专利名称:低耗能风机-过滤机组的制作方法
技术领域:
本发明是关于一种低耗能风机-过滤机组,特别是关于一种应用在无尘室除尘、且具有较高电效率的低耗能风机-过滤机组背景技术风机-过滤机组(FFU,fan Filter Unit)是用于高度洁净需求空间的除尘装置,一般将其配置在半导体制造厂房的无尘室(Clean Room)中,借由该风机-过滤机组产生的由上往下的气流,清除室内的空气,从而排出空气中的污染尘粒,达至高洁净度的无尘工作环境。
图8A、图8B所示即为一现有风机-过滤机组50的剖视图与上视图,包括一钟形(Bell)喷嘴部51,具有一进气端52与出气端53,其出气端53配置有一风扇55,该风扇55是设置在一马达机座56上,并由该马达机座56下的驱动马达57驱动运转,且该马达机座56下方设置有一分隔板61(Seperator)与超高滤网41(ULPA),因此,当该风扇55运转时,即可将周围的空气气流自该进气端52吸入该喷嘴部51中,再经该出气端53与该喷嘴部51的圆弧形内壁51a,自该风扇55周围的出口排出,形成一由上往下的除尘气流。
然而,若依据现有的无尘室耗能分析,即知在无尘室运行中,仅空气循环部分的能耗占了高达14%的比例,对于风机-过滤机组50而言,其原因主要是当风扇55运转时,风扇55叶轮吹出的气流,除了沿马达机座56往下流动外,也有一部份会往上折返至该叶轮外部,使该风机-过滤机组50的上层空间形成一回流,导致部分能量的耗损,从而降低风机的整体电效率,增加了无尘室运行上的成本。
若依理论分析,此原因是由于空气气流自该风扇55周围的出口流出后,其风速逐渐减小,而气流压力逐渐增加,此时气流压力将风扇55出口的动压逐渐转换成静压,若气流在流动过程中产生回流现象,使得整体能量出现一多余的涡流(Vortex)损失,致使气流动压转换至静压的效率大为降低,导致静压回复效果不佳;故而,若自整体气流全压(总能量)角度看,它除了有无法避免的摩擦损失外,另外还增加了上述因回流所致的涡流损失,使得气流全压损耗大为提高,产生了无尘室高耗能的严重问题。
例如图9所示的范例,它是以图8A所示的机组尺寸进行仿真,图中横轴为气流测量点与风扇55出口间的距离,单位为米(m),纵轴则分别表示各位置气流的气压与风速,可从图中曲线看出气流的风速(Speed)是逐渐下降,而气流动压(Pv)将逐渐减小而转换成静压(Ps),然而,由于气流回流的效应,由图可知静压的回复效率并不高,其上升回复的趋势远不如动压减少的趋势,这就是因涡流损失所导致的能量耗损;若由动压与静压总合的全压(Pt)趋势观察就更为清楚,由图可知该气流的全压损耗高达80Pa以上,这就是现有风机-过滤机组50的耗能主因。
美国专利第6,030,186号与第6,174,342号专利所发明的风机-过滤机组也难以解决这一耗能问题,它仅能降低运转操作上的噪音,且其改良的结构均过于复杂,对于今日大量使用在无尘室的风机-过滤机组而言(一配备有无尘室的晶圆代工工厂至少将使用上千个风机-过滤机组),显然有制造不易而难以量产的问题,也会导致成本过高。
因此,如何开发一种新式风机-过滤机组,能够降低整体耗电而达到提高电效率的功效,同时还可兼顾结构设计简单,提高无尘室除尘效率,确是相关研发领域需迫切解决的课题。
发明内容
为克服上述现有技术的缺点,本发明的目的在于提供一种不会因气流分离而产生回流的低耗能风机-过滤机组。
本发明的另一目的在在提供一种可降低气流全压损耗的低耗能风机-过滤机组。
本发明的又一目的在于提供一种静压回复良好的低耗能风机-过滤机组。
本发明的再一目的在于提供一种制造简单、且成本低廉的低耗能风机-过滤机组。
本发明的又一目的在于提供一种低噪音的低耗能风机-过滤机组。
本发明的另一目的在于提供一种具有良好除尘效果的低耗能风机-过滤机组。
为达到上述及其它目的,本发明提出的低耗能风机-过滤机组包括具有一弧形内壁的喷嘴部,包括一进气端与出气端;接置在该喷嘴部出气端的风扇;承载该风扇的机座;驱动该风扇转动的驱动源,以令周围空气自该进气端进入该喷嘴部,并借该喷嘴部的弧形内壁而经该出气端自该风扇周围排出;以及扩散部,具有一孔洞,且设置在该风扇的周围,令该风扇容设在该孔洞中,并借该机座与风扇定义出进气口与出气口,使自该风扇周围排出的空气进入该进气口而均匀扩散并减速,进而自该出气口经下游的超高滤网,最后排至外界。
上述扩散部是一无流线导叶片扩散器,且该喷嘴部、风扇与驱动源是一体配置在该扩散部的中央,同时,该扩散部的出气口面积不小于进气口面积,若将其设计成一出气口面积大于进气口面积的渐增扩散部,则该出气口面积对进气口面积的理想比值约在2.2至2.7之间;此外,若自该扩散部的整体外型观看,则其是可设计成一圆盘或方盘,并使位于其中央的风扇将气流吹送至该圆盘或方盘的周缘位置。
因此,本发明是借由该特殊的扩散部设计,当风扇将气流吹入扩散部后,其在该扩散部与机座之间均匀扩散减速,此时,气流流场将因该扩散部的外形设计,不会产生分离与回流,进而可达到良好的动压转换成静压的效果,具有理想的静压回复与低全压损耗,解决无尘室中高耗电的现有问题,本发明的低耗能风机-过滤机组具有制造简单、成本低廉、低噪音、具有良好除尘效果优点,可广泛用于各种无尘室。
图1A是本发明的低耗能风机-过滤机组的较佳实施例剖视图;图1B是本发明的低耗能风机-过滤机组的较佳实施例上视图;图2是图1A、1B所示的较佳实施例的实验范例的尺寸示意图;图3是图2所示范例的静压、动压、全压与风速变化曲线图;图4是图2所示的范例在不同AR值下的静压回复值曲线图;图5是本发明的低耗能风机-过滤机组的实施例2剖视图;图6是图5所示的本发明实施例2与现有风机-过滤机组的功效比较曲线图;图7是本发明的低耗能风机-过滤机组的实施例3上视图;图8A是现有风机-过滤机组的剖视图;图8B是现有风机-过滤机组的上视图;以及图9是图8A及8B所示的实验范例的静压、动压、全压与风速变化曲线图。
具体实施例方式
实施例1本发明的低耗能风机-过滤机组的较佳实施例是如图1A、图1B所示,它是将现有的风机-过滤机组配置在一经特殊设计的扩散部30的中央,令其容设在该扩散部30中央的孔洞中,该扩散部30是如图1B的上视图所示是一圆盘扩散部30,整体的低耗能风机-过滤机组配置包括,一具有半圆弧形内壁10a的钟形喷嘴部10,接置在该喷嘴部10的出气端12的风扇15,承载该风扇15的马达机座17,驱动该风扇15转动的驱动马达16,以及设置在该风扇15周围的扩散部30,该扩散部30是借该风扇15与马达机座17而围置定义出一进气口31与出气口32,令自该风扇15周围排出的空气进入该进气口31,而在该扩散部30中均匀扩散且减速,并自该出气口32经下游的超高滤网41(ULPA),最后排至外界。
具体过程是这样的,该钟形喷嘴部10自其进气端11起的口径是渐减,以集中气流并使气流借该半圆弧形内壁10a的引导而自该风扇15周围排出,并进入该扩散部30的进气口31,可借该马达机座17提升该风扇15周围与扩散部30进气口31的重叠与密接程度,使该钟形喷嘴部10中的气流可完全进入该扩散部30中,该马达机座17下方则设置有一分隔板61与超高滤网41;同时,该扩散部30是一无流线导叶片扩散器,以减低运行时的噪音,且本实施例中该扩散部30自其进气口31起的口径面积是设计逐渐增大,也就是如图1A的剖视图所示,其出气口32面积是大于进气口31面积,使该扩散部30的上视外形(图1B)呈一外缘较内缘为高的圆盘扩散部。
因此,借由此一扩散部30设计,即可在该风扇15运转而将外界空气吸入该钟形喷嘴部10后,借风扇15而令该空气的气流经该进气口31吹向该扩散部30,在该扩散部30与马达机座17间均匀扩散,此时,该气流将因渐增的扩散部30口径而朝该出气口32方向均匀减速,达到良好的动压转换效率,使得流出该扩散部30的气流静压回复值提高,也就是整体全压的损耗较小(因不会产生回流,故而无涡漩损失),进而降低整体能量的损耗,达到本发明的低耗电功效;此外,本发明的整体设计仅是将风机-过滤机组整合至一特殊扩散部30中,故也具有制造简单与成本低廉的优点,无需改变原有量产设备,也不会在运转过程中产生大量噪音,更加符合无尘室中的耗能需求。
图2即为上述实施例的一范例,其尺寸是如图中所标示,且该扩散部30的出气口32面积与进气口31面积的比值AR设计为2.2,其实际进排气的实验结果则如图3的曲线图所示,图中横轴为扩散部30中的测量点与其进气口间的距离,单位为米(m),纵轴则分别表示各位置气流的气压与风速,可从图中曲线看出气流的风速(Speed)是朝向该出气口32的方向而均匀下降,若与图9中的现有风机-过滤机组50的测量结果相比,可发现借由本发明的扩散部30设计,其静压(Ps)回复效果比现有的产品要好,且整体全压(Pt)的耗损也远小于现有机组,现有机组因气流回流而使全压耗损高达80Pa以上,本发明的气流全压耗损仅有约30Pa,足见其动压(Pv)转换十分理想,也大幅提升了整体电效率且达到降低耗能的功效。
本发明也进一步揭示该扩散部30出气口32面积与进气口31面积比值AR的较佳范围,其结果是如图4所示,此曲线图也是由图2所示的实验范例所得结果,可看出不同的AR值与出气口32静压(Ps)回复值的关系,由图中曲线,即可知当AR值增至3.2时,该扩散部30的静压回复功能即大幅降低,此时扩散部30与马达机座17间的气流即开始产生分离,故而可推知理想的扩散部30出气口32面积与进气口31面积的比值AR约在2.2至2.7之间。
实施例2此外,除了上述实施例揭示的扩散部30外,本发明的低耗能风机-过滤机组也可采用一进气口31与出气口32等高的扩散部35,如图5所示的本发明实施例2剖视图,它是使用一内外缘等高的圆盘扩散器35,且也是一无流线导叶片扩散器,同样可发挥使气流均匀扩散减速、降低回流产生的功效;此实施例的具体功效也可如图6的曲线图所示,它是将该扩散器35的进气口31与出气口32的高度均设计为73公分,可知若与现有风机-过滤机组(空白标记)相比,在气流出口风速为0.4m/sec下,本发明(黑色标记)的低耗电风机-过滤机组的耗电量(图标方形标记曲线)将可自289W降至229W,其全压电效率(图标三角形标记曲线)将可自17.7%升至21.6%,从数据看其电效率要高于现有产品。
上述各实施例所示的扩散部30、35,若自上视图观看,均呈一圆盘状,使喷嘴部10、风扇15与驱动马达16位于其圆心中央,这一形状并非本发明的限制,本发明的扩散部也可以是如图7所示的上视图,采用一方形盘40,将该喷嘴部10、风扇15与驱动马达16配置在其中央,同样可发挥本发明的功效,且若与圆盘的设计相比,方盘设计更具有制造容易的优点,且由于其四周缘的空间较圆盘大,也会有较佳的气流静压回复效果。
因此,借由本发明所揭示的特殊扩散部设计,可使该低耗能风机-过滤机组发挥高电效率与低全压耗损等功效,同时,本发明更具有制造容易与成本低廉的优点,可大量生产并广泛应用在无尘室中。
权利要求
1.一种低耗能风机-过滤机组,其特征在于,该风机-过滤机组包括喷嘴部,具有一弧形内壁,且包括一进气端与一出气端;风扇,接置在该喷嘴部的出气端;机座,用以承载该风扇;驱动源,驱动该风扇转动,令周围空气自该进气端进入该喷嘴部,并借该喷嘴部的弧形内壁,经该出气端自该风扇周围排出;扩散部,具有一孔洞,且设置在该风扇的周围,令该风扇容设在该孔洞中,并借该机座与风扇而定义出进气口与出气口,使自该风扇周围排出的空气进入该进气口而均匀扩散并减速,进而自该出气口排至外界。
2.如权利要求1所述的低耗能风机-过滤机组,其特征在于,该喷嘴部、风扇与驱动源是一体配置在该扩散部的中央。
3.如权利要求1所述的低耗能风机-过滤机组,其特征在于,该扩散部是一无流线导叶片扩散器。
4.如权利要求1所述的低耗能风机-过滤机组,其特征在于,该扩散部的出气口面积不小于进气口面积。
5.如权利要求1所述的低耗能风机-过滤机组,其特征在于,该扩散部是一出气口面积大于进气口面积的渐增扩散部,且该出气口面积对进气口面积的比值约在2.2至2.7之间。
6.如权利要求1所述的低耗能风机-过滤机组,其特征在于,该扩散部是一出气口高度等于进气口高度的等高扩散部。
7.如权利要求1所述的低耗能风机-过滤机组,其特征在于,该扩散部的外型是呈一圆盘。
8.如权利要求1所述的低耗能风机-过滤机组,其特征在于,该扩散部的外型是呈一方盘。
9.如权利要求1所述的低耗能风机-过滤机组,其特征在于,该喷嘴部是一钟形喷嘴。
10.如权利要求1所述的低耗能风机-过滤机组,其特征在于,该喷嘴部自其进气端起的口径是渐减。
11.如权利要求1所述的低耗能风机-过滤机组,其特征在于,该驱动源是一马达。
全文摘要
一种低耗能风机-过滤机组包括具有一进气端与出气端的喷嘴部;接置在该喷嘴部的出气端的风扇;驱动该风扇转动的驱动源,令周围空气自该进气端进入该喷嘴部,并借该喷嘴部外形而经该出气端自该风扇周围排出;以及设置在该风扇周围且具有进气口与出气口的扩散部,自该风扇周围排出的空气进入该进气口在该扩散部中均匀扩散减速,并在完成动压转换成静压后,自该出气口经下游的超高滤网,最后排至外界,本发明借由该特殊扩散部设计,达到良好的动压转换成静压的效果,具有理想的静压回复与低全压损耗,解决无尘室耗电高的问题,具有制造简单、成本低廉、低噪音、具有良好除尘效果优点。
文档编号F04D29/00GK1635279SQ20031012388
公开日2005年7月6日 申请日期2003年12月30日 优先权日2003年12月30日
发明者李延青, 曾永和, 郑名山 申请人:财团法人工业技术研究院