专利名称:叶片回转型空气泵的制作方法
技术领域:
本发明涉及使用燃料电池的移动用笔记本个人电脑的空气供给装置中使用的叶片回转型空气泵的结构。
背景技术:
现在,移动用的燃料电池正处在开发之中,目前还没有合适的对该燃料电池单元供给空气的空气泵。对这种空气泵所要求的特性是,供给空气不含油等不纯物,即是无油机构。供给空气量为10升/min程度,较小的流量即可,但为了克服燃料电池系统的空气流道所产生的压力损失送入空气,其供给压力需要Δp=2~5kPa。因为需要装入移动设备,故大小为直径φ30mm以下,且要求噪声级低。发明了满足这些特性的叶片回转型空气泵,但首先对叶片回转型空气泵机械的现有技术进行说明。
以往,作为这种叶片回转型压缩机,有一种日本专利JP2001-214875A记载的结构。
图10、图11是表示上述专利文献中记载的以往的叶片回转型压缩机。图11是图10的I-I线剖视图。在图10、图11中,内面为圆筒状的气缸13内,使中心轴从气缸13的中心轴偏心规定量的状态下配置有圆柱状的转子14。在转子14上从其中心朝外侧偏移、辐射状地设有3根槽16,板状的叶片17以可滑动的状态与这些槽16内嵌合,叶片17的前端部成为与气缸13内面滑动的结构。而且,通过将前板11和后板12夹着转子14和叶片17的状态下配置在气缸13的端面上,由气缸13、转子14、叶片17、前板11及后板12围起,形成多个压缩空间18。所述气缸13在其周围具有吸入口19和排出口20。另外,所述转子14具有传递驱动力的机械轴15。而且,在后板12的后方设有供油外壳,其中形成储油部26。另外,供油外壳25内收放有将储油部26的润滑油通过在后板12上形成的供油通道28向转子14的槽16供给的油控制阀单元29。
当动力从未图示的发动机或电动机通过未图示的皮带传递至机械轴15,则在图11中转子14朝顺时针方向旋转,从制冷循环返回的制冷剂气体从吸入口19吸入气缸13内的压缩空间18内,并受到压缩。被压缩后的高压气体从排出口20排出,进入供油外壳25。润滑油在该供油外壳25内分离,仅制冷剂气体流向制冷循环。分离后的润滑油暂时存放在储油部26内,然后,从油控制阀单元29经由供油通道28供给转子14的槽16。其结果,通过润滑油的压力,对叶片17赋予背压,成为叶片17在气缸13的内面进行滑动的结构。
另外,图12及图13表示日本专利JP2001-221180A中记载的以往的其他叶片回转型泵。该其他叶片回转型泵,具有气缸13,该气缸13具有两端由前板11及后板12封闭的筒状内壁。在气缸13的内部配设有转子14,该转子14的一部分外周与气缸13的内壁形成小间隙。与转子14形成一体的机械轴15,两端旋转自如地轴支承于前板11及后板12。在转子14的外周面形成多个槽16,叶片17的一端部滑动自如地插入各槽16内。叶片17与气缸13、转子14、前板11、后板12一起形成泵空间18。在气缸13形成与吸入侧的泵空间18连通的吸入口19、与压缩侧的泵空间18连通的排出口20。
当动力传递至机械轴15后,转子14旋转,从吸入口19吸入的流体吸入吸气侧的泵空间18内并受到压缩。压缩后的流体从压缩侧的泵空间18经由气缸13的排出口20排出。
上述以往的结构中,供给叶片17的背面的润滑油从槽16与叶片17的间隙少量流入压缩空间18内,通过该润滑油使叶片17与转子14之间进行润滑以及使转子14与前板11、后板12之间进行润滑,但存在难以进行作为向燃料电池供给空气的泵不可缺少的无油运行的问题。
另外,上述以往的结构中,是发动机或电动机轴通过皮带对与转子14成为一体的机械轴15进行驱动的结构。当考虑对该结构进行改良,通过将电动机同轴配置,利用电动机轴驱动机械轴15的情况时,难以高精度地将2个轴之间的轴心对齐,存在构成困难的问题。另外,如将2根轴用挠性接头或联轴器部件等结合,则存在整体尺寸增大的问题。另外,将2根轴用联轴器部件等结合时,存在哪怕稍微产生错位就会成为振动的原因,或变形而产生能量损失,传递效率下降的问题。
另外,上述以往的结构中,在气缸13的外周部具有吸入口19和排出口20,存在压缩机整体的外径增大的问题。
而且,因为吸入仅从前板11进行,因而存在当使泵机构部高速旋转时,吸入工序的时间缩短,吸入效率下降的问题。
发明内容
本发明是为了解决上述问题而提出的,其目的在于提供一种可无油运行,泵机构部能与电动机直接连接,且泵整体的外径小的叶片回转型空气泵。
而且,本发明是为了解决上述问题而提出的,其目的在于提供一种可抑制传递效率下降,可由直流电动机驱动的叶片回转型空气泵。
而且,本发明的目的在于提供一种将板设置在所述后板与所述电动机之间,通过将所述泵机构部与所述电动机直接连接、在所述前板上配置吸入接口和排出接口,抑制气缸轴向及径向高度的叶片回转型空气泵。
而且,本发明的目的在于提供一种通过具有吸入损失少的结构的流体流入通道,可减少泵机构部高速旋转时的流体的吸入损失,抑制吸入量下降的叶片回转型空气泵。
为了实现上述目的,本发明具有内部滑动面使用了自我润滑性材料的叶片回转型的泵机构、驱动该泵机构的电动机,所述泵机构的机械轴与所述电动机的电动机轴一体构成。
如上所述,所述泵机构的机械轴与所述电动机的电动机轴一体构成,故可容易地使泵机构部与电动机部的轴心一致,可高精度且简单地组装泵整体。而且,机械轴与电动机轴之间不需要接头部等,因而可小型化。
另外,为了实现上述目的,本发明在内面为圆筒状的气缸内,使中心轴从上述气缸的中心轴偏心规定量的状态下配置有圆柱状的转子,在所述转子上,在其中心轴方向设置多个槽,由具有自我润滑性的材料构成的板状的叶片以可滑动的状态与这些槽嵌合,滑动面具有自我润滑性材料的前板和后板夹着所述转子和叶片的形态配置在气缸的端面,形成多个泵空间,在转子的中心轴具有机械轴,构成泵机构部,与该泵机构部邻接地通过所述后板配置直流电动机,通过该直流电动机驱动机械轴,构成泵空间随着叶片的旋转移动而容积发生变化的无油空气泵,同时使机械轴与直流电动机的电动机轴一体构成。
由具有上述自我润滑性的材料构成叶片,以滑动自如的状态与转子的槽嵌合,同时利用滑动面具有自我润滑性材料的前板和后板,以夹着转子和叶片的状态将这些板配置在气缸的端面上,从而减小滑动面的摩擦损失和磨损,其结果可进行无油运行。另外,机械轴与直流电动机的电动机轴一体构成,故可容易地使泵机构部与电动机部的轴心一致,可高精度且简单地组装泵整体。而且,机械轴与电动机轴之间不需要接头部等,可小型化。
另外,为了实现上述目的,本发明在转子上,从其中心轴偏移地设置2个槽,同时在前板上具有吸入口和排出口,构成泵机构部,直流电动机使用无刷直流电动机。
通过做成从上述转子的中心轴偏移设置槽,将叶片嵌入该2个槽内的结构,可使转子直径,进而使泵机构部的直径减小,而且,通过做成前板具有吸入口和排出口的结构,可使泵机构部的外径为φ30mm以下,可实现适用于移动设备用燃料电池的小型化。
另外,为了解决上述问题,本发明,泵机构部的圆筒面外周与直流电动机的外周构成大致相同的直径,整体由1个圆筒形成。
通过上述1个圆筒形状构成空气泵,可装载在个人电脑的铰链部上。
另外,为了实现上述目的,本发明的叶片由碳复合材料构成,转子使用铝合金或PEEK系树脂,气缸使用硅含有率为10%左右的铝合金,前板和后板,为利用包含PTFE或二硫化钼的自我润滑性材料进行表面涂层的结构。
如上所述,通过使各构件由各种材料构成,能可靠地确保滑动部的自我润滑作用,同时实现轻量化。
另外,为了实现上述目的,本发明将上述机械轴与上述直流电动机的电动机轴通过上述转子结合。根据本发明,能将直流电动机的电动机轴与转予以抑制传递效率下降的形态结合。
另外,为了实现上述目的,本发明通过压入或热压或粘结使电动机轴与转子结合。根据本发明,不用对电动机轴及转子实施I切割等防滑加工,以抑制传递效率下降的形态使电动机轴与转子结合。
另外,为了实现上述目的,本发明在所述后板与所述电动机之间设有板,该板具有以与所述泵机构部和所述电动机分别对应的相同间距和相同直径开设的螺栓孔及锪孔,以连接所述泵机构部和所述电动机。根据本发明,不受限于在直流电动机的壳体端面上形成的已有螺孔的间距及直径,可将用于紧固泵机构部的螺孔的间距、直径尽可能地设置在泵机构部的外周侧,增大气缸内径。因此,能使气缸轴向缩短,容易实现泵机构部的小型化。
另外,为了实现上述目的,本发明在所述前板上具有吸入接口和排出接口及排出口。根据本发明,不需要气缸外周部的排出路径,可在径向缩短泵机构部,容易实现泵机构部的小型化。
另外,为了实现上述目的,本发明具有第1吸入路径和第2吸入路径,其中,第1吸入路径将外气从形成于所述前板的吸入接口引入所述泵空间,而第2吸入路径,在所述气缸上设置通孔,在所述后板上形成与该通孔连通的吸入接口,将外气从所述前板的吸入接口经由所述通孔和所述后板的吸入接口引入所述泵空间内。根据本发明,不仅是前板,从后板也能吸入,可减小泵机构部高速旋转时流体的吸入损失,可抑制吸入量的下降。
另外,为了实现上述目的,本发明在所述通孔的长度方向中央部设置从所述通孔朝向所述泵空间的连通路,并设置将外气从所述吸入接口经由所述通孔和所述连通路引入所述泵空间内的第3吸入路径。根据本发明,从气缸长度方向中央部也可吸入,可进一步降低泵机构部高速旋转时流体的吸入损失。
另外,为了实现上述目的,本发明在前板上具有吸入接口和凹陷形状的排出接口,并使它们面对从容积比约大于1的状态的所述转子的旋转角度至成为所述转子与所述气缸的径向最小间隙的约5倍的所述转子的旋转角度的范围的所述泵空间。根据本发明,因为在排出室的大致整体区域可利用叶片将排出室的流体挤出,排出损失减小,也可抑制从所述转子与所述气缸的径向最小间隙向吸入室的泄漏,也可减少吸入损失。
附图的简单说明图1是表示本发明的实施形态1的叶片回转型空气泵的横剖视图。
图2是表示本发明的实施形态1的叶片回转型空气泵的纵剖视图。
图3是表示本发明的实施形态1的叶片回转型空气泵的前板的俯视图。
图4是表示本发明的实施形态1的叶片回转型空气泵的后板的俯视图。
图5是表示将本发明的实施形态2的叶片回转型空气泵装入个人电脑后的使用状态图。
图6是表示本发明的叶片回转型空气泵的实施形态3的纵向剖视图。
图7是表示叶片回转型空气泵的剖视图。
图8是表示图7的叶片回转型空气泵的板主视图。
图9是表示图7的叶片回转型空气泵的前板主视图。
图10是表示以往的叶片回转型压缩机的正面纵向剖视图。
图11是表示以往的叶片回转型压缩机的侧面的纵向剖视图。
图12是表示以往的其他叶片回转型泵的纵剖视图。
图13是表示其他以往的叶片回转型泵的剖视图。
具体实施例方式
以下,参照附图对本发明的实施形态进行说明。
(实施形态1)图1是表示本发明的实施形态1的叶片回转型空气泵的横剖视图。另外,图2是表示本实施形态的叶片回转型空气泵的纵剖视图,图1是图2中的A-A剖视图。本实施形态的叶片回转型空气泵本体101由泵机构部102和直流电动机119构成。
首先对泵机构部102进行说明。在具有呈圆筒状的内面104的气缸103内的气缸空间内,以转子107的中心轴与气缸103的气缸空间的中心轴偏心规定量的状态将圆筒状的转子107与内面104接近配置。在所述转子107的中心轴方向上,2根槽108从转子107的中心轴偏移,即夹着中心轴相互平行,并朝相反方向开口地设置在所述转子107上。由具有自我润滑性的碳复合材料构成的板状的叶片109以可滑动的状态与这些槽108内嵌合,成为叶片109的前端部与气缸103的内面104滑接的结构。
本实施形态中,转子107由铝合金构成,从而实现轻量化。另外,气缸103的材料使用硅含有率约为10%的铝合金。
接着,通过将前板111和后板112从两侧夹着所述转子107和叶片109的状态配置在气缸103的两个端面上。通过该结构,形成由气缸103、转子107、叶片109、前板111及后板112围起的多个泵空间124。在圆筒状的气缸103内的气缸空间内,将比该空间直径小的圆柱状的转子107朝一方侧偏心地轴支承于前板111及后板112上。因此,在圆筒状的气缸103内形成月牙形的空置的空间。由叶片109对该月牙形空间进行隔开,成为多个泵空间124。
对前板111和后板112的内侧表面实施了含有二硫化钼的自我润滑性材料的涂层处理。
另外,如图3和图4所示,在前板111上设有吸入接口113和排出接口114以及与排出接口114路径的排出口115。这里,吸入接口113为大致梯形的贯通孔,排出接口114是使前板111的内壁槽状凹陷的接口,与排出口115相连。
另一方面,在与所述吸入接口113相对的后板112的部分设有与吸入接口113相同形状的凹陷状的吸入接口117。
接着对直流电动机119进行说明。将直流电动机119与后板112直接接触地配置在与所述后板112的泵机构部102侧面相反侧的面上。因此,将直流电动机119的一方侧的壳体的盖体兼作后板112。本实施形态中,直流电动机119使用无刷直流电动机。该直流电动机119由具有圆筒状的线圈120和永磁铁的转子121构成,该转子121具有细长的轴110。该轴110兼作所述直流电动机和泵机构部的转子107的轴。即,轴110在直流电动机119的内部由电动机轴承122、123支承,但从直流电动机119向泵机构侧伸出,在泵机构部102内由前板111内的轴承116及后板112内的轴承119支承。在泵机构内部,轴固定有转子107,起到将直流电动机119产生的旋转力传递至转子107的作用。
上述结构中,当对直流电动机119通电,则在图1中,轴110及与其路径的转子107朝箭头方向旋转。此时,叶片109受转子107旋转的离心力作用而在槽108内朝外侧移动,叶片109的前端一边与气缸的内面104接触·滑动一边进行旋转运动。由此,泵空间124,随着叶片109的旋转移动,由叶片隔开的空间容积扩大、缩小(所谓的呼吸作用),其容积发生变化。随着该泵空间124的容积变化,空气由前板111的吸入接口113吸入,其一部分直接进入泵空间124内。
其余的空气经由贯通气缸103的吸入通道105后,流过设置在后板112上的吸入接口117,吸入泵空间124内。
进入泵空间124内的空气被朝箭头方向旋转的叶片109从吸入接口113侧推向位于下侧的排出接口114侧,在转子107大约旋转1周期间压力上升(ΔP=2~5kPa)后,经由前板111上的排出接口114从排出口115朝外部排出。
上述结构中,叶片109由碳复合材料制成。而且,叶片109的前端接触滑动的气缸103由含有10%的硅的铝合金制成。而且,前板111和后板112的滑动面由含有二硫化钼的自我润滑性材料进行涂层,以夹着转子107和叶片109的形态将2片板111和112配置在气缸103的端面上。通过这些结构,在各滑动面的相性变好,摩擦损失和磨损减小,其结果可进行无油运行。
另外,通过使转子107的机械轴与直流电动机的电动机轴一体地构成轴110,能容易地使泵机构部102与电动机部119的轴心一致,能高精度且简单地进行泵整体101的组装。而且,在机械轴与电动机轴之间不需要接头部等,因而也实现了小型化。
另外,对于只需较小升压幅度的移动用燃料电池的空气供给机,即使采用2个叶片,也可得到足够的升压,另外,通过从转子107的中心轴偏移地设置槽108,就可大幅度地减小转子107的直径,因而采用上述结构。而且,不在气缸103的周围设置在吸入口和排出口,通过做成在前板111上具有吸入接口113和排出口115的结构,可将泵机构部的外径做成φ30mm以下,从而实现了可适用于移动设备用燃料电池的小型化。
本实施形态中,作为前板111和后板112的自我润滑性涂层材料,采用了含有二硫化钼的材料,但也可取而代之,使用含有PTFE的材料也可得到同样的低摩擦·低磨损的效果。
另外,本实施形态中,作为转子107的材料采用了铝合金,但取而代之,使用含有PTFE的材料时,通过对树脂成分的配制,可将其线膨胀率与铝合金(气缸103)匹配,可将间隙设定得小,在确保空气泵性能的同时进一步实现了轻量化。
(实施形态2)图5是表示将本发明的实施形态2的叶片回转型空气泵装入个人电脑后的立体图。如图2所示,叶片回转型空气泵中,泵机构部102的圆筒面外周与直流电动机119的外周呈大致相同的直径,整体形成1个圆筒形。
在图5中,个人电脑,由其本体部201和其液晶显示器部202通过铰链部203结合构成。该铰链部203为圆筒状,故首先将燃料电池的燃料部(甲醇容器)204和燃料电池本体单元205装载在该部分。接着,本发明的叶片回转型空气泵101也可构成上述那样的圆筒形状,故作为向燃料电池单元205供给空气的空气泵,可容易地收放在铰链部203内。
(实施形态3)图6、图7是表示本发明实施形态3的叶片回转型空气泵的剖视图。
在图6、图7中,该叶片回转型空气泵在具有筒状内壁的气缸103内,与实施形态1相同,将圆柱状的转子107从气缸103的气缸空间的中心轴偏心的状态进行配置。在转子107的中心轴方向上,多个(图1中为2根)槽108以从转子107的中心轴偏移的形态设置。具有自我润滑性的材料构成的板状的叶片109以可滑动的状态与这些槽108嵌合。将滑动面具有自我润滑性材料的前板111和后板112以夹着转子107和叶片109的状态配置在气缸103的端面上并形成泵空间124。转子107的中心轴具有机械轴110,通过前板111和后板112、压入板134内的滚珠轴承116、118可旋转地支承,从而构成泵机构部102。直流电动机119通过后板112与泵机构部102邻接地配置,构成无油空气泵。
直流电动机119将线圈120配置在转子121的外周,电动机轴125由轴承122及轴承123支承。轴承122设置在直流电动机119的壳体上。
根据上述构成部,转子121通过转子121与线圈120之间的磁作用而得到旋转扭矩进行旋转运动。与转子121一体构成的电动机轴125通过轴承122及123可旋转地得到支承,由此可将旋转力传递至泵机构部102。
通过直流电动机119输出的旋转力传递至与电动机轴125结合的转子107。电动机轴125与转子107的结合,既可将涂敷了粘结剂的电动机轴125的一端部插入转子107的贯通轴孔内,也可压入或热压。通过这样的结构,将电动机轴125与泵机构部102连接。
随着得到了旋转力的转子107的旋转,叶片109受离心力作用而沿着转子107的槽108朝外侧飞出,在泵空间124进行旋转移动。由吸入接口113吸入的流体被压缩,经由排出接口114从排出口115排出。
如上所述,以往的泵中,机械轴110与转子107一体形成,利用一体型直流电动机119驱动转子107,因而不得不用联轴器部件连接直流电动机119的电动机轴125和机械轴110,上述那样传递效率下降。相比之下,本实施形态3中,让转子107起到联轴器的作用使电动机轴125与机械轴110结合。即,因为将电动机轴125和机械轴110通过压入或热压或粘结剂与转子107的贯通轴孔内结合,故不用对电动机轴125实施I切割等防滑加工,可抑制扭矩从直流电动机向泵机构部的传递效率的下降。
直流电动机119与泵机构部101的紧固是通过板134进行的。
图8是表示板134的主视图。在图8中,在该板134上形成泵机构部紧固孔106b和直流电动机紧固孔302,其中泵机构部紧固孔106b是为了将直流电动机119紧固在泵机构部102而开设的,具有与泵机构部的紧固孔106a相同的间距和相同的直径,而直流电动机紧固孔302是为了紧固直流电动机119而开设的,具有与直流电动机119的紧固孔(未图示)相同的间距和相同的直径,内侧实施了锪孔处理。
根据上述构成部,将螺栓旋入以与开设在电动机壳体上的已有紧固孔相同间距及相同直径开设的板内周侧的直流电动机紧固孔302内,将直流电动机119紧固在板134上。通过锪孔,螺栓头不会从板突出。此后,将螺栓插入开设在板外周侧的泵机构部紧固孔106a内,紧固在直流电动机紧固孔302上,将泵机构部紧固在板134上。这样,泵机构部通过板134与直流电动机119连接。
根据本发明,不受限于在直流电动机119的壳体端面上形成的已有螺孔的间距及直径,可将泵机构部102与直流电动机119连接。因此,在确保泵机构部101的气缸103的壁厚的同时,能将泵机构部紧固孔106a尽可能地设置在泵机构部101的外周侧,可增大气缸103的内径。因此,能使气缸103在径向减小,容易实现泵机构部101的小型化。
图7中,该叶片回转型空气泵在前板111具有吸入接口113和排出接口114及排出口115。
根据上述结构,从前板111的吸入口113吸入的流体流入泵空间124内并通过叶片109的旋转移动而受到压缩后,从前板111的排出接口114经由排出口115排出。
根据本发明,只要前板111露出就可进行吸入·排出,因而不用将排出口115设置在气缸外周部,可使泵机构部102在气缸径向小型化。
在图7中,该叶片回转型空气泵的吸入路径,与设置在前板111上的吸入接口113连通,在气缸103的壁部与机械轴110平行地设置通孔105。在后板112上设置凹陷状的吸入接口117,以使该通孔105与泵空间124连通。另外,在通孔105的长度方向中央部设有从通孔105朝泵空间124在径向连通的连通道(未图示)。
根据上述结构,当转子107旋转,则外气从设置在前板111上的吸入接口113吸入,从2个路径流入泵室。第1路径是从前板111直接流入泵空间124内的路径。第2路径是从吸入接口113通过设置在气缸103上的通孔105,经由与设置在后板112上的通孔105连通的吸入接口117,吸入泵空间124的路径。
另外,除了上述第1及第2路径以外,通过设置将外气从吸入接口113经由在通孔105的径向形成的连通部、从气缸103的长度方向中央部向泵空间124内引导的第3吸入路径,可将外气从前板111和后板112和气缸103这3处引入泵空间124内。
如上所述,以往的泵中,吸入仅限于在从前板111的吸入接口19向泵空间18的1个路径进行,因而当泵机构部高速旋转时,因为吸入行程的时间短,吸入流体的惯性力使流体吸入量减少,存在吸入效率下降的问题。
根据本发明,不仅在前板111,而且从后板112也可吸入,可减小泵机构部高速旋转时的吸入压力损失,降低吸入损失。另外,还可从气缸长度方向中央部吸入,可增加流体吸入量,进一步减小吸入压力损失,降低吸入损失。
前板111的主视图如图9所示。在图9中,在前板111的背面形成有凹陷形状的排出接口114,并使其面对从容积比约大于1的状态的转子107的旋转角度至成为转子107与气缸103的径向最小间隙的约5倍的转子107的旋转角度的范围的泵空间124。
容积比是指转子107结束吸入后的泵空间124的最大容量与转子107面临排出接口114的容量之比。
转子107与气缸103的径向最小间隙是指,图9中转子107与气缸103接触似地描绘的右侧间隙。图9中,转子107与气缸103接触似地描绘的,但实际上留有微小的间隙。例如,在前板111的背面形成排出接口114,并当该间隙留有10μm左右时,排出接口114的终端位于转子107与气缸103的间隙为5倍的50μm的部分。当排出接口114接近径向最小间隙时,会产生空气泄漏,但太远时,空气不能完全排出。因此,排出接口114以设置在转子107与气缸103的径向最小间隙的大约5倍左右的部位为佳。
根据上述结构,叶片109随着转子107的旋转在槽108内一边进出一边进行旋转移动,从叶片109面临排出口115的瞬间流体开始排出,即使叶片109从不面临排出口的位置进一步旋转的情况下,流体可从以面临泵空间104的形态设置的凹陷状部分经由排出口115流出。另外,在转子107与气缸103的径向最小间隙的大约5倍以下的转子107的旋转角度之间没有形成像排出接口那样的凹陷,故可抑制流体从排出接口114泄漏至泵空间104的吸入侧。
根据本发明,在泵空间104的排出部的大致全部区域中,可利用叶片对处于泵空间104内的流体进行推压,因而可减小排出损失,抑制排出量的减少。另外,可防止通过径向最小间隙而朝泵空间104的吸入部的泄漏,故可减少吸入损失,抑制吸入量的减少。
权利要求
1.一种叶片回转型的空气泵,其特征在于,具有内部滑动面使用了自我润滑性材料的叶片回转型的泵机构、驱动该泵机构的电动机,所述泵机构的机械轴与所述电动机的电动机轴一体构成。
2.一种叶片回转型的空气泵,在内面为圆筒状的气缸内,以使中心轴从所述气缸的气缸空间的中心轴偏心规定量的状态配置圆柱状的转子,在所述转子上,在其中心轴方向设置多个槽,由具有自我润滑性的材料构成的板状的叶片以可滑动的状态与这些槽嵌合,滑动面具有自我润滑性材料的前板和后板夹着所述转子和叶片的形态配置在气缸的端面,形成多个泵空间,在所述转子的中心轴具有机械轴,构成泵机构部,与该泵机构部邻接地通过所述后板配置直流电动机,通过该直流电动机驱动所述机械轴,构成泵空间随着叶片的旋转移动而使泵空间的容积发生变化,其特征在于,所述机械轴与所述直流电动机的电动机轴一体构成。
3.如权利要求1所述的叶片回转型的空气泵,其特征在于,在所述转子上以从其中心轴偏移的形态设置2个槽,同时所述前板具有吸入口和排出口,所述泵机构部的外径构成为φ30mm以下,所述直流电动机为无刷直流电动机,可构成适用于移动设备用燃料电池的空气供给机。
4.如权利要求2所述的叶片回转型的空气泵,其特征在于,所述泵机构部的圆筒面外周与所述直流电动机的外周构成大致相同的直径,整体由1个圆筒形成,安装于个人电脑的铰链部。
5.如权利要求1~3中任一项所述的叶片回转型的空气泵,其特征在于,所述叶片由碳复合材料构成,所述转子使用铝合金或PEEK系树脂,所述气缸使用硅含有率为10%左右的铝合金,所述前板和后板,为利用包含PTFE或二硫化钼的自我润滑性材料进行表面涂层的结构。
6.一种叶片回转型的空气泵,在具有筒状内壁的气缸内,将圆柱状的转子以从所述气缸的气缸空间的中心轴偏心的状态进行配置,在所述转子上,沿其中心轴方向设置多个槽,具有自我润滑性的材料构成的板状的叶片以可滑动的状态与这些槽嵌合,将滑动面具有自我润滑性材料的前板和后板以夹着所述转子和叶片的状态配置在所述气缸的端面上并形成多个泵空间,所述转子的中心轴具有机械轴,构成泵机构部,与该泵机构部邻接地通过所述后板配置直流电动机,通过该直流电动机驱动所述机械轴,所述泵空间的容积发生变化,其特征在于,所述机械轴与所述直流电动机的电动机轴通过所述转子结合。
7.如权利要求5所述的叶片回转型的空气泵,其特征在于,通过压入或热压或粘结使所述电动机轴与所述转子结合。
8.如权利要求5所述的叶片回转型的空气泵,其特征在于,在所述后板与所述电动机之间设有板,该板具有以与所述泵机构部和所述电动机分别对应的相同间距和相同直径开设的螺栓孔及锪孔,通过所述板连接所述泵机构部和所述电动机。
9.如权利要求5所述的叶片回转型的空气泵,其特征在于,所述前板上具有吸入接口和排出接口及排出口。
10.如权利要求8所述的叶片回转型的空气泵,其特征在于,具有第1吸入路径和第2吸入路径,其中第1吸入路径将外气从形成于所述前板的吸入接口引入所述泵空间,而第2吸入路径是,在所述气缸上设置通孔,在所述后板上形成与该通孔连通的吸入接口,将外气从所述前板的吸入接口经由所述通孔和所述后板的吸入接口引入所述泵空间内。
11.如权利要求9所述的叶片回转型的空气泵,其特征在于,在所述通孔的长度方向中央部设置从所述通孔朝向所述泵空间的连通路,并设置将外气从所述吸入接口经由所述通孔和所述连通路引入所述泵空间内的第3吸入路径。
12.如权利要求8所述的叶片回转型的空气泵,其特征在于,在前板上具有吸入接口和凹陷形状的排出接口,并使它们面对从容积比约大于1的状态的所述转子的旋转角度至成为所述转子与所述气缸的径向最小间隙的约5倍的所述转子的旋转角度的范围的所述泵空间。
全文摘要
一种叶片回转型的空气泵,使作为向燃料电池供给空气的泵所不可缺少的无油运行成为可能,同时能容易且高精度地将泵机构部与电动机部的轴心对齐,并使泵整体小型化。本发明使用具有由自我润滑性的材料构成的板状的叶片(109)、滑动面具有自我润滑性材料的前板(111)和后板(112),同时使泵机构部(102)的机械轴(110)与直流电动机的电动机轴一体构成。
文档编号F04C18/344GK1685158SQ0382277
公开日2005年10月19日 申请日期2003年9月25日 优先权日2002年9月26日
发明者泽井清, 作田淳, 中本达也 申请人:松下电器产业株式会社