已采集目标量的红血球之前,无论哪个先发生,均可根据处理容器312的高、低阈值,在血液分离同时抽取全血的阶段和血液分离同时不抽取全血的阶段之间进行切换。
C.返回血浆和生理盐水如果还未采集到目标量的红血球,则血液采集循环的下一阶段(通过分离返回血浆)编程血液处理回路46,以操纵血液供体接口泵站PP3(即进入通阀V11和排出通阀V13);处理泵站PP1(即进入通阀V9和排出通阀V14)及血浆泵PP2(即进入通阀V12和排出通阀V10)。这种结构从处理容器312将抗凝结的全血输送入处理室以便分离,同时提取血浆送入血浆容器304并提取红血球送入红血球容器308内。这种结构还会从血浆容器304将血浆输送至血液供体,同时还以在线方式使来自容器288的生理盐水与返回的血浆混合。生理盐水与血浆的在线混合会提高生理盐水的温度且提高血液供体的舒适性。由于重量传感器的监控,这一阶段将持续进行直至血浆容器304排空。
如果在血浆容器304排空之前,在处理容器312中的全血量达到规定的较低阈值,则回路被编程以进入另一阶段(在不分离情况下返回血浆),从而终止处理泵PP1的操作(同时还关闭阀V9,V10,V12和V14)以终止血液分离。该阶段持续进行直至血浆容器304排空。
一旦排空血浆容器304,回路被编程以进入这样一个阶段(填充血液供体管线),以便操纵血液供体接口泵站PP3(即进入通阀V11和排出通阀V13)以从处理容器312抽取全血来填充血液供体软管266,从而净化血浆(与生理盐水混合),以为另一抽取全血的循环作好准备。
随后,回路被编程以进行另一血液分离同时抽取全血的阶段,以便再填充处理容器312。在接连的血液分离和返回血浆阶段中对回路设定程序直至重量传感器表明在红血球采集容器308中已采集到所需量的红血球为止。当还未采集目标量的红血球时,则开始后期采集。
下表概括了在采集循环阶段期间的回路程序设计。
表在采集循环期间的血液处理回路的程序设定(双红血球采集程序)

说明。表示一开启阀;·表示一关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示一闲置的泵站(未使用);及□表示一在使用中的泵站。
D.后期采集循环一旦已采集到目标量的红血球(由重量传感器监控),回路被编程以进行后期采集循环阶段。
1.返回过量血浆在后期采集循环的第一阶段(过量血浆返回),回路被编程以终止血液对处理室的供给和从处理室的提取,同时,操作血液供体接口泵站PP3(即进入通阀V11和排出通阀V13)以将保存在血浆容器304中的血浆输送至血液供体。在这一阶段还设定回路的程序以使来自容器288的生理盐水与返回的血浆在线混合。由于重量传感器的监控,这一阶段程序持续进行直至排空血浆容器304。
2.生理盐水的净化在后期采集循环的下一阶段(生理盐水的净化),设定回路的程序来操纵血液供体接口泵站PP3(即进入通阀V11和排出通阀V13)以输送来自容器288的生理盐水通过分离装置,以将分离装置的血液组分交换入处理容器312内,从而为它们返回血液供体作好准备。该阶段减小了血液供体血液的损失。由于重量传感器的监控,这一阶段持续进行直至分离装置泵送出预定量的生理盐水。
3.最终返回血液供体在后期采集循环的下一阶段(最终返回),设定回路的程序来操作血液供体接口泵站PP3(即进入通阀V11和排出通阀V13),以将处理容器312中的血液组分输送至血液供体。使生理盐水与血液组分间歇混合。由于重量传感器的监控,这一阶段持续进行直至处理容器312排空。
在下一阶段(流体交换),设定回路的程序来操作血液供体接口泵站PP3(即进入通阀V11和排出通阀V13),以将生理盐水输送至血液供体。由于重量传感器的监控,这一阶段持续进行直至注入预定的交换体积量。
在后期采集循环的下一阶段(处理容器的排空),设定回路的程序来操作血液供体接口泵站PP3(即进入通阀V11和排出通阀V13),以将处理容器312中全部剩余的内容物输送至血液供体,以便为在容器308和312中进行存储而分离红血球容器308中的内容物作好准备。由于重量传感器的监控,这一阶段持续进行直至处理容器312的读数为零,且空气探测器探测到空气。
在这一阶段,回路被编程以关闭所有阀且使所有泵站处于闲置状态,以便能从血液供体上拆除放血针268。
在以下表中概括了在后期采集循环阶段期间的回路程序设计。
表(双红血球采集程序)

说明。表示一开启阀;·表示一关闭阀;。/·表示在泵送程序期间开启和关闭阀;■表示一闲置的泵站(未使用);及□表示一在使用中的泵站。
E.存储准备循环1.分离RBC在存储准备循环的第一阶段(分离RBC),回路被编程以操作血液供体接口泵站PP3,以将红血球采集容器308中一半量的内容物送入处理容器312。泵送量由容器308和312的重量传感器监控。
2.添加RBC防腐剂在存储准备循环的下一阶段(将存储溶液添加至处理容器并将存储溶液添加至红血球采集容器),设定回路的程序来操纵血液供体接口泵站PP3,以首先从容器280将所需量的红血球存储溶液输入处理容器312,且随后将其输入红血球采集容器308。所需量的输送是由磅秤监控的。
在下一个阶段和最终阶段(结束程序),回路被编程以关闭所有阀并使所有泵站闲置,以便能为存储而分离并拆除红血球容器308和312。此时,能够拆除并废弃一次性装置的剩余部分。
在以下表中概括描述了在存储准备循环阶段期间回路的程序设定。
表在存储准备循环期间血液处理回路的程序设定(双红血球采集程序)

说明。表示一开启阀;·表示一关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示一闲置的泵站(未使用);及□表示一在使用中的泵站。
F.血浆采集(无红血球采集)在这一程序期间,进行离心处理来自一血液供体的全血以为采集提供达880ml的血浆。使所有红血球返回血液供体。这一程序在速记中被称为血浆采集程序。
血液处理回路46的程序设定(通过压力对箱中阀和泵站的选择性作用)能够使用与双红血球采集程序相同的通用装置264。
所述程序包括一预采集循环,一采集循环,及一后期采集循环。
在预采集循环期间,装置264以在静脉穿刺之前排出空气。在采集循环期间,处理从血液供体抽取的全血以采集血浆,同时将红血球返回血液供体。在后期采集循环,将过量的血浆返回血液供体,且以生理盐水充满所述装置。
1.预采集循环a.抗凝剂的灌注在血浆采集(无红血球)程序的预采集循环,盒被编程以执行与双红血球采集程序中AC灌注1和AC灌注2阶段相同的AC灌注1和AC灌注2阶段。
b.生理盐水的灌注在血浆采集(无红血球)程序的预处理循环,盒被编程以进行生理盐水的灌注1、生理盐水的灌注2和生理盐水的灌注3、放空血液供体管线、及静脉穿刺术阶段,这些阶段与双红血球采集程序中的生理盐水的灌注1、生理盐水的灌注2、生理盐水的灌注3、放空血液供体管线、及静脉穿刺术阶段相同。
在以下表格中概括描述了在预采集循环阶段期间回路的程序设定。
表在预采集阶段期间对血液处理回路的程序设定(血浆采集程序)

说明。表示一开启阀;·表示一关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示一闲置的泵站(未使用);及□表示一在使用中的泵站。
2.采集循环a.血液灌注通过静脉穿刺,打开通向放血针268的导管300。在采集循环的第一阶段(血液灌注1),设定血液处理回路46的程序来操纵血液供体接口泵PP3(即进入通阀V13和排出通阀V11)和抗凝血剂泵PP4(即进入通阀V20和排出通阀V15),从而以与已描述的用于双红血球采集程序中血液灌注1阶段相同的方式经输血管270将抗凝血液抽入处理器312内。
在下一阶段(血液灌注2),设定血液处理回路46的程序来操纵处理泵站PP1,从而以与已描述的用于双红血球采集程序中血液灌注2阶段相同的方式从处理容器312、经分离装置抽取抗凝血液。在这一阶段期间,使由血液交换的生理盐水返回血液供体。
b.血液分离同时抽取全血或不抽取全血在血液采集循环的下一阶段(血液分离同时抽取全血),设定血液处理回路46的程序,从而以与已经描述的用于双红血球采集程序中血液灌注分离同时抽取全血阶段相同的方式操纵血液供体接口泵PP3(即进入通阀V13和排出通阀V11);抗凝血剂泵PP4(即进入通阀V20和排出通阀V15);处理泵PP1(即进入通阀V9和排出通阀V14)及血浆泵PP2(即进入通阀V12和排出通阀V10)。这种结构能将抗凝血液抽入处理容器312,同时从处理容器312将血液输入处理室以便分离。这种结构还可从处理室中抽取血浆送入血浆容器304,同时从处理室中抽取红血球送入红血球容器308。这一阶段将持续进行直至目标量的血浆被采集在血浆采集容器304(由重量传感器的监控)或直至目标量的红血球被采集在红血球采集容器中(由重量传感器的监控)。
如在双红血球采集程序中那样,如果在采集了目标量的血浆或红血球之前,处理容器312中的全血量达到预定最大阈值,那么应设定所述回路的程序以进入另一阶段(在没有提取全血情况下的血液分离),以便终止血液供体接口泵站PP3的操作(同时还关闭阀V13,V11,V18及V13)以终止处理容器312中全血的采集,同时仍继续血液的分离。如果在血液分离期间,全血量在处理容器312中达到预定最小阈值,但是在采集目标量的血浆或红血球之前,设定回路的程序以返回血液分离同时抽取全血的阶段,从而允许对处理容器312进行再填充。设定回路的程序以在已采集必需量的血浆或直至已采集目标量的红血球之前,无论哪个先发生,根据处理容器312中的高、低阈值,在血液分离同时抽取全血和在不抽取全血的阶段之间进行切换。
C.返回红血球/生理盐水如果还未采集目标量的血浆,则血液采集循环的下一阶段(具有分离的返回红血球)编程血液处理回路46,以操纵血液供体接口泵站PP3(即进入通阀V11和排出通阀V13);处理泵站PP1(即进入通阀V9和排出通阀V14)及血浆泵PP2(即进入通阀V12和排出通阀V10)。这种结构从处理容器312将抗凝结的全血输送入处理室以便分离,同时提取血浆送入血浆容器304并提取红血球送入红血球容器308内。这种结构还会从红血球容器308将红血球输送至血液供体。同时还以在线方式使来自容器288的生理盐水与返回的红血球混合。生理盐水与红血球的在线混合会提高生理盐水的温度且提高血液供体的舒适性。生理盐水与红血球的在线混合还会降低被返回至血液供体的红血球的血球比容,从而允许使用较大规格(即较小直径)的放血针,从而进一步提高血液供体的舒适性。由于重量传感器的控制,这一阶段将持续进行直至红血球容器308排空。
如果在红血球容器308排空之前,在处理容器312中的全血量达到规定的较低阈值,则回路被编程以进入另一阶段(在不分离情况下红血球返回),以便终止处理泵站PP1的操作(同时还关闭阀V9,V10,V12和V14)以终止血液分离。该阶段持续进行直至红血球容器308排空。
一旦排空红血球容器308,回路被编程以进入另一阶段(填充血液供体管线),以便操纵血液供体接口泵站PP3(即进入通阀V11和排出通阀V13)以从处理容器312抽取全血来填充血液供体软管266,从而净化红血球(与生理盐水混合)以为另一抽取全血的循环作好准备。
随后,回路被编程以进行另一血液分离同时抽取全血的阶段,以便再填充处理容器312。如所述的那样,回路被编程来连续抽取全血并返回红血球/生理盐水循环,直至重量传感器表明在血浆采集容器304中已采集到理想量的血浆为止。当已采集到目标量的血浆时,开始后期采集循环、以下表概括了在采集循环阶段期间的回路的程序设计。
表在采集循环期间对血液处理回路的程序设定(血浆采集程序)

说明。表示一开启阀;·表示一关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示一闲置的泵站(未使用);及□表示一在使用中的泵站。
d.后期采集循环一旦已采集到目标量的血浆(由重量传感器监控),回路被编程以进行后期采集循环的阶段。
3.返回过量红血球在后期采集循环的第一阶段(拆除血浆采集容器),回路被编程以关闭所有的阀并停止使用所有泵站,以允许血浆采集容器304与装置264的分离。
在后期采集循环的第二阶段(返回红血球),回路被编程以操作血液供体接口泵站PP3(即进入通阀V11和排出通阀V13),以将红血球采集容器308中剩余的红血球输送至血液供体。在这一阶段回路还被编程以使来自容器288的生理盐水与返回的血浆在线混合。由于重量传感器的监控,这一阶段程序持续进行直至排空红血球容器308。
4.生理盐水的净化在后期采集循环的下一阶段(生理盐水的净化),回路被编程以操纵血液供体接口泵站PP3(即进入通阀V11和排出通阀V13)以输送来自容器288的生理盐水通过分离装置,以便使分离装置的血液组分交换入处理容器312内,从而为它们返回血液供体作好准备。该阶段减小了血液供体血液的损失。由于重量传感器的监控,这一阶段持续进行直至分离装置泵送出预定量的生理盐水。
5.最终返回血液供体在后期采集循环的下一阶段(最终返回),回路被编程以操作血液供体接口泵站PP3(即进入通阀V11和排出通阀V13),以将处理容器312中的血液组分输送至血液供体。使生理盐水与血液组分间歇混合。由于重量传感器的监控,这一阶段持续进行直至处理容器312排空。
在下一阶段(流体交换),回路被编程以操作血液供体接口泵站PP3(即进入通阀V11和排出通阀V13),以将生理盐水输送至血液供体,由于重量传感器的监控,这一阶段持续进行直至注入规定的交换体积量。
在最终阶段(结束程序),回路被编程以关闭所有的阀并使所有泵站闲置,以便能够终止静脉穿刺,并为存储而分离和拆除血浆容器。且能够拆除并废弃一次性装置的剩余部分。
在以下表中概括了在后期采集循环阶段期间回路的程序设计。
表在后期采集循环期间对血液处理回路的程序设定(血浆采集程序)

说明。表示一开启阀;·表示一关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示一闲置的泵站(未使用);及□表示一在使用中的泵站。
G.红血球及血浆的采集在这一程序期间,进行离心处理来自一血液供体的全血,以采集大约550ml的血浆及达大约250ml的红血球。这一程序在速记中被称为红血球/血浆的采集程序。
在血液分离期间,循环性地使不是为采集而保存的红血球部分返回血液供体。在该程序最后,超过550ml目标的血浆和超过250ml目标的红血球也被返回血液供体。
血液处理回路46的程序设定(通过压力对盒中阀和泵站的选择性作用)能够使用与进行双红血球采集或血浆采集程序相同的通用装置264。
所述程序包括一预采集循环,一采集循环,一后期采集循环,一存储准备循环。
在预采集循环期间,装置264在静脉穿刺之前排出空气。在采集循环期间,处理从血液供体抽取的全血以采集血浆和红血球,同时将一部分红血球返回血液供体。在后期采集循环,将过量的血浆和红血球返回血液供体,且以生理盐水充满所述装置。在存储准备循环,将一种红血球存储溶液加到被采集的红血球中。
(1)预采集循环a.抗凝剂的灌注在红血球/血浆采集程序的预采集循环,设定箱的程序以进行与双红血球采集程序中AC灌注1和AC灌注2阶段相同的AC灌注1和AC灌注2阶段。
b.生理盐水的灌注在红血球/血浆采集程序的预处理循环,盒被编程以进行生理盐水的灌注1、生理盐水的灌注2、生理盐水的灌注3、放空血液供体管线、及静脉穿刺阶段,这些阶段与双红血球采集程序中生理盐水的灌注1、生理盐水的灌注2、生理盐水的灌注3、放空血液供体管线、及静脉穿刺阶段相同。
在以下表中概括描述了在预采集循环阶段期间回路的程序设定。
表在预采集阶段期间对血液处理回路的程序设定(红血球/血浆采集程序)

说明。表示一开启阀;·表示一关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示一闲置的泵站(未使用);及□表示一在使用中的泵站。
2.采集循环a.血液灌注通过静脉穿刺,打开通向放血针268的导管300。红血球/血浆采集程序的采集循环编程回路以进行与已经描述的双红血球采集程序中血液灌注1和血液灌注2阶段相同的血液灌注1和血液灌注2阶段。
b.血液分离同时抽全血或不抽全血在红血球/血浆采集程序的血液采集循环中,编程回路以与对双红血球采集程序进行血液分离同时抽取全血阶段相同的方式进行抽全血同时进行血液分离的阶段。这种结构将抗凝血抽入处理容器312中,同时将血从处理容器312输入用于分离的处理室。该结构还将血浆从处理室移入血浆容器304,同时将红血球从处理容器移入红血球容器308。该阶段一直进行直至所需最大量的血浆和红血球已被采集在血浆和红血球采集容器304和308中(由重量传感器监控)。
和在双红血球采集程序及血浆采集程序中相同,如果在采集目标量的血浆或红血球之前,处理容器312中全血的体积达到预定的最大极限,则编程回路以进入一个终止血液供体接口泵站PP3(同时还关闭阀V13,V11,V18及V13)操作的阶段,以终止处理容器312中全血的采集,同时仍继续血液分离。如果在血液分离程序中全血的体积达到处理容器312中的预定最小极限,但在采集目标体积的血浆或红血球之前,编程回路以返回血液分离和全血抽取,从而再填充处理容器312。编程回路以根据处理容器312中的高低量极限在抽取全血的血液分离循环和没有抽全血的血液分离循环之间切换,直到已经采集了所需的最大量血浆和红血球。
c.返回红血球及生理盐水如果还未采集到目标量的血浆,而红血球采集容器308中采集的红血球超过预定的最大极限,则血液采集循环(在分离情况下返回红血球)的下一阶段编程血液处理回路46以操作血液供体接口泵站PP3(即进入通阀V11和排出通阀V13);处理泵PP1(即进入通阀V9和排出通阀V14);和血浆泵PP2(即进入通阀V12和排出通阀V10)。这种结构继续将抗凝全血从处理容器312输入用于分离的处理室,同时将抽取血浆输入血浆容器304并抽取红血球输入红血球容器308。该结构还将采集在红血球容器308中的全部或一部分红血球输送至血液供体。该结构还将来自容器288中的生理盐水与返回的红血球在线混合。这种生理盐水与红血球的在线混合升高了生理盐水的温度并提高了血液供体的舒适性。这种生理盐水与红血球的在线混合还降低了被返回到血液供体的红血球的血球比容,从而容许使用较大刻度(即较小直径)的放血针,以进一步提高血液供体的舒适性。
由于重量传感器检测,该阶段能够持续进行,直至红血球容器308排空为止,从而与血浆采集程序的在分离情况下的返回红血球阶段相对应。但是,处理装置应确定需要采集多少附加血浆以满足血浆的目标量。由此,处理装置导出与增大的血浆量相关的红血球增量。在这种结构中,处理装置将部分量的红血球返回给血液供体,因此,一旦采集了下一个递量的红血球,容器308中红血球的总量将为或稍高于目标量的红血球。
如果在所需量的红血球返回之前,处理容器312中全血的体积达到一特定的低阈值,则编程回路而进入一个阶段(在不分离情况下返回红血球),以终止处理泵站PP1的操作(同时还关闭阀V9,V10,V12及V14),以终止血液分离。这一阶段与血浆采集程序中不分离情况下的返回红血球阶段相对应。
一旦从容器308返回所需量的红血球,便编程回路而进入一个阶段(填充血液供体管线),以便操作血液供体接口泵站PP3(即进入通阀V11以及排出通阀V13),以将全血从处理容器312中抽出并填充血液供体管266,从而净化为另一抽全血循环准备的红血球(与生理盐水混合)。
然后,编程回路以进行另一次血分离同时抽全血的阶段,以再填充处理容器312。如果需要,回路能够执行连续抽取全血并返回红血球循环,直至重量传感器显示在容器304和308中采集的红血球和血浆量达到或稍大于目标值。然后开始后期采集循环。
下表概述了在采集循环阶段回路的程序设定。
表在采集循环期间的血液处理回路的程序设定(红血球/血浆采集程序)

说明。表示一开启阀;·表示一关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示一闲置的泵站(未使用);及□表示一在使用中的泵站。
d.后期采集循环一旦已采集了目标最大量的血浆和红血球(由重量传感器监控),编程回路以进行后期采集循环阶段。
ⅰ.回收过量血浆如果在血浆采集容器304中采集的血浆量超过目标量,则进入一后期采集循环阶段(过量血浆回收),在此期间编程回路以终止将血液供制处理容器及从处理容器移去血液,同时操纵血液供体接口泵站PP3(即进入通阀V11及排出通阀V13),以将血浆容器304中的血浆输送制血液供体。在该阶段也编程回路以使来自容器288的生理盐水与返回的血浆在线混合。通过重量传感器检测,这一阶段持续进行直至血浆采集容器304中的血浆量达到目标值。
ⅱ.返回过量的红血球如果在红血球采集容器308中采集的红血球量也超过目标量,则进入一后期采集循环阶段(过量红血球返回),在此期间编程回路以操纵血液供体接口泵站PP3(即进入通阀V11及排出通阀V13),以便将残留在红血球容器308中的红血球输送给血液供体。在该阶段也编程回路以使来自容器288的生理盐水与返回的红血球在线混合。根据重量传感器的监控,这一阶段将持续进行直至容器308中的红血球量等于目标值。
ⅲ.生理盐水的净化当在容器308和304中采集的红血球和血浆量等于目标值时,进入后期采集循环的下一阶段(生理盐水的净化),在此期间,编程回路以操纵血液供体接口泵站PP3(即进入通阀V11和排出通阀V13),以使来自容器288的生理盐水通过分离装置,从而将分离装置中的血液组分交换入处理容器312,以便为返回给血液供体作好准备。该阶段降低了血液供体血液的损失。根据重量传感器的监控,该阶段将持续进行直至预定量的生理盐水被泵送通过分离装置。
ⅳ.最终返回至血液供体在后期采集循环的下一阶段(最终返回),编程回路来操纵血液供体接口泵站PP3(即进入通阀V11和排出通阀V13),以将处理容器312中的血液组分输送给血液供体。生理盐水间断地与血液组分混合。根据重量传感器的监控,该阶段继持续进行直至处理容器312排空。
在下一阶段(流体交换),编程回路来操纵血液供体接口泵站PP3(即进入通阀V11和排出通阀V13),以将生理盐水输送至血液供体。根据重量传感器的监控,该阶段将持续进行直至注入规定的交换体积量。
在下一阶段(结束静脉穿刺),编程回路以关闭所有阀并停止所有泵站的工作,以便结束静脉穿刺。
下表概述了在后期采集循环阶段期间的回路程序续设计。
表在后期采集循环期间血液处理回路的程序设计(红血球/血浆采集程序)

说明。表示一开启阀;·表示一关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示一闲置的泵站(未使用);及□表示一在使用中的泵站。
e.储存准备循环ⅰ.RBC防腐剂灌注在储存准备循环的第一阶段(灌注储存溶液),编程回路来操纵血液供体接口泵站PP3以从容器280将所需量的红血球储存溶液输入处理容器312。所需量的转移由磅秤监控。
在下一阶段(输送储存溶液),编程回路来操纵血液供体接口泵站PP3将所需体积的红血球储存溶液从处理容器312容器输入红血球采集容器308。所需体积的输送由磅秤监控。
在下面的最终阶段(结束程序),编程回路以关闭所有阀并停止所有泵站的工作,以便血浆和红血球储存容器304和308能被分开并拆除以便储存。此时,可抽取并废弃一次性装置的其余部分。
下表概述了在储存准备循环期间的回路程序设计。
表在后期采集循环期间血液处理回路的程序设计(红血球/血浆采集程序)

说明。表示一开启阀;·表示一关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示一闲置的泵站(未使用);及□表示一在使用中的泵站。
ⅴ.接口控制A.未溢出和溢出物的检测在上述任何程序中,存在于处理室18的离心力将全血分离到一填充红血球区域和一个血浆区域(见图15A)。离心力使填充红血球区域沿腔室外侧或高-G壁聚集,同时将血浆区输送至腔室的内侧或低-G壁处。
一个中间区域在红血球区域和血浆区域之间形成了界面。中密度的细胞状血物质,例如血小板和白血球聚集在界面处,且按照密度分布,且血小板比白血球更靠近血浆层。与血浆区的淡黄色和红血球的红色相比较,由于其混浊的颜色,由此该界面也被称为“血块黄层”。
最好监控血块黄层的位置,以便或取决于所述程序,防止血块黄层物质进入血浆或红血球,或采集该血块黄层的细胞成分。出于此目的,所述系统包括一检测站332,该检测站包括两个光学传感器334和336。
在所示和优选实施例中(见图13),检测站332位于离心站20外侧较近距离处。在由检测站332监测之前,这种结构使输出腔室的液体量最小。
站332中的第一传感器334光学监测通过血浆采集管线292的血液组分。站332中的第二传感器336光学监测通过红血球采集管线294的血液组分。
管292和294由塑料材料(例如聚氯乙烯)制成,其中所述材料对于用于探测的光是透明的,至少是在管292和294与检测站332相关的区域。
在所示实施例中,装置264包括一个固定件338(见图16至18),用以将管292和294与相应的传感器334和336对准固定。固定件338以一种紧凑的有序并排的布置方式将管292和294紧凑地聚集在一起,以作为与传感器334和336相关联的一个整体设置并移动,所述传感器也是以一种紧凑的、并排的关系设置在站332中。
在所示实施例中,即使没有设置相关的传感器,固定件338也固定着管290,该管用于将全血输入离心站20。固定件338用于聚集并固定所有管290、292及294,它们以紧凑并易持的一束连接到脐部及电缆296。
固定件338可以是与脐部296一体成型的元件,例如通过过度模制。或者,固定件338可以是一个单独制作的元件,其扣接安装在管290、292及294周围。
在所示实施例中(如图2所示),连接在盒28上的容器304,308和312在使用程序中悬浮在离心站20之上。在这种设置中,固定件338通过一个紧邻在脐部296端部之后90度弯曲的转弯将管290、292及294导到盒28。由固定件338使用的转弯引导串联的管290、292及294离开紧位于容器304,308和312下方的区域,从而防止乱堆在该区域。固定件338通过转弯支撑并导引管290、292及294,并且还可以减少打结或纠缠的危险。
第一传感器334能检测血浆采集管线292中光学目标的细胞物质或成分的存在。作为光学检测目标的成分随程序的变化而变化。
对于一个血浆采集程序,第一传感器334检测血浆采集管线292中血小板的存在,因此控制装置可以被启动以将血浆和血小板细胞层之间的界面移回到处理室中。这提供了一种基本没有血小板或至少其中的血小板最少的血浆产品。
对于一个仅采集红血球的采集程序,第一传感器334检测血块黄层和红血球层之间的界面,因此控制装置可以被致动,以将界面移回到处理室中。这会使红血球的产量最大。
对于一个血块黄层采集程序(下面将要描述),第一传感器334检测血块黄层的前沿(即血浆/血小板界面)开始从处理室出来的时间,以及血块黄层的后沿(即血块黄层/红血球界面)从处理室完全出来的时间。
作为由第一传感器334检测出的、血浆中这些组分的存在表示界面离处理室的低-G壁面足够近,从而容许这些组分中的所有或一些被带入血浆采集管线(见图15B)。这种情况将被称作“过量溢出”。
第二传感器336能检测红血球采集管线294中红血球的血球比容。在处理程序中,如果血球比容降低到低于预定的最小值,那么表示界面离处理室的高-G壁面足够近,从而容许血浆进入红血球采集管线294(见图15C)。这种情况将被程为“不足溢出”。
B.传感回路感测站332包括一个传感回路340(见图19),第一传感器334和第二传感器336形成该回路的一部分。
第一传感器334包括一个发绿光的二极管(LED)350,一个红LED352,和两个光电二极管354及355。光电二极管354测量透射光,光电二极管355测量反射光。
第二传感器336包括一个红LED356,和两个光电二极管358及360。光电二极管358测量透射光,光电二极管360测量反射光。
传感回路340还包括一个LED驱动元件342。驱动元件342包括一个直流电源344,该电源与传感器334和336的LED350、352和356连接。直流电源344给各LED350、352和356提供一个与温度和电源电压无关的恒定电流。因此直流电源344为各LED350、352和356提供一个恒定的输出电流强度。
LED驱动元件342包括一个调制器346。调制器346将恒定电流调节在一个规定的频率上。调制器346从光学感测的读数中将环境光和电磁干扰(EMI)的影响消除掉,这将在下面进行更详细地描述。
传感回路340还包括一个连接到光电二极管354、355、358和360的接收回路348。对于每个光电二极管354、355、358和360而言,接收回路348包括一个专用电流-电压(I-V)转换器362。接收回路348的其余部分包括一个带通滤波器364、一个可编程放大器366,及一个全波整流器368。这些元件364、366和368例如使用一个多路转换器而被共享。
环境光通常包括少于1000Hz的频率成分,EMI通常包括高于2Khz的频率成分。据此,调制器346将电流调节在低于EMI频率成分的一个频率下,例如2Khz左右。传感回路340根据感测的测量值将高于和低于外界光源及EMI成分的频率成分消除。因此,传感回路340对于外界光照条件和EMI是不敏感的。
更详细地说,将被测量的从含有液体的管292或294透射或反射的光入射到光电二极管354和355(对于管292)或光电二极管358和360上(对于管294)。每个光电二极管产生一个与接收光的强度成比例的光电流。该电流被转化为一个电压。该电压通过多路转换器370供给带通过滤器364。带通过滤器364具有一个位于调制后光的载波频率处的中心频率(即所述实施例中的2Khz)。
带通过滤器364的正弦输出被送到可变增益放大器366。放大器的增益被预编在预建的步骤中,例如X1、X10、X100和X1000。这给放大器提供了与大的动态范围响应的能力。
放大器366的正弦输出被送到全波整流器368,其将该正弦输出转化为一个与透射光的能量成比例的DC输出电压。
控制器16产生用于传感回路340的定时脉冲。对于各个LED而言,该定时脉冲包括(ⅰ)具有所需调制频率的一个调制矩形波(即所述实施例中的2Khz),(ⅱ)一个启动信号,(ⅲ)两个传感器选择位(它们选择传感器的输出以供给带通过滤器364),(ⅳ)两个用于接收回路收益部分(对于放大器366)的位。
控制器16调节驱动回路342,以使各LED处于ON状态或OFF状态。
在ON状态,LED启动设为“高”,而且使LED亮一定的时间间隔,例如100ms。在ON状态的最初83.3ms期间,对于入射的光电二极管和接收回路348,有限的时间增加是允许的以使之稳定。在ON状态的最后16.7ms期间,以两倍的调制率(即所述实施例中的4Khz)对回路340的输出进行脉冲调制。脉冲调制间隔选择为包含一个60Hz的完整循环,从而容许主频率从测量结果中过滤掉。4Khz的脉冲调制频率容许2Khz的脉动被俘获以便以后从测量结果进行滤除。
在OFF状态,使LED关闭100ms。在最后的16.7ms中记录下由环境光和电磁干扰引起的LED基线。
1.第一传感器;血小板/RBC差分不含细胞的血浆是淡黄色的。当血浆中血小板的浓度增加时,血浆的清晰度降低。血浆看起来“混浊”。当血浆中红血球的浓度增加时,血浆的颜色由淡黄色变为红色。
传感回路340包括一个检测/差异模块372,其分析由第一传感器334感测的两个不同波长下光的衰减(使用入射光感测光电二极管354)。选择不同的波长以具有相对血小板的基本相同的光衰减,但相对红血球具有很大差别的光衰减。
在所示实施例中,第一传感器334包括一个第一波长(λ1)光的发射器350,在所述实施例中为绿光(570nm和571nm)。第一传感器334包括一个第二波长(λ2)光的发射器352,在所述实施例中为红光(645nm和660nm)。
在第一波长下的血小板光衰减 和在第二波长下的血小板光衰减 基本相同。因此,一定时间后的衰减变化将是相同的,所述变化由血小板浓度的增加或减少影响。
但是,第一波长下的血红蛋白光衰减 约为第二波长下的血红蛋白光衰减 的十倍。因此,随着时间的衰减变化由于受到由红血球的存在影响所以会不相同。
管294对于第一波长和第二波长的光是透明的,通过该管感测血浆。管294使血浆流过第一和第二发射器350和352。
光检测器354通过管294接收由第一和第二发射器350和352所发射的光。光检测器354产生与接收光的强度成比例的信号。所述强度随由血小板和/或红血球的存在而造成的光衰减而变化。
模块372连接到光检测器354,用来分析信号以获取第一和第二波长接收光的强度。模块372将一定时间后的第一和第二波长光的强度变化进行比较。当第一和第二波长光的强度随着时间以基本相同的方式变化时,模块372产生一个代表血浆流中血小板存在的输出值。当第一和第二波长光的强度随着时间以基本不同的方式变化时,模块372产生一个代表血浆流中红血球存在的输出值。因此输出值在基于血浆流中血小板浓度变化的强度变化和基于血浆流中红血球浓度变化的强度变化之间有差异。
实施模块372有许多方法。在一个优选实施例中,检测/差异模块372认为由血浆溶液引起的波长为λ的单色光束的衰减可以由修正的Lambert-Beer法描述如下 其中I为透射光强度。
IO为入射光强度。
εHbλ为给定波长下的血红蛋白(HB)的光衰减(gm/dl)。
ελ血小板为给定波长下的血小板的光衰减。
CHb为红血球中血红蛋白的浓度,为34gm/dl。
C血小板为采样中的血小板浓度。
d为通过管294的血浆流的厚度。
Gλ为给定波长下的通道长度因子,该因子解释了由光散射引起的血浆采样中的多余光子通道。
H为全血血球比容,它是采样中的红血球百分比。
GRBCλ和Gλ血小板分别为在所施加的波长以及测量几何形状下的红血球和血小板的浓度及散射系数的函数。
对于可见和近红外光谱的波长,ελ血小板=0,因此 在一种过量溢出条件下(图15B所示),由血浆采集管线道294中的第一传感器334检测的第一细胞成分将为血小板。因此,对于血小板的检测,Ln(Tλ)≈Gλ血小板。
为了检测血小板层和红血球层之间的血块黄层界面,基于下述标准选择两个波长(λ1和λ2),即(ⅰ)λ1和λ2基本具有相同的通道长度因子(Gλ),(ⅱ)波长λ1或λ2具有比其它波长大得多的血红蛋白光学衰减。
假定波长λ1和λ2具有相同的Gλ,公式(2)可以简化为Ln(Tλ1)-Ln(Tλ2)≈HdcHb(ϵHbλ2-ϵHbλ1)----(3)]]>在优选实施例中,λ1=660nm(绿),λ2=571nm(红)。571nm光的通道长度因子(Gλ)比660nm光的大。因此通道长度因子必需由系数α和β修正Gλ1RBC=αGλ2RBC]]> 因此,公式(3)可以表示为 在没有红血球的情况下,由于增加的血小板浓度,所以公式(3)引起一个的假的红血球检测,正如公式(5)表示 对于血小板以及血小板/红血球层之间界面的检测,公式(4)提供一个更好的解决方法。因此模块372应用了公式(4)。对于准备好的搀有血小板的血浆中血浆的不同已知浓度,系数(β-1)可以通过用经验测量出所需测量几何形状中的 和 决定。
检测/差异模块372还区别出强度变化之间的差异,该差异是由血浆中存在的红血球或者由溶血引起的血浆中存在的自由血红蛋白造成的。两种情况都会引起透射光感测光电二极管354的输出值的降低。但是,反射光感测光电二极管355的输出值在红血球存在的情况下增加,并在自由血红蛋白存在的情况下减少。因此检测/差异模块372感测出血液处理程序中不希望的溶血情况的出现,因此会提醒操作人员并且可以采取校正行为。
2.第二传感器堆积红血球的测量在一种过量溢出的情况中(如图15C所示),由于血浆(以及血块黄层)与红血球混合,所以从处理室18排出的红血球的血球比容将急剧下降,例如从一个80左右的目标血球比容到50左右的血球比容。在血浆采集程序中希望一种不足溢出情况,因为该情况容许红血球和血块黄层返回给血液供体。在仅采集红血球的程序中,则不希望出现一种不足溢出情况,因为该情况会危及为储存而采集的红血球的产量和质量。
在任何一种情况中,感测出什么时候存在不足溢出的能力是理想的。
近红外光谱(NIR)中的光子波长(约为540nm到1000nm)适于感测红血球,因为它们的强度在穿过许多毫米血之后可以被测量。
传感回路340包括一个红血球检测模块374。检测模块374分析第二传感器336所感测的光透射率,以分辨血球比容以及排出处理室18的红血球的血球比容变化。
检测模块374认为由血引起的波长为λ的单色光束的衰减可以由修正的Lambert-Beer法则描述如下I=Ioe-[(ϵHbλcHbH)d+GRBCλ]----(6)]]>其中I为透射光强度。
IO为入射光强度。
εHbλ为给定波长下的血红蛋白(HB)的光衰减(gm/dl)。
CHb为红血球中血红蛋白的浓度,定为34gm/dl。
d为光源和光检测器之间的距离。
Gλ为给定波长下的通道长度因子,该因子解释了由光散射引起的血浆采样中的多余光子通道。
H为全血血球比容,它为采样中的红血球百分比。
GRBCλ为在所提供的波长及测量几何形状下的红血球的血球比容及散射系数的函数。
已知公式(6),则采样的光密度O.D.可以用下式来表示Ln(Iλl0λ)=O.D.≈-[(ϵHbλCHbH)d+GRBCλ]----(7)]]>采样的光密度O.D.还可以表示为O.D.=O.D.吸收+O.D.扩散(8)其中,O.D.吸收为由红血球吸收作用所引起的光密度,表示如下O.D.吸收=-[(εHbλCHbH)d(9)O.D.散射为由红血球散射作用所引起的光密度,表示如下O.D.扩散=GλRBC(10)从公式(9)中看出,O.D.吸收随血球比容(H)线性增加。对于红色和NTR光谱中的透射率的测量而言,GRBCλ基本是抛物线性的,在50和75的血球比容之间达到最大(取决于照射波长和测量几何形状),在0和100的血球比容处为0(例如,参见Steinke等所著的“全血光吸收的分散模型”,J.Opt.Soc.Am.,Vol 5,No.6,1988年6月)。因此,对于光透射的测量而言,所测量的光密度是血球比容的非线性函数。
不过,已经发现在离入射光源预定径向距离处测量的反射光的GRBCλ在10到90的血球比容范围中是线性的。因此,对于如此构造的第二传感器336,检测模块可以将采样相对于反射光的光密度作为血球比容的一个线性函数。
这种结构依赖于保持简单的测量几何形状。不需要反射镜或聚焦透镜。LED或光电二极管不需要设置得与血液管成特定的角度。不需要特定的光学电池。第二传感器336可以直接与透明的塑料管294面对接。同样,第一传感器334可以直接与透明管292接口。
在所示的实施例中,选择805nm的波长,因为该波长对于红血球而言是一种等吸收波长,这就意味着在该波长条件下红血球的光吸收作用与氧饱和无关。还可以在NIR光谱内选择其它波长。
在所示实施例中,对于805nm的波长,优选的设定距离为离光源7.5mm。上述的固定件338(见图18)便于管294以要求的关系相对光源和第二传感器336的反射光检测器设置。固定件338还便于管292以所要求的关系相对光源和第一传感器334的反射光检测器设置。
在大于7.5mm的距离处测定也是可以的,而且对红血球细胞比容的变化显示出更高的灵敏度。但是在这些较远距离处会遇到对于噪音比的一个更低的信号。同样,在离光源较近的距离处测量将显示相对噪音比的一个较大信号,但是对红血球的血球比容的变化的灵敏度更低。对于一个给定波长的最佳距离可以通过经验确定,其中对于一个给定的血球比容范围,血球比容和感测的强度之间存在一个线性关系。
第二传感器336检测透射穿过通过红血球采集管线线中红血球的信号的主透射光的平均强度的绝对差。检测模块分析测得的强度绝对差,以及测量强度的标准偏差的增加,以可靠地给出一个不足溢出信号,如图20所示。
在一个给定的绝对血球比容下,对不同的血液供体,GRBCλ略有不同,这是由血浆和红血球之间的平均红血球容积和/或折射指数差异的变化而引起的。另外,通过测量从具有一个已知血球比容的给定血液供体的血液采样反射的光,从而对于该血液供体,GRBCλ可以被标定以产生出一个从处理室中出来的红血球的血球比容的绝对测量值。
C.传感器的预处理标定在一个给定的血液采集程序中的生理盐水和血液灌注阶段期间对第一和第二传感器334和336进行标定,其细节已被描述。
在生理盐水灌注阶段程序中,生理盐水被输送到血液处理室18中并通过血浆采集管线292出来。在此期间,血液处理室18在0RPM和180RPM之间循环转动,直到空气被从室18中清除。然后将处理室18的转动速度增加到全运行速度。
紧接着是血液灌注阶段,期间全血以所要求的全血流速(QWB)被引入处理室18。从处理室18出来的血浆经过血浆采集管线线292的流速被设定为所要求的流速(QP)的一部分(例如80%),以从处理室18中清除生理盐水。在这些条件下继续生理盐水的排出,直到第一传感器334光学地感测到血浆采集管线线292中生理盐水的存在。
1.对于血浆采集程序(诱导不足溢出)如果将要进行的程序采集血浆以备储存(例如,血浆采集程序或红血球/血浆采集程序),那么就要在标定程序中诱导出一种不足溢出的情况。通过减少或停止血浆通过血浆采集管线292的流量会产生不足溢出的情况。这使血块黄层远离室18的低-G侧(如图15C),以确保“干净”的血浆流存在于血浆采集管线292中,并且没有或基本没有血小板和白血球。在考虑血液供体的基础类脂含量,但没有血小板或白血球的存在的情况下,这种诱导出的不足溢出容许第一传感器334相对于血液供体血浆的生理颜色被标定和校正。因此第一传感器334具有对血块黄层中血小板或白血球的存在所引起的变化的最大灵敏度,接着在处理程序中会出现一种过度溢出。
在血液处理开始,强迫一种不足溢出情况出现还使界面靠近高-G壁。这在所述室的高-G侧产生一种初始偏置情况,以在血液处理进行时拖延了过度溢出情况的最终进展。
2.红血球采集程序如果进行一个没有血浆被采集的程序(例如双单位红血球采集程序),就不会在血液净化步骤中诱导出一种不足溢出情况。这是由于,在只采集红血球的程序中,在过度溢出期间,第一传感器334只需检测血浆中红血球的存在。第一传感器334不需要被进一步激活以检测血小板。而且,在只采集红血球的程序中,要求界面尽可能靠近低-G壁。所要求的情况容许血块黄层和血浆一起返回输出者,并使采集的红血球的血球比容最大。
D.血球采集1.血浆采集程序在采集血浆的程序中(例如血浆采集程序或红血球/血浆采集程序),QP被设定为QP(理论),其为经验确定的血浆流速,其容许系统保持一种稳定的采集状态,即没有不足溢出又没有过度溢出。
QP(理论)(g/ml)是抗凝全血入口流速QWB,抗凝全血入口血球比容HCTWB,和红血球排出血球比容HCTRBC(通过估算或测量)的函数,表示如下 其中ρ血浆是血浆的密度(g/ml)=1.03ρWB是全血的密度(g/ml)=1.05ρRBC是红血球的密度=1.08对于血浆采集,QWB被设定为所要求的全血入口流速,该流速对于只采集血浆的程序来说约为70ml/分钟。对于一种红血球/血浆采集程序,QWB设定为50ml/分钟左右,从而提供堆积的红血球,其具有比传统血浆采集程序中高的血球比容。
系统控制器16保持泵的设置,直到达到所要求的血浆采集容积,除非检测一种不足溢出情况或一种过度溢出情况。
如果对于实际的血液分离情况,设定的QP过高,或者如果由于血液供体的生理原因,血块黄层的容积比预期的大(即“较厚”),那么第一传感器334将检测血浆中血小板或白血球或者两者的存在,显示一种过度溢出情况。
与高QP所引起的一种过度溢出情况响应,系统控制器16终止血浆采集泵PP2的操作,同时保持设定的QWB不变。与高容积血块黄层所引起的一种过度溢出情况响应,系统控制器16终止血浆采集泵PP2的操作,直到红血球传感器336检测到一种不足溢出情况。这使血块黄层通过红血球管294从分离室中排出。
为了执行过度溢出响应,血液处理回路46被设计成启动处理泵PP1(即通过阀V9吸入,通过阀V14排出),以将全血以设定的QWB从处理容器312抽到处理室18。红血球通过采集容器308中的采集管线294从室18中排出。红血球流速直接取决于QWB的大小。
在此期间,血液处理回路46还被设计成停止血浆泵PP2的操作预定时间(例如20秒)。这使界面退向分离室的中部。预定的时间段之后,继续使血浆泵PP2运转,但是以一个低的流速(例如10ml/分钟)运行一段短的时间(例如10秒)。如果溢出已经被校正,干净的血浆将通过第一传感器334检测,并继续血液处理回路46的正常工作。如果没有感测到干净的血浆,显示过度溢出还未被校正,血液处理回路46重复上述程序。
下表中总结了减轻过度溢出情况的回路设计程序。
表用来减轻过度溢出情况的血液处理回路的设计(血浆收集程序)

说明。表示开启阀;·表示关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示闲置的泵站(未使用);及□表示在使用中的泵站。
一旦对过度溢出情况进行校正,控制器16就使血液处理回路46恢复正常的血液处理,但给QP施加一个降低百分系数(%RF),该QP是在过度溢出情况刚被检测的时候设定的。降低系数(%RF)是过度溢出之间时间间隔的一个函数,即当过度溢出的频率增加时,%RF增加,反之亦然。
如果设定的QP太低,第二传感器将检测到红血球血球比容降低到预定值之下,其显示一种不足溢出情况。
与一种不足溢出情况响应,系统控制器16将QP重新设定,使其接近设定的QWB。当处理继续时,界面将逐渐退向低-G壁。控制器16保持这些设定,直到第二传感器336检测到红血球比容高于所需的设定值。此时,控制器16给QP施加一个增大百分系数(%EF),该QP是在不足溢出情况刚被检测的时候设定的。增大系数(%EF)是不足溢出之间时间间隔的一个函数,即当不足溢出的频率增加时,%EF增加。
如果在多次尝试(例如三次)之后,控制器16还不能校正一个给定的不足或过度溢出情况,就会发出警报。
2.仅采集红血球的程序在仅采集红血球而不采集血浆的程序中(例如双单位红血球采集程序),设定QP不超过QP(理论),而QW被设定为到处理室18的全血入口流速,对于双单位红血球采集程序,其约为50ml/分钟。
在双单位红血球采集程序中,可能希望频繁出现过量溢出。这使采集的红血球的血球比容最大,并将带有血浆的血块黄层返回给血液供体。如果过量溢出的出现低于设定的频率,一段时间后QP就会增加。同样地,如果过量溢出的出现高于设定的频率,一段时间后QP就会减小。但是,为了避免一种不希望的高血球比容,可以就在QP(理论)条件下工作。
系统控制器16控制以这种方式的泵设置,直到达到所要求的红血球采集容积,同时注意不足溢出或过度溢出的出现。
第一传感器334通过血浆中红血球的存在检测过度溢出。与过度溢出情况响应,系统控制器16终止将血浆从处理室抽出的血浆采集泵的操作,同时保持设定的QWB不变。
为了执行过度溢出响应,血液处理回路46还被设计成以和前述表中相同的方式操作血浆泵PP2和处理泵PP1(通过选定的阀压力及泵站压力)。因此管292中检测的红血球被返回到处理室18,并被防止进入血浆采集容器304。
界面将及时退向高-G壁。控制器16维持这些设置,直到第二传感器336检测到红血球的血球比容降低在预定值之下,其表示一种不足溢出情况。
与不足溢出情况响应,系统控制器16增加QP,直到第二传感器336检测到红血球的血球比容高于预定值。此时,控制器16将QP重新设定为最近一次过度溢出被感测时的值。
3.血块黄层采集如果需要,可以在一个给定的血浆采集程序中周期性地诱发一种过度溢出情况,以将血块黄层采集在一个血块黄层采集容器376中(见图10)。如图10所示,在所示实施例中,血块黄层采集容器376通过管378连接到盒22的血块黄层端口P4。血块黄层采集容器376悬置在一个磅秤246上,其提供反应重量变化的输出值,控制器16根据它导出所采集的血块黄层的容积。
在此设置中,当检测到诱发的过度溢出情况时,血液处理回路46被设计成(通过选定的阀压力及泵站压力)操纵血浆泵PP2,将血浆从处理室18通过管378抽出,此时阀V4和V6被关闭,而阀V8被打开。管378中的血块黄层被输送到血块黄层采集容器376中。期间血液处理回路46还被设计成操纵处理泵PP1(即通过阀V9抽入,通过阀V14排出),以设定的QWB将全血从处理容器312抽到处理室18中。红血球通过采集容器308中的采集管线294从室18中排出。
下表总结了通过将血块黄层采集在血块黄层采集容器376中来减轻过度溢出情况的回路的设计。
表通过采集血块黄层来减轻过度溢出情况的血液处理回路的设计(血浆收集程序)

说明。表示开启阀;·表示关闭的阀;。/·表示在泵送程序期间开启和关闭的阀;■表示闲置的泵站(未使用);及□表示在使用中的泵站。
在规定容积的血块黄层被输送到血块黄层采集容器376中之后(由磅秤246监控),恢复正常的血液处理条件。在处理程序中,可以以规定的时间间隔诱发出使血块黄层流进管378的过度溢出情况,直到所需容积的血块黄层被采集在血块黄层采集容器中。
Ⅵ.另一个可编程的血液处理回路A.回路构型如前所述,可以有不同结构的可编程的血液处理回路46。图5示意性地表示了一种代表性结构46,已经描述了该回路的可编程特点。图34表示另一种具有一定可编程特点的代表性血液处理回路46′的结构。
类似回路46,回路46′包括一些泵站PP(N),它们通过一组经过一系列阀V(N)的流体流动通道F(N)相互连接。该回路通过端口P(N)被连接到血液处理装置的其余部分。
回路46′包括流动通道F1到F33的一个可编程网络。回路46′包括11个通用端口P1至P8及P11至P13和四个通用泵站PP1、PP2、PP3及PP4。通过选择性地操作这些管线阀V1至V21及V23至V25,任何通用端口P1至P8及P11至P13都能与任何通用的泵站PP1、PP2、PP3及PP4连通。通过选择性地操作这些阀,可以沿着两个阀之间向前或向后的方向上,或穿过单向阀的进出方向上引导液体直接流经任何通用泵站。
在所示实施例中,回路46′还包括一个具有两个端口P9和P10的独立流动通道(包括流动通道F9,F23,F24及F10)及一个管线泵站PP5。流动通道之所以被称为“独立的”,是因为没有外部管它就不能与回路46′中的任何其它流动通道直接连通。通过选择性地操纵管线阀V21和V22,液体可以沿着两个阀之间向前或向后的方向,或一个穿过单向阀的进出方向上直接流经泵站PP5。
类似回路46,回路46′可以被设计成执行专门的泵送功能。在一个优选实施例中,串联的通用泵站PP3和PP4用作一个基本目的的血液供体接口泵,而不考虑具体的血液程序。回路46′中的双血液供体接口泵站PP3和PP4并联工作。一个泵站将液体抽入其泵送室,而另一个泵站从其泵送室排出液体。泵站PP3和PP4交替执行抽、排的功能。
在一个优选实施例中,抽吸泵站的抽吸循环时间比排出泵站的排出循环时间长。这在泵站的入口侧提供一个连续的液体流动,在泵站的出口侧提供一个脉动流动。在一个代表性的实施例中,抽吸循环为10秒,排出循环为1秒。排出泵站在抽吸泵站的抽吸循环开始进行其持续1秒的循环,然后在抽吸循环的其余9秒休息。然后泵站切换抽、排功能。这产生一个连续的入口流动和一个脉动的出口流动。由于整个程序中液体被连续地导入一个抽吸泵站,所以提供两个交替工作的泵站PP3和PP4可以降低整个处理时间。
在此设置中,类似回路46中的泵站PP4,回路46′的独立泵站PP5用作一个专门的抗凝血剂泵,以将抗凝血剂从一个抗凝血剂源通过口P10抽入并将一定量的抗凝血剂加入经过端口P9的血液中。
在此设置中,与在回路46中相同,不考虑特殊的血液处理程序,普通泵站PP1用作一个专门的处理全血泵,以将全血输入血液分离器。如在回路46中,泵经PP1的指示功能取消,血液供体界面泵PP3和PP4从向血液分离器提供全血的附加功能。因此,处理全血泵PP1能保持血液到血液分离器的连续供给,而血液供体接口泵PP4和PP5串联操作,以通过放血针同时从血液供体抽血和将血液返回给抽血者。因此回路46′使处理时间最小。
在此设置中,与在回路46中相同,不考虑特殊的血液处理程序,通用泵站PP2用作一个血浆泵,以从血液分离器传输血浆。与在回路46中相同,回路46′中的专门的分离泵送功能提供一个进出分离器及进出血液供体的连续的血液流动。
回路46′可以被设计成以执行回路46的上述各种程序。根据特定的血液处理程序的目的,回路46′可以被设计成保留全部或一些血浆,用于存储或分级,或者将全部或一些血浆返回给血液供体。取决于特定的血液处理程序的目的,回路46′可以被进一步设计成以保留全部或一些红血球用于存储,或者将全部或一些红血球返回给血液供体。根据特定的血液处理程序的目的,回路46′可以被进一步设计成保留全部或一些血块黄层用于存储,或者将全部或一些血块黄层返回给血液供体。
在一个优选实施例中(见图34),回路46′形成一个通用设备264′的一部分,该设备连接到端口P1至P13上。
更详细地说,带有放血针268′的一个供血管266′连接到回路46′的端口P8。连接到放血针268′的抗凝血剂管270′与端口P9连接。容纳抗凝血剂的容器276′通过一个管274′连接到端口P10。
容纳一种红血球添加溶液的容器280′通过一个管278′连接到端口P3上。一个容纳生理盐水的容器288′通过一个管284′连接到端口P12上。一个储存容器289′通过一个管291′连接到端口P13上。一个管线白血球损耗过滤器293′由管291′支撑在端口P13和储存容器289′之间。容器276′、280′、288′及289′可以被作为一个整体连接到端口上,或者可以在使用时通过一个适当的无菌连接来安装,从而保持一个无菌的、封闭的血液处理环境。
管290′、292′及294′延伸到一个连接到处理室18′的脐部296′。管290′、292′及294′分别连接到端口P5、P6及P7。管290′在处理泵站PP1的操作下将全血输入处理室18。管292′在血浆泵室PP2的操作下从处理室18′输送血浆。管294′从处理室18′输送红血球。
一个血浆采集容器304′通过一个管302′连接到端口P3上。在使用中,采集容器304′用作一个处理程序中的血浆容器。
一个红血球采集容器308′通过一个管306′连接到端口P2。在使用中,采集容器308′用于接收用于储存的一单位的红血球。
一个血块黄层采集容器376′通过一个管377′连接到端口P4。在使用中,采集容器376′用于容纳用于储存的血块黄层。
一个全血容器312′通过一个管310′连接到端口P1。在使用中,在血液供体接口泵PP3和PP4工作期间采集容器312′用于接收全血,以用作处理全血容器。它还可用于接收用于储存的第二单元的红血球。
B.盒子如图35和36所示,可编程的液体回路46′可以被装在一个注塑成型的、靠气压控制的盒28′中。如前所述,盒28′与气动泵和阀站30相互作用,以提供同样集中的、可编程的、和盒28相同的一体式工作台。
图35和36表示其中装有回路46′的盒28′(图34中示意性地表示)。如前面对盒28的描述,一系列内井、腔和槽形成在盒体188′的前和背面190′和192′,以限定图34所示的泵站PP1至PP5、阀站V1至V25及流动通道F1至F33。在图36中,将流动通道F1至F33涂暗以便观看。挠性膜片194′和196′覆盖盒体188′的前和背面190′和192′,坐靠在围绕着泵站PP1至PP5、阀站V1至V25及流动通道F1至F33的竖直边缘上。预模制的端口P1至P13沿盒体188′的两侧向外延伸。
盒28′以和图2相同的方式垂直地安装在泵和阀站30中。在此方向中(图36所示),侧面192′面对着外面,端口P8至P13面对着下方,端口P1至P7一个在另一个上垂直地叠放并面对着里面。
如前所述,通过泵和阀站30在膜片194′上局部施加正负流体压力以使该膜片挠曲,以便关闭和打开阀站V1至V25或将液体从泵站PP1至PP5抽出。
另一个内腔200′设置在盒体188′的背面192′中。腔200′形成一个工作站,其容纳血液过滤材料,以便将血液处理程序中可能形成的凝块或细胞状凝块除去。如图34所示,腔200′位于回路46′中,位于端口P8和血液供体接口泵站PP3及PP4之间,因此返回给血液供体的血液会流经该过滤器。返回的血通过流动通道F27进入腔200′,并通过流动通道F8从腔200′中出来。腔200′还用于收集到血液供体和从血液供体处出来的流动通道中的空气。
另一个内部腔201′(见图35)也设置在盒体188′的背面192′中。腔201′设在端口P5和处理泵泵站PP1的阀V16之间的回路46′中。血液从流动通道F16通过孔203′进入腔201′,通过孔205′从腔201′中排出并进入流动通道F5。腔201′用作流动通道中的盒28′内的另一个空气收集器,为分离室26′服务。腔201′还用作一个容器以减弱为分离室服务的处理泵PP1的脉动泵冲程。
C.相关的气动管线总成图43表示一个气动管线总成226′,其可以与盒28′结合使用,以提供正、负气压,以使液体通过盒28′。当泵站20的门32被关闭,而且气囊314膨胀时,膜片的正面194′紧密贴合管线总成226′。在控制器16的控制下,管线总成226′有选择地分配不同的压力和真空度给盒28′的泵和阀致动器PA(N)和VA(N)。这些压力和真空值系统地施加给盒28′,以给出血液和处理液体的路径。在控制器16的控制下,管线总成226还分配压力给门气囊314(已经描述),给一个血液供体压力套头(已经描述),给一个供血管咬合器320(已经描述)。图43所示的用于盒28′的管线总成226′具有许多和图12所示的前述管线总成226相同的属性。
与管线总成226相同,管线总成226′连接到一个气动压力源234′上,它设置在管线总成226′后面的盖40内部。和在管线总成226中相同,用于管线总成226′的压力源234′包括两个压缩机C1′和C2′,但是也可以使用一个或多个双头压缩机。压缩机C1′通过管线总成226′给盒28′提供负压。另一个压缩机C2′通过管线总成226′给盒28′提供正压。
如图43所示,管线总成226′包括5个泵致动器PA1~PA4和25个阀致动器VA1~VA25。泵致动器PA1~PA25个阀致动器VA1~VA25相互取向以在盒28′的正面190′形成一个泵站PP1~PP5和阀站V1~V25的镜像。
与管线总成226相同,图43所示的管线总成226′包括一系列电磁促动的气动阀,它与泵制动器PA1~PA5和阀致动器VA1~VA25相连接。
与管线总成226相同,在控制器16的控制下,管线总成226′保持几种不同的压力和真空条件。
如前述和管线总成226的连接相同,P高即高压力,及P处理即处理压力为管线总成226′维持的高的正压力(例如+500mmHg),用以关闭阀V1~V25并驱动液体从处理泵PP1和血浆泵PP2压出。如前所述,P处理的大小必须足以克服接近300mmHg的最小压力,它通常存在于处理室18中。P高和P处理在最高的压力下操作,以确保与泵送连接的上游和下游阀不会被施加给泵以操作泵的压力强行打开。
施加P普即普通压力(+300mmHg)以驱动液体从血液供体接口泵PP3、PP4和抗凝血剂泵PP5压出。
V高即高真空(-350mmHg)是施加在管线总成226′中以打开盒式阀V1~V25的最大真空。V普即普通真空(-300mmHg)用于驱动每个泵PP1~PP5的抽吸作用。V普低于V高,以确保泵PP1~PP5不压倒上游或下游盒式阀V1~V25。
一个主高压力管322′和一个主真空管324′在管线总成324中分配P高和V高。压力和真空源234′连续工作以给高压力管322′提供P高,给高真空管324′提供V高。一个压力传感器S2监测高压力管322′中的P高。传感器S2打开和关闭电磁阀38,以建立P高直到其最大值。
同样地,高真空管324′中的一个压力传感器S6监测V高。传感器S6控制一个电磁阀43以将V普保持在特定的压力范围内。
一个普通压力管326′从高压力管324′分出来。普通压力管326′中的一个传感器S4监测P普。传感器S4控制一个电磁阀34以将P普保持在特定的压力范围内。
一个普通真空管330′从高真空管324′分出来。一个传感器S5监测普通真空管330′中的V普。传感器S5控制一个电磁阀45以将V普保持在特定的真空范围内。
管线容器R1~R4设置在高压力管322′、普通压力管326′、高真空管324′和普通真空管330′中。容器R1~R4保证上述恒定的压力和真空调节是稳定和可预测的。
一旦程序完成,电磁阀32和34就为压力和真空提供一个出口。
电磁阀41、2、46和47使容器R1~R4与空气管线隔开,所述管线给泵和阀制动器提供真空及压力。这提供了更快的压力/真空下降反馈,因此可以完成对盒/管线总成密封的检测。
电磁阀1~25提供P高或V高以驱动阀致动器VA2~VA25。电磁阀27和28提供P处理和V普以驱动处理及血浆泵PP1和PP2。电磁阀30和31提供P普和V普以驱动血液供体接口泵致动器PA3和PA4。电磁阀29提供P普和V普以驱动AC泵致动器PP5。
电磁阀35提供门气囊314与高压力管322′的隔离。一个传感器S1监测P门并控制电磁阀35以保持压力在特定的范围内。
电磁阀40提供P高以打开安全闭合阀320′。任何可能使血液供体处于危险的错误模式将释放电磁阀40以关闭阀320′并隔离血液供体。同样地,任何能量损失将释放电磁阀40并隔离血液供体。
传感器S3监测P管头并与电磁阀36和电磁阀37连接以维持血液供体的套头位于特定的范围内。
如前所述,任何电磁阀都可以在“正常打开”模式下工作,或者可以被转换到在“正常关闭”模式下操作,反之亦然。
D.泵送功能举例根据前面关于装在盒28中的液体回路46的描述,可以同样地编程装在盒28′中的液体回路46′,以进行已经描述的各种血液处理功能。与各种血液处理程序相同,液体回路46′的一定泵送功能将通过例子来说明。
1.到处理容器的全血流动在一个给定血液采集循环的第一步骤中,血液处理回路46′被设计成以共同操作血液供体接口泵PP3和PP4(通过给阀和泵站施加选定的压力),以在分离之前将抗凝全血输入处理容器312′中。
在第一阶段中(见图37A),泵PP3进行10秒的抽吸循环(即通过阀V12和V13进入,阀V6、V14、V18和V15关闭),该泵与抗凝血剂泵PP5串联(即从阀V22进入,从阀V21出来),以便将抗凝血通过供血管270抽入泵PP3。同时,血液供体接口泵PP4进行1秒的排出循环(通过阀V7出来),以将抗凝血从其室中通过流动通道F20和F1排入处理容器312′(通过开启的阀V4)。
在用于泵PP3(参见图37B)的抽吸循环的最后,该血液处理回路46′被设计成操纵血液供体接口泵PP4一个10秒的排出循环(即通过阀V12和V14进入,阀V13、V14和V18关闭),该泵与抗凝血剂泵PP5串联,以便将抗凝血液通过供血管270抽入泵PP4。同时,血液供体接口泵PP3进行1秒的排出循环(通过阀V6出来),以将抗凝血从其室中通过流动通道F20和F1排入处理容器312′(通过开启的阀V4)。
这些交替的循环继续进行,直到增量容积的抗凝全血进入处理容器312′,这由重量传感器监测。如图37C所示,血液处理回路46′被设计成以操作处理泵站PP1(即通过阀V1进入,通过阀V16出来)和血浆泵PP2(即通过阀V17进入,通过阀V11出来,阀V9打开和V10关闭),以将抗凝全血从处理容器312输入处理室18′进行分离,同时将血浆移入血浆容器304(通过开启的阀V9),将红血球移入红血球容器308(通过开启的阀V2),这和前面相对回路46而描述的方式相同。该步骤继续进行,直到一个增量容积的血浆被采集在血浆采集容器304中(由重量传感器监测),或者一个目标容积的红血球被采集在红血球采集容器中(由重量传感器监测)。当血液处理进行时,血液供体接口泵PP3和PP4在必要时交替进行交替的抽吸和排出循环,以便将处理容器312′中抗凝全血的容积保持在规定的最小和最大值之间。
2.带有生理盐水在线加入的红血球返回当要求将红血球返回给血液供体时(见图37D),血液处理回路46′被设计成以操作血液供体接口泵PP3进行10秒的抽吸循环(即通过阀V6进入,阀V13和V7关闭),以将红血球从红血球容器308′抽入泵PP3(通过开启的阀V2、V3和V5,阀V10关闭)。同时,血液供体接口泵PP4被操作进行1秒的排出循环(通过阀V14和V18出来,阀V12和V21关闭),以将红血球从其室中通过过滤腔200′排入血液供体。
在泵PP3的抽吸循环的最后(见图37E),血液处理回路46′被设计成以操作血液供体接口泵PP4进行10秒的抽吸循环(即通过阀V7进入,阀V6和V14关闭),以将红血球从红血球容器308′抽入泵PP4。同时,血液供体接口泵PP3被操作进行1秒的排出循环(通过阀V13和V18出来,阀V12关闭),以将红血球从其室中通过过滤腔200′排入血液供体。这些交替循环继续进行,直到所需容积的红血球被返回给血液供体。
同时,阀V24、V20和V8打开,因此抽吸泵站PP3或PP4还将生理盐水从生理盐水容器288′抽出,生理盐水用于和抽入室中的红血球混合。如前所述,生理盐水和红血球的这种在线混合升高了生理盐水的温度并提高了血液供体的舒适性,同时还降低了红血球的血球比容。
同时,操作处理泵PP1(即通过阀V1进入,通过阀V16出来)和血浆泵PP2(通过阀V17进入,通过阀V11出来,阀V9打开),以将抗凝全血从处理容器312输入用于分离的处理室,同时将血浆移入血浆容器304,采用和前面相对回路46描述的方式相同的方式进行。
3.红血球附加溶液的在线加入在红血球被采集用于存储的一个血液处理程序中(例如双单位红血球采集程序或红血球及血浆采集程序),血液处理回路46′被设计成操作血液供体接口泵PP3进行10秒的抽吸循环(即通过阀V15和V13进入,阀V23开启,阀V8、V12和V18关闭),以将红血球储存溶液从容器280′抽入泵PP3(见图38A)。同时,回路46′被设计成操作血液供体接口泵PP4进行1秒的排出循环(通过阀V17出来,阀V14和V18关闭),以将红血球储存溶液排到保存红血球的容器中(例如处理容器312(通过开启的阀V4)或红血球采集容器308′(通过开启的阀V5、V3和V2,阀V10关闭))。
在泵PP3的抽吸循环的最后(见图38B),血液处理回路46′被设计成操作血液供体接口泵PP4进行10秒的抽吸循环(即通过阀V14进入,阀V7、V18、V12和V13关闭),以将红血球储存溶液从容器280′抽入泵PP4。同时,血液供体接口泵PP3被操作进行1秒的排出循环(通过阀V6出来,阀V13和V12关闭),以将红血球储存溶液排出到保存红血球的容器中。这些交替循环继续进行,直到所需容积的红血球储存溶液被添加给红血球。
4.在线白血球排空回路46′具有从采集的红血球中逐渐减少白血球的能力。在此方式中(见图39A),回路46′被设计成操作血液供体接口泵站PP3进行10秒的抽吸循环(即通过阀V6进入,阀V13和阀V12关闭),以将红血球从保存红血球的容器(例如处理容器312′(通过开启的阀V4)或红血球采集容器308(通过开启的阀V5、V3和V2,阀V10关闭))抽入泵PP3中。同时,回路46′被设计成以操作血液供体接口泵PP4进行1秒的排出循环(通过阀V14出来,阀V18和V8关闭,阀V15和V25打开),以将红血球通过白血球过滤器293′通过管291′排到没有白血球的红血球储存容器289′中。
在泵PP3的抽吸循环的最后(见图39B),血液处理回路46′被设计成以操作血液供体接口泵PP4进行10秒的抽吸循环(即通过阀V7进入,阀V14和V18关闭),以将红血球从容器312′或308′抽入泵PP4。同时,血液供体接口泵PP3被操作进行1秒的排出循环(通过阀V13出来,阀V12关闭,阀V15和V25打开),以将红血球通过白血球过滤器293′通过管291′排到没有白血球的红血球储存容器289′中。这些交替循环继续进行,直到所需容积的红血球通过过滤器293′输入容器289′中。
5.分阶段的血块黄层采集在回路46中(见图5),血块黄层通过端口P4采集,该端口连接流动管线F4,F4从流动管线F26分出,其将血浆从血浆泵站PP2送到血浆采集容器304(还见图10)。在回路46′中(见图34),血块黄层通过端口P4从流动管线F6采集,这由阀V19控制。血块黄层采集管线线经过血浆泵站PP2,使血浆泵站PP2免于暴露给血块黄层,从而使采集的血浆不被血块黄层污染。
在分离程序中,系统控制器(已经描述过)将血块黄层保持在分离室18′中,距离低-G壁一定的距离,离开血浆采集管线292(见图15A)。当血浆通过血浆泵PP2的操作从室输入血浆采集容器304′时,这会使血块黄层成分在处理程序中聚集。
为了采集聚集的血块黄层成分,控制器打开血块黄层采集阀V19,关闭血浆泵PP2的入口阀V17以及红血球采集阀V2。处理泵PP1继续运行,将全血带入室18′中。进入室18′中的全血的流动将血块黄层移到低-G壁,诱发一种过度溢出情况(见图15B)。血块黄层成分进入血浆采集管线292′并通过端口P6进入流动管线F6。回路46′将F6中的血块黄层成分通过打开的阀V19直接输入管线F4,F4为通过端口P4进入采集容器376′的管线。
当感测站332感测到红血球的存在时,阀V19关闭。血浆泵站PP2可以暂时以相反的流动方向运行(通过阀V11进入,通过阀V17出来,阀9打开),以使血浆从采集容器302′经过管292′流向分离室,以将残留的红血球从管292′冲回分离室。控制器可以再继续正常的血浆和红血球采集,通过打开红血球采集阀V2并操作血浆泵站PP2(通过阀V17进入,通过阀V11出来)再开始将血浆从分离室输入采集容器302′。
在处理程序中可以在预定的间隔诱发引起血块黄层采集运动的过度溢出情况,直到所需容积的血块黄层被采集在血块黄层采集容器中。
6.其它如图43中虚线所示,管线总成226′可以包括一个辅助气动致动器A辅,其选择地给覆盖内腔201′的挠性膜片施加P高(见图35)。如前所述,由泵站PP1排出(通过由致动器PA2施加P高)的全血经过孔203′和205′进入流动通道F5,进入处理室18′。在PP1的下一个冲程中,通过由致动器PA2施加V普将全血抽入泵送室PP1,留在腔201′中的残余全血通过孔205′排入流动通道F5,并通过A辅施加的P高进入处理室18′。腔201′还用作一个容器,以衰减为处理室18′工作的处理泵PP1的脉动泵冲程。
在使用前,需要对图35和36所示的盒28′进行密封性测试。密封测试确定盒28′中的泵和阀站没有泄漏。在这种情况中,需要将盒28′与分离室26′隔开。回路264′中的阀V19和V16(见图34)提供全血入口和室18′的血浆管292′及296′之间的隔离。为了提供隔开红血球管294′的能力,一个附加的阀流体促动站VA26可以被添加到管线总成26′中,以给阀26施加正压,当需要隔离时关闭阀V26,并给阀26施加负压,当不需要隔离时打开阀V26。
A.模制的处理室图21到23表示一个离心处理室18的实施例,其可以与图1所示的系统10结合使用。
在所示实施例中,处理室18被预制成所需的形状和结构,例如通过注塑成型,由一种坚固的、生物适应的塑料材料制成,例如一种非增塑的医用级丙烯腈一丁二烯一苯乙烯共聚物(ABS)。
室18的预制结构包括一个模制的基部388。基部388包括一个中央毂120。毂120由内、外环形壁122和124径向地围绕(见图21和图23)。在它们之间,内、外环形壁122和124限定了一个环形血液分离通道126。一个模制的环形壁148封闭槽126的底部(见图22)。
槽126的顶部由一个单独模制的平盖150封闭(为了说明,其单独地表示在图21中)。在装配程序中,盖150被固定到室18的顶部,例如通过一个圆柱形的声波焊接角状物。
影响血液分离程序的所有的轮廓、端口、槽及壁在一个注塑成型操作中被预制在基部388中。或者,基部388可以由独立的模制件形成,或者是一套杯状的组件或是两个对称的半模。
盖150包括一个简单的平的部分,它们易于焊接到基部388。由于影响分离程序的所有特征被包含到一个注塑成型的元件中,在基部388和盖150之间的任何公差都不会影响室18的分离效果。
预制在基部388中的轮廓、端口、槽及壁可以改变。在图21到23所示的实施例中,周向隔开的几对加固壁128、130和132从毂120延伸到内部的环形壁122。加固壁128、130和132给室18提供了一定的刚性。
如图23所示,内部的环形壁122敞开在一对加固壁130之间。对置的加固壁在毂120中形成一个敞口的内部区域134,其与槽126连通。通过该区域134,血液和液体从脐部296被导入或导出分隔槽126。
在该实施例中(如图23所示),形成在区域134中的一个模制内壁136完全延伸穿过槽126,连接着外侧的环形壁124。壁136在分隔槽126中形成一个终端,该终端使沿槽126的周向流动中断。
另外的模制内壁将区域124分成三个通道142、144和146。通道142、144和146从毂120延伸并与终端壁136对面的槽126连通。血液及其它液体通过这些通道142、144和146从毂120直接导入或导出槽126。如将在下面更详细地描述的一样,通道142、144和146能以不同的方式将血液组分导入或导出槽126。
基部388的下侧(见图22)包括一个成一定形状的接收器179。三个预制的喷嘴180占据接收器179。每个喷嘴导向基部388对面的通道142、144和146中的一个。
脐部296的远端包括一个成一定形状的安装件178(见图24和24A)。安装件178的形状与接收器179的形状相符。因此安装件178可以被插入接收器179中(如图25所示)。安装件178包括内腔398(见图24A),其滑过毂120中的喷嘴180,以使脐部296与槽126连通。
接收器179中的肋181(见图22)单独安装在形成在安装件178上的一个键槽183中(见图24A)。设置肋181和键槽183之间的独特的配合,以确定一个将安装件178插入接收器179的特定方向。因此,确保了脐部296及通道142、144和146中的所要求的流动方向。
在所示实施例中,脐部296及安装件178由一种或几种能抵抗相当弯曲和扭转力的材料制成,在使用中脐部296会受到这些力。例如可以使用一种Hytrel_聚脂材料。
非常适合脐部296的这种材料与基部的ABS塑料材料不相容,后一种材料被选择用来提供一种坚固的、模制的血液处理环境。因此安装件178不能通过传统的溶剂粘结或超声波焊接技术连接到接收器179。
在这种设置中(见图24和25),接收器179和安装件178的尺寸选择最好能提供一个紧密的干压配合。另外,由ABS材料形成的一个捕获件185最好设置在接收器外部的脐部296周围,并与接收器179的周边接触。捕获件185固定在接收器179的周边,例如通过锻压或超声波焊接技术。捕获件185防止安装件178和接收器179的不小心分离。因此,即使使用不相容的塑料材料,脐部296也可以被一体地连接到室18的基部38。
离心站20(见图26到28)包括一个离心分离装置48。离心分离装置48被构成用来容纳和支撑模制的处理室18。
正如所描述的,离心分离装置48包括一个定心架154,该架具有底、顶和侧壁156、158、160。定心架154在一个连接到底壁156的轴承元件162上旋转。一个电驱动马达164通过一个轴连接到定心架154的底壁156,以使定心架154绕轴线64旋转。在所示实施例中,轴线64在基部38的水平面上约倾斜15度,但是也可以使用其它的角度。
一个转盘166绕其轴承元件168在定心架154中旋转,该轴承元件连接到定心架154的顶壁158。转盘166绕一个基本与定心架154的旋转轴线成一直线的轴线旋转。
处理室18的顶部包括一个环形唇380,其上固定有盖150。支撑在转盘166周边的夹紧件382与唇380扣接配合,以将处理室18紧固在转盘166上以便旋转。
脐部296近端的一个鞘182装入离心站20的一个支架184中。支架184将脐部296的近端固定在一个不转动的静止位置,该位置与成一直线的定心架154与转盘166的轴线64对准。
在定心架154的转动程序中,从定心架154的一侧或两侧突出的一个臂186接触脐部296的中部。受其近端的支架184和其远端的室16的限制(其中安装件178固定在接收器179中),当脐部296绕定心架154的轴线旋转时,它会绕其自身的轴线弯曲。当脐部296以Ω的转速与定心架154一起旋转时,这种绕其轴线的扭转将两倍ω转速的旋转传给转盘166,从而传给处理室18。
1ω转速的定心架154和2ω转速的转盘166的相对转动使脐部296不会扭曲,避免了对转动密封件的需要。所述设置还容许一个驱动马达通过脐部296将旋转运动传递到相互转动的定心架154和转盘166上。这种设置的详细情况披露在Brown的美国专利4,120,449中,该文献在这里被引用作为参考。
血液被导入处理室18,并当其旋转时在其中进行分离。
在一种流动设置(见图29)中,当处理室18旋转时(见图29中的箭头R),脐部296将全血通过通道146输入槽126中。全血在槽126中沿和旋转相同的方向流动(在图29中为逆时针方向)。或者,室18可以以和全血的周向流动方向相反的方向转动,即顺时针。图15A所示方式产生的离心力使全血进行分离。红血球甩向高-G壁124,而较轻的血浆成分被甩向低-G壁122。
在这种流动方式中,一个挡壁384向槽126中的高-G壁124突出。挡壁384阻止血浆通过,而容许红血球流入高-G壁124中的一个槽386中。槽386将红血球通过径向通道144导入脐部296。血浆成分从槽126通过径向通道142输入脐部296。
由于红血球排出槽386延伸到高-G壁124外面,从而离旋转轴线的距离比高-G壁还远,在血液处理期间,红血球排出槽386容许红血球和血块黄层之间的界面离高-G壁非常近,而不使血块黄层溢入红血球采集通道144(产生一种过度溢出情况)。因此排出槽386使红血球的产量最大(在一个红血球采集程序中)或者容许采集一种基本没有血小板的血浆(在一个血浆采集程序中)。
在另一种流动设置中(见图30),脐部296将全血通过通道142输入槽126中。处理室18以和全血流动方向(在图30中为顺时针方向)相同的方向旋转(见图30中的箭头R)。或者,室18以和全血的周向流动方向,即顺时针方向相反的方向旋转。图15A所示方式产生的离心力使全血进行分离。红血球甩向高-G壁124,而较轻的血浆成分被甩向低-G壁122。
在这种流动方式中,挡壁384(前面描述的)阻止血浆通过,而容许红血球流入槽386中。槽386将红血球通过径向通道144导入脐部296。血浆成分从槽126的相对端通过径向通道146输入脐部296。
在另一种可选的流动设置中(见图31),脐部296将全血通过通道144输入槽126中。处理室18以和全血流动方向(在图31中为顺时针方向)相同的方向旋转(见图31中的箭头R)。或者,室18以和全血的周向流动方向相反的方向,即逆时针方向旋转。图15A所示方式产生的离心力使全血进行分离。红血球甩向高-G壁124,而较轻的血浆成分被甩向低-G壁122。
在这种流动模式中,位于槽126相对端的隔墙385阻止血浆通过,但容许红血球流入凹槽387内。槽387经径向通道146将红血球导入脐点296内。血浆成分从槽126的另一端经径向通道142输入脐点296内。在这种结构中,隔墙384和槽形通道386(前面描述的)的存在能使进入的全血流(在通道144中)与输出的血浆流(在通道142中)分离。如果需要,这种流动结构使富有血小板的血浆采集成为可能。
在另一种流动结构中(见图32),通道144以与通道142和146不同的方向、从毂120延伸到槽126内。在这种结构中,终端壁136使通道142和146分离,且通道144在位于通道142和146之间的位置处与与槽126连通。在这种结构中,脐点296经通道146将全血输入槽126中。处理室18以和全血流动方向(图32中顺时针方向)相同的方向旋转(图32中箭头R)。或者,腔室18以和全血的切线流动方向相反的方向,即逆时针方向旋转。以图15A所示方式、由于离心力的结果,全血分离。迫使红血球朝高度G的壁124流动,而使较轻的血浆成分朝低-G的壁122运动。
在这种流动模式中,通道144从槽126输送血浆,同时通道142从槽126输送红血球。
如前所述,在图28-32所示的任何一种流动模式中,室18可以以和槽126中全血的切线流动相同或相反的方向旋转。在任何一种情况中都会产生所述的血液分离。不过,已经发现,在分离程序中以与槽126中全血流动方向相同的方向转动室18会使干扰,例如科里奥利效应降至最小,从而提高分离效果。实施例在不同的实验期间,全血在图28所示的腔室18中被分离为红血球和血浆。在一个腔室(被称为腔室1)中,全血在槽126中沿与腔室18旋转方向(即腔室18沿逆时针方向旋转)相同的方向切线流动。在另一个腔室18(被称为腔室2)中,全血在槽126中沿与腔室旋转方向(即室18沿顺逆时针方向旋转)相反的方向切线流动。对于不同的血液量,测量所采集的红血球的平均血球比容,并在红血球入口流速和血浆出口流速的不同组合下进行。下述表总结了各个实验的结果。
表1(以与转动相同的方向流动)

表2(以与转动相反的方向流动)

表1和2显示,当腔室中的血液沿与转动相同的方向流动时,红血球的血球比容比沿相反方向流动时大。较高的红血球得率也意味着较高的血浆得率。
图33表示一个腔室18′,其具有一与图21到23中所示的相似的单式模制基座388′,但在其中形成两个流道126′和390。流道126′和390如图所示是偏心的,但它们不必这样。腔室18′具有许多和图23中室18相同的结构特征。相同的结构特征被标以由星号标记的相同参考标号。
基座388′包括一中央毂120′,其由内、外环形壁122′和124′径向环绕,在它们之间限定有周向的血液分离槽126′。在此实施例中,一第二内环形壁392径向地环绕毂120′。在内侧环形壁122′和392之间限定了第二周向血液分离槽390。这种结构形成了偏心的外部和内部分离槽126′和390。
邻近隔墙384′的环形壁122′中的一个隔断394在外部和内部分离槽126′和390之间建立了流体连通的关系。内壁396在槽126′和390的相对端部之间阻止了流体连通。
当处理室18′旋转(图33中的箭头R)时,脐部296经通道144′将全血输入槽126′中。全血在槽126′中沿与旋转方向相同的方向流动(在图33中为逆时针方向)。或者,腔室18′以与全血切线流动方向相反的方向,即逆时针方向旋转。以图15A所示方式产生的离心力使全血分离。使红血球朝高-G的壁124′流动,而使较轻的血浆成分朝低-G的壁122′流动。
如前所述,隔墙384′阻止血浆通过,同时容许红血球流入高-G的壁124′中的槽386′中。槽386′经径向通道142′将红血球导入脐部296内。血浆成分从槽126′、经中断部隔断394被输入内部分隔槽390。
血浆流以与外部槽126′中全血流动方向相反的方向切线流经内部槽390。与离心力响应,残留在血浆中的血小板逆着环形壁124′移动。槽390将血浆成分导引至腔室18′的相同端,在该处,全血先被导入。通过通道146′从槽390中输送血浆成分。Ⅷ.其它的血液处理功能通过描述将全血分离为组成部分以便储存和血液组分疗法说明了本发明的许多特征。这是由于本发明能够良好地用于进行这些血液处理程序。但是应该理解,本发明的特征同样可用于其它的血液处理程序中。
例如,使用了一种与血液处理腔室相连的可编程箱的系统和方法可在手术中用于清洗或补救血球,或用于进行治疗血浆的交换,或用于使血液在用于治疗的体外路径中循环的其它任何程序中。
本发明的特征应被限定在以下的权利要求中。
权利要求
1.一种血液分离系统,包括一用于从由血液供体抽出的血液中分离红血球的装置,一用于从所述装置输送红血球流的红血球采集管线,一回流管线,用于将至少一部分在所述装置中分离的红血球输送至血液供体,一交换液体源,一与所述交换液体源和回流管线连通的混合管线,用于使所述交换液体和返回给血液供体的红血球在线混合。
2.根据权利要求1所述的系统,其还包括一与红血球采集管线连通的红血球采集容器,用于采集红血球。
3.根据权利要求2所述的系统,其特征在于所述回流管线与所述红血球采集容器连通,以便使部分红血球从所述红血球采集容器输送回血液供体。
4.根据权利要求1所述的系统,其特征在于所述交换液体包括生理盐水。
5.一种血液分离系统,包括一用于由血液供体抽出的血液中分离血浆的装置,一用于从所述装置输送血浆流的血浆采集管线,一回流管线,用于将至少一部分在所述装置中分离的血浆输送至血液供体,一交换液体源,一与所述交换液体源和回流管线连通的混合管线,用于使所述交换液体和返回给血液供体的血浆在线混合。
6.根据权利要求5所述的系统,其还包括一与血浆采集管线连通的血浆采集容器,用于采集血浆。
7.根据权利要求6所述的系统,其特征在于所述回流管线与所述血浆采集容器连通,用以将部分血浆从所述血浆采集容器输送回血液供体。
8.根据权利要求5所述的系统,其特征在于所述交换液体包括生理盐水。
9.一种血液分离系统,包括一用于从由血液供体抽出的血液中分离红血球和血浆的装置,一用于从所述装置输送红血球流的红血球采集管线,一用于从所述装置输送血浆流的血浆采集管线,一回流管线,用于将至少一部分在所述装置中分离的红血球或血浆输送给所述血液供体,一交换液体源,一与所述交换液体源和回流管线连通的混合管线,用于使所述置换液体和返回至血液供体的红血球或血浆在线混合。
10.一种血液分离系统,包括一用于从全血中分离红血球和血浆的装置,一放血针,一与放血针连通的全血输入管,用于将全血流从一个血液供体输送到所述装置中,一用于从所述装置输送红血球流的红血球采集管线,一用于从所述装置输送血浆流的血浆采集管线,一与放血针连通的回流管线,用于将至少一部分在所述装置中分离的红血球或血浆输送至所述血液供体,一交换液体源,一与所述交换液体源和回流管线连通的混合管线,用于使所述交换液体和返回至血液供体的红血球或血浆在线混合。
11.根据权利要求9或10所述的系统,其还包括一与红血球采集管线连通红血球采集容器,其用于采集红血球。
12.根据权利要求11所述的系统,其特征在于所述回流管线与所述红血球采集容器连通,以便将部分红血球从所述红血球采集容器输送回血液供体。
13.根据权利要求9或10所述的系统,其还包括一与血浆采集管线连通血浆采集容器,用于采集血浆。
14.根据权利要求13所述的系统,其特征在于所述回流管线与所述血浆采集容器连通,以便将部分血浆从所述血浆采集容器输送回血液供体。
15.根据权利要求9或10所述的系统,其特征在于所述交换液体包括生理盐水。
16.根据权利要求9或10所述的系统,其还包括一与全血输入管连通的处理容器,用以采集输送至所述装置的全血,同时所述回流管线将在分离室中分离的至少一部分红血球或血浆输送至血液供体。
17.一种血液分离方法,包括下述步骤从由血液供体中抽出的血液中分离红血球,将至少一部分被分离的红血球输送至血液供体,使一种交换液体与返回至血液供体的红血球在线混合。
18.一种血液分离方法,包括下述步骤从由血液供体抽出的血液中分离血浆,将至少一部分被分离的血浆输送至血液供体,使一种交换液体与返回给血液供体的血浆在线混合。
19.一种血液分离方法,包括下述步骤从由血液供体抽出的血液中分离红血球和血浆,将至少一部分被分离的红血球输送至血液供体,将至少一部分被分离的血浆输送至血液供体,使一种交换液体与返回给血液供体的红血球和血浆在线混合。
全文摘要
当使血液组分如红血球或血浆返回一血液供体时,利用在线混合交换流体如生理盐水的血液处理系统和方法。
文档编号F04B13/02GK1321100SQ00801856
公开日2001年11月7日 申请日期2000年8月29日 优先权日1999年9月3日
发明者罗希特·维什诺伊, 马修·R·马勒, 汤姆·韦斯特伯格, 巴巴拉·B·布兰廷根 申请人:巴克斯特国际公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1