专利名称:液体馈送泵及流量控制装置的制作方法
技术领域:
本发明涉及用于液体色谱仪等中的液体馈送泵,尤其涉及通过隔膜的变形进行输液的隔膜泵。
背景技术:
提出了用于高效液相色谱法(Highperformance liquid chromatography)的各种液体馈送泵。例如提出了如下的液体馈送泵:柱塞方式(Plunger)(专利文献I);通过压电组件对隔膜进行驱动的压电方式(专利文献2)等。对隔膜进行驱动的压电方式不具有如柱塞方式的滑动部分,因此不产生颗粒,从而具有可以提供寿命长的液体馈送泵的优点。另一方面,柱塞方式具有如下优点,即:通过减小柱塞的顶端部分的面积(相当于泵室的缸体底面的面积)、从而可以实现高压排出,并且根据增加柱塞的冲程可以保证流量。近年来,在高效液相色谱法中,需要在分析过程中对高压下的微小流量进行控制。另一方面,在洗脱液的导入、置换、或者流路清洗等中,在低压下需要较大流量。针对如上所述的需求,采用可以保证高压排出和流量的柱塞方式,并且通过使用对洗脱液的流动进行分流的分路器(分流器),从而还实现了高压微小流量输液方法和低压大流量输液方法(专利文献3)。现有技术文献专利文献专利文献1:日本国专利申请公开公报“特开2007-292011号”专利文献2:日本国专利申请公开公报“特开2006-118397号”专利文献3:日本国专利申请公开公报“特开2003-207494号”专利文献4:日本国专利申请公开公报“特开2006-29314号”专利文献5:日本国专利申请公开公报“特开平6-2663号”专利文献6:日本国专利申请公开公报“特开平6-2664号”专利文献7:日本国专利申请公开公报“特开昭62-159778号”
发明内容
抟术问是页然而,虽然压电方式具有可以提供不产生颗粒并且寿命长的液体馈送泵的优点,但是由于冲程(位移)的设计自由度小,因此难以适用于要求高压微小流量方式输液和低压大流量方式输液的高速液体色谱法中。本发明是为了解决上述的现有技术问题而完成的,其目的在于提供可实现高压微小流量方式输液和低压大流量方式输液、并且几乎不产生颗粒的液体馈送泵。技术手段下面,关于解决上述技术问题的有效的方案等,根据需要,示出效果等的同时进行说明。
方案1.一种液体馈送泵,包括:泵壳体,形成有柱状孔、与所述孔的开口部及其周缘部相对的凹部面、在所述凹部面具有吸入口的吸入通路、以及在所述凹部面具有排出口的排出通路;隔膜,在其与所述凹部面之间形成泵室,并且划分所述泵室和所述孔;往复运动部件,以能够进行往复运动的方式插入所述孔中,通过所述往复运动推压所述隔膜,从而使其变形;驱动部,使所述往复运动部件在所述往复运动的方向上以所述往复运动的冲程可变的方式周期性地进行位移;密封部,在所述凹部面的外周侧包围的位置处,通过夹持所述隔膜来进行密封;以及隔膜接收面,设置在所述密封部与所述开口部之间,所述隔膜接收面与所述隔膜抵接的面的面积、即抵接面积根据所述位移与所述泵室的内压而发生变化,其中,所述抵接面积根据所述往复运动部件向所述凹部面侧的位移的增加而减小,根据所述泵室的内压的上升而增加。本方案具有隔膜接收面,其与隔膜抵接的面的面积、即抵接面积根据使隔膜变形的往复运动部件的位移和泵室的内压而发生变化。由此,隔膜接收面和往复运动部件可以分担支撑隔膜。插入有往复运动部件的开口部和密封部之间的抵接面积随着泵室的内压的上升而增加。因此,随着的泵室内压的上升,隔膜接收面分担的负荷会增加,从而可以减轻往复运动部件分担的负荷。此时,隔膜的变形被限定在插入有往复运动部件的开口部的附近,因此,由往复运动部件的位移引起的泵室的容积变化也将减小。即,可以扩大由泵室的容积变化引起的往复运动部件的位移。如上所述,本方案的液体馈送泵可以减轻给往复运动部件施加的负荷,并且,可以扩大往复运动部件在泵室容积变化时所发生的位移量。由此,能够减小驱动部的负荷并减小由往复运动部件的位移引起的泵室的容积变化。由此,可以实现高压下的微小流量控制。另一方面,通过使隔膜从隔膜接收面分离、由此通过活塞使整体隔膜发生变形,从而可以实现低压下的较大流量。另外,在中间压力下,根据从高压状态到低压状态的转移,隔膜从隔膜接收面分离的部分将得以扩大。由此,减轻隔膜接收面分担的负荷,并且增加了与往复运动部件的位移量相应的泵室容积变化。如上所述,本方案可以根据排出流体的压力,自动调整隔膜的变形范围的大小,并且实现与排出压力相应的排出流量。由此,可以发挥能够提供不产生颗粒且寿命长的液体馈送泵这一优点,并且可以扩大流量的动态范围。方案2.根据方案I所述的液体馈送泵,其中,所述密封部通过与所述凹部面连续的面、即密封加压面以及与所述隔膜接收面连续的面、即密封接收面对所述隔膜进行夹持,所述密封接收面与所述隔膜接收面光滑地连续。在方案2中,隔膜接收面形成与密封接收面光滑地连续的面,因此可以将隔膜的变形做成光滑的变形。由此,可以抑制由隔膜在隔膜接收面与密封接收面之间的边界区域的附近中产生过度的变形所引发的隔膜损耗现象。方案3.根据方案2所述的液体馈送泵,其中,所述密封接收面是环状的平面。在方案3中,密封接收面为环状的平面,因此可以避免隔膜因负荷(密封负荷)而产生的过度损伤的情况,其中,所述负荷(密封负荷)是为了对泵室进行密封而施加给隔膜的负荷。由此,可以缓解当通过密封部夹持隔膜时的负荷管理,从而用户可以容易安装隔膜。方案4.根据方案3所述的液体馈送泵,其中,所述隔膜接收面形成为环状的平面,并且,所述开口部与所述隔膜接收面形成为同心状。
在方案4,由于开口部与隔膜接收面形成为同心状,因此,往复运动部件对隔膜中被密封部包围的区域的大致的中心部进行推压。由此,来自往复运动部件的负荷大致均匀地加载在隔膜上,从而可以抑制给隔膜的局部加载较大的负荷。方案5.根据方案2至4中的任意一项所述的液体馈送泵,其中,所述隔膜接收面与所述密封接收面形成为同一平面。在方案5中,隔膜接收面与密封接收面形成同一平面,因此,可以使隔膜的工作范围(变形范围)从高压到低压平滑地进行变化。方案6.根据方案I至5中的任意一项所述的液体馈送泵,其中,所述往复运动部件包括:顶端部,其与所述隔膜之间的抵接面具有为凸状的曲面。在方案6中,往复运动部件包括顶端部,其与隔膜之间的抵接面具有凸状的曲面。由此,在缸体孔134的开口部136的周围,通过隔膜接收面支撑隔膜,并且可以通过凸状曲面使与活塞抵接的区域发生变形。另外,变形方式为,隔膜的变形范围根据活塞的位移量而扩大,因此可以实现高压时的精密排出量操作。方案7.根据方案I至6中的任意一项所述的液体馈送泵,其中,所述凹部面在与向排出方向驱动时的隔膜形状嵌合的方向上具有凹状的曲面、即凹状曲面,所述凹状曲面包括:吸入侧槽部,从所述吸入通路的开口部向所述凹状曲面的中心方向延伸,并且与所述泵室连通;以及排出侧槽部,从所述排出通路的开口部向所述凹状曲面的中心方向延伸,并且与所述泵室连通。在方案7,与隔膜之间形成泵室的凹部面具有与向排出方向驱动的隔膜相对的凹状的曲面,因此,可以实现低压时的大排出量操作。另一方面,泵壳体具有从吸入口向凹状曲面的中心方向延伸的吸入侧槽部和从排出口向凹状曲面的中心方向延伸的排出侧槽部,因此,即使在隔膜向凹状曲面侧发生较大的变形而接近凹状曲面的状态下,也可以顺利地进行泵室吸入和泵室排出。方案8.根据方案I至7中的任意一项所述的液体馈送泵,其中,所述驱动部包括:压电致动器,对所述隔膜进行驱动。在方案8中,驱动部包括对隔膜进行驱动的压电致动器,因此能够以高频驱动隔膜。由此,可以同时实现大流量和低脉动。方案9.对液体馈送泵进行控制的流量控制装置,包括:方案8所述的液体馈送泵;控制部,对给所述压电致动器施加的电压进行操作,从而对所述液体馈送泵的排出流量进行控制。在方案9中,通过对施加给压电致动器的电压进行操作,从而对液体馈送泵的排出流量进行控制,因此,例如通过对电压波形的操作,可以实现高自由度的控制。方案10.根据方案9所述的流量控制装置,其中,所述控制部给所述压电致动器施加脉冲状的电压、即脉冲电压,并且对所述脉冲电压的最大值进行操作,从而对所述液体馈送泵的排出流量进行控制。在方案10中,通过对施加给压电致动器的脉冲电压的最大值进行操作,从而控制液体馈送泵的排出流量,因此可以抑制由排出流量的变化引起的脉动的变化。本发明人发现:例如,在小流量时,当脉冲宽度增加时脉动变大。方案11.根据方案9或10所述的流量控制装置,其中,包括:压力传感器,对从所述排出通路排出的流体的排出压力进行计量;所述控制部根据所述计量出的排出压力进行限制,使得所述冲程小于预先设定的预定值。在方案11中,根据排出压力限制压电致动器的冲程,因此,在排出压为高压时,可以防止因压电致动器的过大位移引起的隔膜的损耗。方案12.根据方案9至11中的任意一项所述的对液体馈送泵进行控制的流量控制装置,其中,包括:流量传感器,对从所述排出通路排出的流体的排出流量进行计量;所述控制部根据所述计量出的排出流量进行限制,使得所述往复运动的驱动周期大于预先设定的预定值。在方案12中,由于根据排出流量对压电致动器的驱动频率进行限制,因此,在为了实现较大排出流量而以较大冲程驱动压电致动器时,可以抑制因过大的驱动频率造成的泵损耗。方案13.根据方案9至12中的任意一项所述的流量控制装置,其中,包括:流量传感器,对从所述排出通路排出的流体的排出流量进行计量;所述控制部具有如下的工作模式,即,当计量出的所述排出流量增加时延长所述往复运动的驱动周期,当所述排出流量减少时缩短所述往复运动的驱动周期。方案13具有如下的工作模式,即,当排出流量增加时延长往复运动的驱动周期,当排出流量减少时缩短往复运动的驱动周期。由此,可以在排出流量增加时以长冲程实现有效驱动,并且,在排出流量减少时以短驱动周期实现低脉动驱动。本控制部不需要经常进行如上所述的对驱动周期的调整,根据需要安装可使用的工作模式即可,也可以总是按照本工作模式进行工作。对驱动周期的操作可以连续发生变化,还可以切换成预先设定的多个驱动周期中的任意一个。方案14.根据方案9至13中的任意一项所述的流量控制装置,其中,所述液体馈送泵具有:流量传感器,对所述液体馈送泵的排出流量进行计量;所述控制部通过反馈在所述往复运动的每一个驱动周期中以多个计量时刻计量的排出流量来进行流量控制。在方案14中,通过反馈在往复运动的每一个驱动周期中以多个计量时刻计量(取样)的排出流量来进行流量控制,因此,能够抑制由驱动周期内的不同时刻(或者相位)的偏差引起的计量误差,从而能够实现正确的反馈控制。对于以多个计量时刻计量出的排出流量,可以对其实施平均化后进行利用,或者,利用预先设定的时刻的代表值来推测波形从而对其进行推测。另外,还可以在考虑控制定律的运算时间的基础上,将反馈值反馈给对从计量出的周期经过多个周期后的脉冲电压进行的操作。另外,本发明并不限于液体馈送泵和流量控制装置。本发明还可以通过流量控制方法、用于实现该流量控制方法的计算机程序、以及存储计算机程序的存储介质的形式来实现。
图1是第一实施方式的液体馈送泵100的截面图。图2是表示液体馈送泵100的隔膜180的放大截面图。图3是表示液体馈送泵100的泵室123的内表面的图。
图4是表示活塞144和开口部136之间的位置关系的放大截面图。图5是表示第一实施方式的液体馈送泵100的工作状态的截面图。图6是表示第一比较例的液体馈送泵IOOa的工作状态的截面图。图7是表示第二比较例的液体馈送泵IOOb的工作状态的截面图。图8是表示第一实施方式的液体馈送泵100的隔膜180的位移(变形)的状态的截面图。图9是表示液体馈送泵100的活塞144的允许位移量与排出压力的关系的图表。图10是表示液体馈送泵100的活塞144的允许驱动频率与设定流量的关系的图表。图11是表示液体馈送泵100中隔膜的驱动频率的切换内容的图表。图12是表示液体馈送泵100的驱动电压Wl、排出流量C3以及活塞移动量C4的图表。图13是表示可用于驱动液体馈送泵100的三种驱动电压W1、W2、W3的脉冲形状的图表。图14是表示第一实施方式的高速色谱法装置90的构成的框图。图15是表示第一实施方式的高速色谱法装置90中的流量传感器50的计量和其反馈的内容的说明图。图16是表示用于第二实施方式的液体馈送泵IOOc的隔膜180a的截面图。图17是对比显示第二实施方式的隔膜180a与比较例的隔膜180b的工作状态的截面图。图18是表示将第二实施方式的液体馈送泵IOOc分解的状态的分解立体图。图19是表示第二实施方式的其它示例的隔膜180c的外观的平面图。图20是表示第二实施方式的其它示例的隔膜180c的层叠状态的截面图。图21是表示第二实施方式的其它示例的隔膜180c的安装状态的截面图。图22是表示第一变形例的隔膜180d的构成与泵本体IlOa的外观图。图23是表示第二变形例的隔膜180e的构成的外观图。
具体实施例方式下面,根据
将本发明具体化的各实施方式。在各实施方式中具体化了用于高压气相色谱法的液体馈送泵。(第一实施方式)图1表示了第一实施方式中的液体馈送泵100的截面图。图2是表示液体馈送泵100的隔膜180的放大截面图。图3是表示液体馈送泵100的泵室123的内壁面的图。液体馈送泵100是在高效液相色谱法中用于压送洗脱液的泵。在高效液相色谱法中,将洗脱液(例如使用甲醇)加压后使其通过色谱柱(后述)。由此,与使洗脱液以自由降落的方式流过色谱柱的色谱柱色谱法(又称为中低压色谱法)相比,高效液相色谱法可以缩短作为分析物的试料滞留在固相的时间,并且可以提高分离能力和检测灵敏度。液体馈送泵100包括:泵本体110 ;止回阀126、127 ;由金属制成的隔膜180 ;对隔膜180进行驱动的致动器150。在泵本体110中形成有供洗脱液流动的流路,即:入口侧内部流路122 ;出口侧内部流路124 ;止回阀126、127。泵本体110例如能够以金属或PEEK材料制造。止回阀126是仅允许洗脱液从流入口 121 (入口)向入口侧内部流路122方向流通、不允许向其反方向流通的止回阀。另一方面,止回阀127是仅允许洗脱液从出口侧内部流路124向排出口 125 (出口)方向流通、不允许向其反方向流通的止回阀。另外,在图1中省略了用于紧固泵本体110和泵座130的紧固件的图示。泵本体110具有圆柱形状,在其一方的底面的中心位置具有圆台状的凹部面。如图2和图3所示,泵室123形成为被该圆台状的凹部面和隔膜180包围的空间。圆台状的凹部面包括:平面底部115,为形成在其中心位置的圆形平面;圆锥状的倾斜面112,形成在平面底部115的周围;环状的曲面112r,形成在平面底部115与倾斜面112之间。在本实施方式中,圆台状的凹部面形成为下述凹状曲面,即,适于和排出方向上驱动的隔膜进行嵌合的凹状曲面。在凹部的倾斜面112的外缘部形成有入口侧内部流路122和出口侧内部流路124的开口部。这些开口部配置在夹持平面底部115并相互相对的位置。具体而言,入口侧内部流路122和出口侧内部流路124夹持平面底部115的中心,并且分别配置在上下方。在入口侧内部流路122的开口部,连接形成有向着圆台状的凹部面的中心位置、沿着图3的上方延伸的吸入侧槽部113。在出口侧内部流路124的开口部,连接形成有向着圆台状的凹部面的中心位置、沿着图3的下方延伸的排出侧槽部114。根据如上所述的构成,即使隔膜180发生位移而处于接近倾斜面112的状态下,泵室123也可以充分地保证入口侧内部流路122和出口侧内部流路124之间的连通状态。另夕卜,还可以将入口侧内部流路122和出口侧内部流路124分别称为吸入通路和排出通路。泵座130具有作为圆柱状孔的缸体孔134配置在中心轴线位置的环形状。在泵座130的一侧底面形成有圆台状的凸部面132、133、135和缸体孔134的开口部136,在另一侧的面形成有圆台状的凹部面131。如图1所示,在凹部面131的底部设置有形成缸体孔134的环状凸部131p。在缸体孔134安装有从环状凸部131p侧插入的滑动轴承137b。圆台状的凸部面132、133、135具有周围被倾斜面135包围的、构成一体的环状平面132、133。缸体孔134的开口部136与环状的平面132、133 (后述的隔膜接收面133)设置为同心状。即,开口部136配置在环状的平面132、133的中心位置。此外,缸体孔134的开口部136构成为,相对于所述凹部面的中心而言,其中心沿着缸体孔134的轴线方向(图2中的左侧)排列。隔膜180夹持在泵本体110和泵座130之间。在泵本体110具有的倾斜面112的周围形成有环状平面,即密封加压面111。在密封加压面111的外缘的外周形成有倾斜面116,将密封加压面111形成为环状的凸部。另一方面,泵座130具有的环状平面132、133是具有与密封加压面111相对且平行的面、即密封接收面132以及与倾斜面112相向的隔膜接收面133这两个区域的一体化平面。隔膜180被夹持在密封加压面111和密封接收面132之间,从而从外部密封泵室123。另外,密封加压面111和密封接收面132还可以称为密封部。此外,关于隔膜接收面133的作用,详见后述。由此,泵室123构成为容积可以根据隔膜180的变形而变化的密封空间。根据如上所述的构成,液体馈送泵100通过使泵室123的容积周期性地发生变化,从而可以起到由止回阀126吸入和由止回阀127排出的功能。另外,泵座130和泵本体110还可以称为泵壳体。隔膜180可通过致动器150的驱动而发生变形,从而使泵室123的容积发生变化。致动器150包括:具有对隔膜180进行驱动的活塞144的驱动部140、和泵座130。另外,活塞144还可以称为往复运动部件。驱动部140包括:活塞144 ;滑动轴承137b ;施压弹簧145 ;层叠压电致动器141 ;致动器壳体147 ;调整器143 ;钢球142 ;压电致动器安装部146 ;双螺母N1、N2。活塞144是圆柱状的部件,其在一侧底部(图1的左侧底部)具有向径向扩大的法兰144f,在另一侧的底部(图1的右侧底部)具有凸状的顶端面148 (参照图2)。活塞144在具有圆柱形状的缸体孔134的内部被滑动轴承137b支撑,并且可以在缸体孔134的轴线方向进行往复运动。从层叠压电致动器141经由钢球142和调整器143给活塞144施加驱动力。钢球142以可滑动的方式夹持于在调整器143的中心位置形成的凹部与在层叠压电致动器141的中心位置形成的凹部之间,其中,调整器143安装在法兰144f的中心部。由此,可以吸收层叠压电致动器141和活塞144之间的偏心误差和倾斜。施压弹簧145在法兰144f对活塞144施压以减小对隔膜180的驱动力。层叠压电致动器141收纳在形成于致动器壳体147的内部的圆柱状内孔149中,通过压电致动器安装部146并借助于位置调整用螺母NI和固定螺母N2安装在致动器壳体147中。另外,可以通过对形成在致动器壳体147的外周的外螺纹S和形成在位置调整用螺母NI的内周的内螺纹之间的螺纹结合量(长度)进行操作来调整层叠压电致动器141和泵座130在活塞144的驱动方向上的相对位置关系。该调整量可通过致动器壳体147和压电致动器安装部146之间的间隙CL予以吸收。固定螺母N2与位置调整用螺母NI —同起到双螺母功能,其可以对调整位置关系之后的压电致动器安装部146的位置进行固定。图4是表示活塞144和开口部136之间的位置关系的放大截面图。在图4中,以虚线表示非驱动时的活塞144的位置,以实线表示高压模式下驱动时的活塞144的位置。非驱动时,将层叠压电致动器141的位置进行调整,使得在活塞144的位移方向上活塞144的顶端面148的顶部与开口部136大致处于相同的位置。另一方面,驱动时,将层叠压电致动器141的驱动电压进行调整,使得在相同的位移方向上仅仅发生位移量δ的位移后,活塞144的顶端面148的周缘部148e与开口部136处于相同的位置。图5是表不第一实施方式的液体馈送泵100的工作状态的截面图。图5 (a)表不了高压时动作的驱动状态。图5 (b)表示了低压时动作的驱动状态。高压时动作是指计量时对洗脱液进行输液时的工作状态。低压时动作是指非计量时进行配管清洗用输液时的工作状态。在高压时动作中,隔膜180被隔膜接收面133和活塞144支撑。S卩,隔膜180可以使从泵室123内的高压洗脱液受到的负荷流向隔膜接收面133和活塞144,具体而言,隔膜180的中心位置中的直径ΦΒ的圆形范围被活塞144支撑,从直径ΦΑ的圆形范围减去直径ΦΒ的圆形范围后的环状范围被隔膜接收面133支撑。由此,在高压时的动作中,可以将隔膜180的变形范围(工作范围)限定在直径ΦΒ的圆形范围内,因此隔膜180实质上起到具有直径ΦΒ的圆形范围的小型隔膜的功能。如果是小型隔膜,则即使洗脱液是高压液体,也可以对抗施加给隔膜180的负荷,通过层叠压电致动器141进行适当的驱动。进而,在高压时,隔膜180的变形被限定在插入有活塞144的开口部136的附近,因此还可以减少伴随着活塞144的位移产生的泵室123的容积变化。由此可知,由于每当泵室123的容积发生变化时可以增加活塞144的位移量,因此隔膜180的工作形态成为适于进行高压下的微小流量控制的变形状态。另一方面,在低压时动作中,隔膜180仅被活塞144支撑。在低压时动作中,隔膜180可以从隔膜接收面133分离,并在泵室123的内部发生较大的变形,因此,隔膜180可以实质上起到具有直径ΦΑ的圆形范围的大型隔膜的功能。如果是大型隔膜,则可以通过层叠压电致动器141提供较大排出量的洗脱液,从而可以顺利地对配管等进行清洗。图6是表示第一比较例的液体馈送泵IOOa的工作状态的截面图。图6 (a)表示了第一比较例的液体馈送泵IOOa的非驱动时的状态。图6 (b)表示了第一比较例的液体馈送泵IOOa的高压时动作状态。图6 (C)表示了第一比较例的液体馈送泵IOOa的低压时动作状态。第一比较例是用于对隔膜接收面133的效果进行简单易懂的说明的比较例。第一比较例的液体馈送泵IOOa与第一实施方式的液体馈送泵100的不同点在于,不包括隔膜接收面133,此外,将缸体孔134的直径向隔膜接收面133的区域扩大,从而用作缸体孔134a。由于第一比较例的液体馈送泵IOOa不包括第一实施方式的隔膜接收面133,因此可以起到低压时动作中的大型隔膜的功能。S卩,如图6 (C)所示,第一比较例的液体馈送泵IOOa可以与第一实施例同样地起到在低压下具有较大的排出量的隔膜泵的功能。然而,发明人发现:在高压时,如图6 (b)所示,隔膜180被推压至活塞144a并产生变形、即弯曲180k (使泵室123的容量增大的局部变形)而降低泵室123的容量缩小程度,因此不能高效地进行排出。另外,作为过度的弯曲,弯曲180k是造成损伤的原因。另外,在高压时,从隔膜180给活塞144a加载的负荷大于第一实施方式,从而给层叠压电致动器141施加了过度的负荷。如上所述,隔膜接收面133在高压时的工作中,起到抑制隔膜180产生意外的弯曲180k、并且防止给层叠压电致动器141施加过大的负荷的作用。图7是表示第二比较例的液体馈送泵IOOb的工作状态的截面图。图7 Ca)表示了第二比较例的液体馈送泵IOOb的非驱动时状态。图7 (b)表示了第二比较例的液体馈送泵IOOb的高压时动作状态。图7 (c)表示了第二比较例的液体馈送泵IOOb的低压时动作状态。第二比较例是用于对将第一实施方式的隔膜接收面133与密封接收面132设置在同一平面内(或者接近的平面内)的意义进行简单易懂的说明的比较例。第二比较例的液体馈送泵IOOb与第一实施方式的液体馈送泵100的不同点在于,隔膜接收面133被设定为位于从泵室123分离的方向(附图中的左侧方向)的隔膜接收面133a。另一方面,活塞144的直径与第一实施方式的液体馈送泵100 —致。在低压时,图7 (C)所示,与第一实施例和比较例同样地,可以用作在低压下以较大的排出量工作的隔膜泵。但是在高压时,图7 (b)所示,与第一比较例同样地,以隔膜180的整个表面接收来自高压洗脱液的负荷,因此隔膜180被塞入活塞144的周围而产生意外的弯曲180k,以阻碍排出,从而成为损耗的原因。另外,高压时给层叠压电致动器141施加过度的负荷,这一点也与第一比较例相同。如上所述,第一实施方式的隔膜接收面133通过形成与密封接收面132连为一体的连续的环状平面,从而达到了显着的效果。但是,不需要一定将隔膜接收面133形成为与密封接收面132连为一体的连续的环状平面,而是只要配置在活塞144的位移方向上的密封接收面132附近即可。例如,隔膜接收面133可以构成为,从密封接收面132侧向开口部136侧朝接近凹部面的一侧(图2的右侧)倾斜。相反,隔膜接收面133还可以构成为,从密封接收面132侧向开口部136侧朝远离凹部面的一侧(图2的左侧)倾斜。另外,如果隔膜接收面133与密封接收面132是光滑地连续的,那么,即使不是平面,也可以将隔膜180的变形设为光滑的变形,例如,形成一体化的曲面等。图8是表示第一实施方式的液体馈送泵100的隔膜180的位移(变形)状态的截面图。图8 (a)表示了高压时动作状态。图8 (b)表示了中间压力时动作状态。图8 (C)表示了低压时动作状态。图8 (a)和图8 (C)的工作状态分别与图5 (a)和图5 (b)的工作状态对应。高压时,通过活塞144的位移量(冲程)受到限制,隔膜180发生位移的范围(还可以称为变形范围或者工作范围)被限定在直径ΦB的圆形范围。活塞144的位移量会随着泵室123的内部压力的上升而自动受到限制,所述位移量例如可以根据层叠压电致动器141的规格对进行设定,使得在控制定律被切换到高压模式下时不会给隔膜180施加过大的负荷。在中间压力时,活塞144的位移量(冲程)得以扩大,从而隔膜180的工作范围被扩大至直径的圆形范围。隔膜180的工作范围会随着洗脱液的压力的降低而扩大,在低压时,活塞144的位移量(冲程)进一步得以扩大,扩大至整个区域、即直径ΦΑ的圆形范围。如上所述,第一实施方式的液体馈送泵100可以根据洗脱液的排出压力自动改变隔膜180的工作范围。具体而言,隔膜180的工作范围随着泵室123的内部压力的上升而减小,随着泵室123的内部压力的降低而扩大。液体馈送泵100的控制可以构成例如将排出流量的计量值用作反馈量、将操作量用作给层叠压电致动器141施加的电压的控制系统。在本控制系统中,当排出流量的计量值小于目标值时,进行操作以增大活塞144的位移量;当排出流量的计量值大于目标值时,进行操作以减小活塞144的位移量。另外,关于实施方式的控制系统的具体构成详见后述。如上所述,在第一实施方式的液体馈送泵100中,可以将隔膜180作为实质上具有与洗脱液的排出压力对应的适当的工作范围的隔膜而予以驱动。从而,液体馈送泵100可以起到隔膜泵的功能,其具有从高压少量排出到低压大量排出为止的较宽的动态范围。图9是表示第一实施方式的液体馈送泵100的活塞144的允许位移量与排出压力的关系的图表。图10是表示第一实施方式的液体馈送泵100的活塞144的允许驱动频率与排出流量(设定流量)的关系的图表。在图9和图10中,曲线Cl、C2分别表示针对活塞144的位移与频率的运用限制。具体而言,例如,当排出压力为压力Pl时,活塞144的位移量被限制在位移δ I。另一方面,当排出流量为流量Ql时,活塞144的驱动频率被限制在频率fl。即,活塞144的运用位移被限制在由两条曲线Cl、C2包围的范围。关于排出压力的运用限制是基于本发明人的以下见解和分析进行设定的。如上所述,液体馈送泵100具有根据洗脱液的排出压力自动改变工作范围的优良特性。
然而,本发明人发现,根据层叠压电致动器141的规格设定(例如过大的驱动力),可能发生由于隔膜180的过度的位移(实质上的活塞144的位移)而给隔膜180带来损耗的情况。具体而言,本发明人发现,在高压时,如果在层叠压电致动器141的过大的驱动力作用下反复图8 (c)的工作状态,在活塞144的周围给隔膜180带来损伤。关于排出流量的运用限制是基于本发明人的以下实验和分析进行设定的。如上所述,液体馈送泵100具有根据洗脱液的排出压力自动改变隔膜180的位移量的优良特性。即,隔膜180的位移量(冲程)根据洗脱液的排出压力的上升而自动减小。然而,本发明人发现,随着排出流量的降低,脉动影响增加。这是由于,根据排出流量的降低,脉动的比率增加,从而脉动更加明显。进而,在高效液相色谱法中,在排出流量较少的高压动作时进行计量,因此期望降低脉动。另外,本发明人发现下述现象,即:当泵的动作(层叠压电致动器141的动作和止回阀的动作)因排出流量降低而减小时,可以扩大驱动频率。图11是表示第一实施方式的液体馈送泵100中隔膜的驱动频率的切换内容的图表。图11 (a)和图11 (b)分别表示了在低压工作模式和高压工作模式中的排出流量(流量)和脉冲电压。在低压工作模式中,如图10所示,在以较低的驱动频率fl驱动隔膜180时,进行较大排出流量Ql的排出。另一方面,在高压工作模式中,如图10所示,在以较高的驱动频率f2驱动隔膜180时,进行较小的排出流量Q2的排出。由此,从与比较例的比较可知,在高压工作模式中流量的脉动显着降低。如上所述,第一实施方式的液体馈送泵100根据排出流量可以切换隔膜180的驱动频率。由此,在较大的排出流量Ql中可以保持在隔膜的驱动频率的运用范围内,并且在较小的排出流量Q2中可以通过提高驱动频率来抑制脉动。由于高压动作时的排出流量Q2是在进行计量时使用的流量,因此降低脉动具有重大意义。另外,对于隔膜的驱动频率,并不一定仅仅根据低压工作模式与高压工作模式之间的切换对其进行操作,例如,还可以根据高压动作时的设定流量的变化对其进行操作。设定流量是指,用户根据计量对象和计量目的等进行设定的排出流量,是在后述的控制系统中成为目标值的值。如果放大隔膜180的驱动频率,则不仅可以降低脉动,而且还可以保持隔膜180的冲程,并且增加排出流量,因此可以扩大高压动作时液体馈送泵100的设定流量的范围。换言之,不仅可以进一步减少计量时的脉动以提高计量精度,而且还可以有助于扩大高压动作时液体馈送泵100的排出流量的动态范围。图12是表示第一实施方式的液体馈送泵100的驱动电压W1、排出流量C3以及活塞移动量C4的图表。驱动电压Wl是给层叠压电致动器141施加的电压,它是矩形波。在时刻tl,随着驱动电压Wl的上升,液体馈送泵100通过层叠压电致动器141开始驱动活塞144。由此,活塞144使隔膜180开始发生位移,从而泵室123的容积开始缩小,因此泵室123的内部压力上升。当泵室123的内部压力超过排出口 125的压力时,开启止回阀127,从而开始排出药液。在时刻t2,与驱动电压Wl的上升相应的活塞144的移动结束,从而活塞144停止。由此泵室123的容积停止发生变化,泵室123不再排出药液,从而闭合止回阀127。
在时刻t3,随着驱动电压Wl的下降,液体馈送泵100通过层叠压电致动器141开始反向驱动活塞144。由此,泵室123的内部压力下降。当泵室123的内部压力小于流入口121的压力时,开启止回阀126,从而药液开始流入。排出流量C3是提供给由用户准备的计量设备(例如,进样器、色谱柱等)的流量。排出流量C3是在后述的容积阻尼器80和孔51的下游通过流量传感器50计量的值。排出流量C3的脉动通过容积阻尼器80和孔51而得以降低。液体馈送泵100可以通过提高驱动电压Wl的脉冲频率来降低排出流量的脉动。例如,层叠压电致动器141可以在数kHz下进行驱动。当止回阀126、127的响应性极限小于层叠压电致动器141的驱动频率时,还可以基于止回阀126、127的响应性来设定层叠压电致动器141的驱动频率。图13是表示可用于驱动液体馈送泵100的三种驱动电压W1、W2、W3的脉冲形状的图表。如上所述,驱动电压Wl为矩形波,其适合于较高频率下的驱动。驱动电压W2为具有对排出流量的脉动进行抑制的效果的斜波,其适合于在较低频率下的驱动。在上升沿中,电压在电压h以上的位置处,驱动电压W3的波形发生卷曲,因此可在较高的频率中抑制排出流量的急剧上升,从而可以降低脉动。另外,还将驱动电压W1、W2、W3称为脉冲电压。此外,可以将电压h设定为,例如 隔膜180根据层叠压电致动器141的驱动而开始变形的电压。图14是表示第一实施方式的高速色谱法装置90的构成的框图。高速色谱法装置90包括:储存洗脱液的溶媒储存瓶60 ;液体馈送泵100 ;容积阻尼器80 ;压力传感器40 ;流量传感器50 ;孔51 ;废液瓶70 ;废液用阀71 ;负荷30 ;给液体馈送泵100施加驱动电压的驱动电路20 ;控制电路10。负荷30包括由用户准备的计量设备,例如,进样器、色谱柱、检测器、记录仪等。液体馈送泵100从溶媒储存瓶60吸引洗脱液,依次经由容积阻尼器80、孔51以及流量传感器50后,提供给负荷30。容积阻尼器80和孔51起到降低脉动的作用。通过流量传感器50对提供给负荷30的洗脱液的流量进行计量,将该计量值发送给控制电路10。压力传感器40对容积阻尼器80与孔51之间的洗脱液的压力进行计量。另外,控制电路10和驱动电路20还可称为控制部。控制部、压力传感器40以及流量传感器50还可称为控制
>j-U ρ α装直。控制电路10根据流量指令信号与流量传感器50的计量值,对驱动电路20进行操作,以调整驱动电压的电压值,并进行用于使流量传感器50的计量值接近流量指令信号的反馈控制。在基于运用限制(参照图9和图10)预先设定的允许位移量(允许驱动电压)和允许驱动频率(电压脉冲频率)范围内进行本反馈控制。图15是表示第一实施方式的高速色谱法装置90中的流量传感器50的计量和其反馈的内容的说明图。流量传感器50在层叠压电致动器141进行往复驱动的每一个驱动周期中以多个计量时刻对排出流量进行计量(抽样),控制电路10对上述每一个驱动周期将上述所计量(抽样)的排出流量平均化后予以反馈,从而控制流量。由此,通过抑制由于泵的动作而周期性地发生变化的流量(脉动)所导致的计量误差,能够实现正确的反馈控制。起因于脉动的计量误差是因为各驱动周期中计量时刻的偏差(相位差)而造成的。高速色谱法装置90在导入洗脱液或者置换洗脱液时,开启废液用阀71,以将液体排出至废液瓶70。此时,要求液体馈送泵100在低压下进行较大流量的排出。
(第二实施方式)图16是表示用于第二实施方式的液体馈送泵IOOc的隔膜180a的截面图。隔膜180a具有三层结构,包括:镍钴合金的第一金属板181和第二金属板182 ;以及形成将第一金属板181和第二金属板182相互粘合在一起的粘合层的弹性粘合层183。弹性粘合层183是树脂层,该树脂层具有使第一金属板181和第二金属板182在其面内方向上相互错开的方向的弹性。形成弹性粘合层183时,可以使用例如将改性硅酮树脂或环氧改性硅酮树脂作为主成分的单液型弹性粘合剂,或者,使用例如由主剂(环氧树脂)和固化剂(改性硅酮树脂)形成的双液型弹性粘合剂。图17是对比显示第二实施方式的隔膜180a与比较例的隔膜180b的工作状态的截面图。图17 (a)表示了第二实施方式的隔膜180a发生变形的状态。图17 (b)表示了比较例的隔膜180b发生变形的状态。比较例的隔膜180b是由第一金属板181和第二金属板182相互重叠而成、但是不具有如第二实施方式所述的粘合层的隔膜。由于比较例的隔膜180b由厚度为t的第一金属板181和第二金属板182相互重叠而成,因此耐压性也提高至2倍。这是由于,耐压性依赖于第一金属板181等的面内方向(扩展方向)的拉伸强度,因此,隔膜180a的耐压性实质上与单层具有2倍厚度的金属制板材的耐压性相同。另一方面,在比较例的隔膜180b中,第一金属板181和第二金属板182仅是叠合在一起,因此,比较例的隔膜180b的弯曲刚性是第一金属板181和第二金属板182的弯曲刚性的相加值。即,比较例的隔膜180b的弯曲刚性为第一金属板181的弯曲刚性的2倍。然而,本发明人发现如下的问题,S卩:由于比较例的隔膜180b不是相互粘合在一起的,因此清洗隔膜时被分解,因此产生在清洗后进行安装时层叠状态发生变化的问题。另夕卜,本发明人还发现当组装隔膜时异物进入到第一金属板181和第二金属板182之间而使耐久性退化的问题。第二实施方式的隔膜180a的不同点在于,第一金属板181和第二金属板182相互粘合在一起。由于耐压性依赖于第一金属板181等的面内方向(长度方向)的拉伸强度,因此,无论是否粘合,都可以将耐压性提高至2倍。另一方面,由于第一金属板181和第二金属板182相互粘合在一起,因此当假设彼此不发生偏差或变形时,实施方式的隔膜180a的弯曲刚性为8倍。这是由于将第一金属板181和第二金属板182作为具有2倍厚度的一枚板材而予以使用的缘故。然而,由于隔膜180a是通过弹性粘合层183相互粘合在一起的,因此可以避免如上所述的过度的弯曲刚性,其中,弹性粘合层183具有使金属板在其面内方向上相互错开的方向的弹性。这是由于,因第一金属板181和第二金属板182通过弹性粘合层183相互粘合在一起,因此隔膜180a具有近似于比较例的隔膜180b的弯曲刚性,其中,弹性粘合层183具有金属板在其面内方向上相互错开的方向的弹性。如上所述,隔膜180a被构成为,第一金属板181和第二金属板182相互粘合在一起,因此可以抑制在进行清洗等维护时隔膜被分解的现象。从而,隔膜180a能够提高可维护性的同时,能够解决当维护后进行安装时隔膜180a的层叠状态发生变化的问题。由此,可以省略或简化分解、清洗等维护后对隔膜180a的校正。
此外,在组装隔膜时,还可以抑制异物进入到第一金属板181和第二金属板182之间、从而使耐久性退化的问题。另外,隔膜180a可以减少第一金属板181和第二金属板182的最大崎变,因此还可以提闻耐久性。其中,弹性粘合层183的厚度优选在ΙΟμπι以下。这是由于,弹性粘合层183根据泵室123的压力向隔膜180a的面外方向(厚度方向)变形,使得泵室123的容积发生变化,从而存在排出量不稳定的可能性。图18是表示将第二实施方式的液体馈送泵IOOc分解的状态的分解立体图。液体馈送泵IOOc构成为,在泵本体110和致动器150之间夹持隔膜180c。泵本体110和致动器150通过下述方式连接,即:使6枚螺栓B1-B6各自贯通泵本体110的贯通孔hl_h6并与致动器150螺纹结合。图19是表示第二实施方式的其它示例的隔膜180c的外观的平面图。隔膜180c具有安装用板材189。安装用板材189的相比其它金属性板材185等更加向外缘方向突出的部位设定为用于安装在泵本体110的安装部189a。在安装部189a形成有:一对销孔(keyhole) Klh、K2h ;被6枚螺栓B1-B6各自贯通的贯通孔dhl_dh6。6枚螺栓B1-B6还称为连接部件。另外,泵本体110和致动器150还分别称为第一部件和第二部件。一对销孔Klh、K2h配置在对于隔膜180c的中心位置而言相对的位置(一条直线上的位置)。这种配置是用于通过较长地设定一对销孔Klh、K2h之间的距离来提高销孔Klh、K2h的定位精度。在销孔Klh、K2h分别设置有施力部Kls、K2s。该施力部Kls、K2s形成为设置在销孔Klh、K2h的内缘的多个弹性突起。另外,当向销孔Klh、K2h插入突出设置在泵本体110的销(流体设备的一部分)K1、K2时,施力部Kls、K2s分别与销K1、K2卡合。由此,防止隔膜180c从泵本体110脱落,从而易于组装。在施力部Kls、K2s与销K1、K2卡合的状态下,各施力部Kls、K2s分部对销K1、K2施力以抵消因卡合带来的反作用力。另一方面,贯通孔dhl-dh6以不均匀的节距、以环状配置。具体而言,以与贯通孔dhl和贯通孔dh2之间的角度β不同的角度设定贯通孔dhl和贯通孔dh6之间的角度α。由此,销Κ1、Κ2分别安装在销孔Klh、K2h,从而可以防止发生反向安装的情况。不需要一定以环状排列的方式形成贯通孔dhl-dh6。S卩,只要将贯通孔dhl-dh6的中心位置连接而成的形状(此时为六角形)对于隔膜180c的平面内的任意方向的线段而言都具有非对称形状即可。由此,可以抑制误安装隔膜180c。在泵本体110还形成有拆卸用孔Rl、R2。拆卸用孔Rl、R2是用于在分解时为了从泵本体110拆卸隔膜180c而插入杆(省略图示)的孔。在分解时,用户通过从隔膜180c的相反侧将杆(省略图示)插入至泵本体110的拆卸用孔Rl、R2,从而可以简单地拆卸隔膜180c。图20是表示第二实施方式的其它示例的隔膜180c的层叠状态的截面图。图21是表示第二实施方式的其它示例的隔膜180c的安装状态的截面图。隔膜180c例如通过将镍钴合金的4枚金属板185-188和一枚不锈钢(例如SUS304或SUS316)安装用板材189层置而成。具体而言,在不锈钢金属板、即安装用板材189的两侧,分别通过弹性粘合层186a、187a粘贴金属板186、187,并且,在金属板186、187分别通过弹性粘合层185a、188a粘贴金属板185、188。如上所述,本实施方式中,在不锈钢的安装用板材189的两面分别安装有相同数量、即4枚镍钴合金的金属板185-188。另外,弹性粘合层185a、186a、187a、188a例如可以使用数μ m的硅酮膜等。此外,金属板188为与泵室123相对的面,因此优选对其实施研磨。镍钴合金具有优异的高弹性、强度、耐蚀性、耐热性以及恒弹性,具有优异的非磁性和耐久性,因此,其是适合于金属隔膜的材料。另一方面,不锈钢的可加工性良好,具有耐蚀性、韧性、延展性等特性。特别是安装用板材189的材料、即不锈钢,由于其具有良好的可加工性,因此,能够较为容易地加工销孔Klh、K2h和贯通孔dhl-dh6。安装用板材189是在分解清洗液体馈送泵IOOa时用于组装隔膜180c的部件。另一方面,4枚镍钴合金的金属板185-188是用于起到隔膜功能的部件。在密封加压面111和密封接收面132之间夹持有4枚镍钴合金的金属板185-188和不锈钢的安装用板材189。如上所述,从隔膜的耐压性和操作性角度出发,本实施方式的多层隔膜可以自由设定层叠枚数。以上详细说明的各实施方式具有以下优点。(I)本实施方式的液体馈送泵不产生颗粒,可以实现长寿命。(2)本实施方式的液体馈送泵可以实现高压下的微小流输液和低压下的大流量输液(较广的动态范围)。(3)在本实施方式的液体馈送泵中,隔膜接收面与密封接收面形成同一平面,因此隔膜的工作范围(变形范围)可以从高压到低压进行平滑的变化。(4)在本实施方式的液体馈送泵中,由于将缸体孔的开口部以与隔膜接收面同心状形成,因此活塞对隔膜中被密封加压面和密封接收面包围的区域的大致的中心部进行推压。由此,来自活塞的负荷大致均匀地加载在隔膜上,从而可以抑制给隔膜的局部加载较大负荷的现象。(5)在本实施方式的液体馈送泵中,缸体孔的开口部的中心相对于凹部面的中心沿着缸体孔的轴线方向排列。从而,隔膜变形时,泵室的中心部的容积发生变化,因此泵室内的压力也均衡地发生变化,从而可以顺利传输洗脱液。(6)在本实施方式的控制装置中,压电致动器的位移量根据排出压力受到限制,因此可以防止由高压时压电致动器的过大的位移导致隔膜损伤的现象。(7)本实施方式的多层隔膜可以具有高耐压性的同时,具有柔软性。(8)本实施方式的多层隔膜实现了对于误安装现象的抑制,从而提高了可维护性。(9)本实施方式的多层隔膜可以省略或者简化分解、清洗后的校正。(其它实施方式)本发明并不限于上述实施方式,例如还可以以如下所述的方式实施。(I)在上述实施方式中,使用两个销孔Klh、K2h进行定位。例如,还可以如第一变形例的隔膜180d那样,使用3个以上。图22是表示第一变形例的隔膜180d的构成与泵本体IlOa的外观图。在第一变形例的隔膜180d,除了销孔Klh、K2h之外,还形成有第三销孔K3h。由此可以防止隔膜180d绕其中心轴线进行180度旋转而销Kl和销K2安装在错误的销孔Klh、K2h (相反的销孔)的情况。即,可以防止销Kl和销K2分别安装在销孔K2h和销孔Klh的情况。
另外,第三销孔K3h形成于偏离通过连接销孔Klh、K2h的中心位置而成的线段的垂直二等分线的位置处。即,销孔Klh、K2h、K3h以不同的节距环状排列在隔膜180d上。由此,可以防止在隔膜180d翻转并进行了 180度旋转的状态下安装在相反的销孔K2h、Klh的情况。如上所述,第一变形例的隔膜180d通过设置销和销孔,能够防止所设想的多种误安装状况,例如,旋转180度的状态下的误安装、在翻转并进行了 180度旋转的状态下的误安装,等等。销K1、K2、K3和销孔Klh、K2h、K3h还称为定位部。销K1、K2、K3还称为定位用凸部。销孔Klh、K2h、K3h还称为定位孔。另外,并不需要一定以环状排列的方式形成销孔Klh、K2h、K3h。即,只要将销孔Klh、K2h、K3h的中心位置连接而成的形状(此时为三角形)对于隔膜180d的平面内的任何方向的线段而言非对称形状即可。由此,可以抑制隔膜180d的误安装。(2)上述实施方式构成为,根据配备在销孔Klh、K2h的施力部Kls、K2s,防止隔膜180c从泵本体110脱落。例如,还可以如第二变形例的隔膜180e那样,在销孔Klh、K2h之外的位置设置用于防止脱落的施力部。图23是表示第二变形例的隔膜180e的构成的俯视图和截面图。隔膜180e包括一对临时定位用凸缘180sl、180s2。临时定位用凸缘180sl、180s2可以在夹持泵本体IlOa的方向(彼此之间的间隔减小的方向)上产生施压力。由此防止隔膜180e从泵本体IlOa脱落,从而易于组装。如上所述,可以通过对泵本体110的一部分施力以抵消反作用力从而防止隔膜180e的脱落。(3)在上述实施方式中,隔膜接收面与密封接收面形成同一平面,但是不需要一定形成同一平面。然而,如果形成同一平面,则可以使隔膜的工作范围(变形范围)从高压到低压进行平滑的变化。将隔膜接收面133构成为抵接面积根据泵室123的内压而发生变化即可,其中,所述抵接面积是与隔膜180抵接的面的面积。(4)在上述实施方式中,密封接收面为平面,然而还可以是曲面。然而,如果将密封接收面设为平面,则可以避免隔膜根据负荷(密封负荷)而过度损伤的情况,其中,所述负荷(密封负荷)是为了对泵室进行密封而给隔膜施加的。由此,可以缓解对密封负荷的管理,因此再次安装隔膜时,用户可以易于管理螺栓B1-B6的扭矩。(5)在上述实施方式中,活塞具有与隔膜之间的抵接面为凸状的曲面,但还可以是平面。然而,如果将与隔膜之间的抵接面设为凸状的曲面,则在缸体孔134的开口部136的周围以隔膜接收面支撑隔膜,并且还能将通过凸状曲面与活塞抵接的区域发生变形。另外,根据活塞的位移量,隔膜扩大变形范围的同时发生变形,因此可以在高压时实现精密的排出量操作。凸状曲面例如可以设定为易于加工的球面形状。(6)在上述实施方式中,吸入口和排出口配置在相对的位置处,但是还可以以其它方式配置。然而,如果将吸入口和排出口配置在相对的位置处,例如将液体馈送泵设置为,在铅直方向上将吸入口设为下侧、将排出口设为上侧时,由此消除液体积存现象,从而可以提高液体的置换性和气泡消除性。(7)在上述实施方式中,通过压电致动器驱动隔膜,但是还可以使用其它驱动方法。然而,如果通过压电致动器进行驱动时,通过以高频率驱动隔膜,从而在隔膜的较小的位移下也能保证排出量,并且可以降低脉动。
(8)上述实施方式构成为,在非驱动时,隔膜接收面整体与隔膜抵接。但也可以构成为如下,例如,在排出压力为低压时,隔膜接收面的至少一部分从隔膜分离,或者,通过运用时的永久变形而为所述状态。将隔膜接收面构成为如下即可,即:当泵室的内压上升时支撑隔膜,从而减轻给活塞施加的负荷。泵室的内压上升时,隔膜接收面分担的负荷值为隔膜与隔膜接收面抵接的面的面积乘以泵室的内压所得的值,由此,可以减轻给活塞施加的负荷。另外,隔膜与隔膜接收面抵接的面的面积还称为抵接面积。(9)在上述实施方式中,隔膜不与活塞连接,而是通过以活塞推压隔膜,从而使隔膜变形,但是还可以构成为将隔膜与活塞连接。在将隔膜与活塞连接的构成中,优选地,隔膜与活塞的顶部通过一个点(或者充分狭窄的区域)实现相互连接。(10)在上述实施方式中,多层隔膜用于液体馈送泵,还可以用于例如流量控制阀中。多层隔膜可以广泛用于通常使用隔膜的流体设备中。附图标记说明10:控制电路;20:驱动电路;30:负荷;40:压力传感器;50:流量传感器;90:高速色谱法装置;100、100a、IOOb:液体馈送泵;100c:液体馈送泵;110、IlOa:泵本体;111:密封加压面;123:泵室;130:泵座;132:密封接收面;133、133a:隔膜接收面;134、134a:缸体孔;140:驱动部;141:层叠压电致动器;144:活塞;144a:活塞;145:施压弹簧;146:压电致动器安装部; 150:致动器;180、180a、180b、180c、180d、180e:隔膜。
权利要求
1.一种液体馈送泵,包括: 泵壳体,形成有柱状孔、与所述孔的开口部及其周缘部相对的凹部面、在所述凹部面具有吸入口的吸入通路、以及在所述凹部面具有排出口的排出通路; 隔膜,在其与所述凹部面之间形成泵室,并且划分所述泵室和所述孔; 往复运动部件,以能够进行往复运动的方式插入所述孔中,通过所述往复运动推压所述隔膜,从而使其变形; 驱动部,使所述往复运动部件在所述往复运动的方向上以所述往复运动的冲程可变的方式周期性地进行位移; 密封部,在所述凹部面的外周侧包围的位置处,通过夹持所述隔膜来进行密封;以及隔膜接收面,设置在所述密封部与所述开口部之间,所述隔膜接收面与所述隔膜抵接的面的面积、即抵接面积根据所述位移与所述泵室的内压而发生变化,其中, 所述抵接面积根据所述往复运动部件向所述凹部面侧的位移的增加而减小,根据所述泵室的内压的上升而增加。
2.根据权利要求1所述的液体馈送泵,其中, 所述密封部通过密封加压面和密封接收面对所述隔膜进行夹持,所述密封加压面是与所述凹部面连续的面,所述密封接收面是与所述隔膜接收面连续的面, 所述密封接收面与所述隔膜接收面光滑地连续。
3.根据权利要求2所述的液体馈送泵,其中, 所述密封接收面是环状的平面。
4.根据权利要求3所述的液体馈送泵,其中, 所述隔膜接收面形成为环状的平面,并且,所述开口部与所述隔膜接收面形成为同心状。
5.根据权利要求2至4中的任意一项所述的液体馈送泵,其中, 所述隔膜接收面与所述密封接收面形成为同一平面。
6.根据权利要求1至5中的任意一项所述的液体馈送泵,其中,所述往复运动部件包括: 顶端部,其与所述隔膜之间的抵接面具有为凸状的曲面。
7.根据权利要求1至6中的任意一项所述的液体馈送泵,其中, 所述凹部面在与向排出方向驱动时的隔膜形状嵌合的方向上具有凹状的曲面、即凹状曲面, 所述凹状曲面包括:吸入侧槽部,从所述吸入通路的开口部向所述凹状曲面的中心方向延伸,并且与所述泵室连通;以及排出侧槽部,从所述排出通路的开口部向所述凹状曲面的中心方向延伸,并且与所述泵室连通。
8.根据权利要求1至7中的任意一项所述的液体馈送泵,其中,所述驱动部包括: 压电致动器,对所述隔膜进行驱动。
9.一种对液体馈送泵进行控制的流量控制装置,包括: 权利要求8所述的液体馈送泵;以及 控制部,对给所述压电致动器施加的电压进行操作,从而对所述液体馈送泵的排出流量进行控制。
10.根据权利要求9所述的流量控制装置,其中, 所述控制部给所述压电致动器施加脉冲状的电压、即脉冲电压,并且对所述脉冲电压的最大值进行操作,从而对所述液体馈送泵的排出流量进行控制。
11.根据权利要求9或10所述的流量控制装置,其中,包括: 压力传感器,对从所述排出通路排出的流体的排出压力进行计量; 所述控制部根据所述计量出的排出压力进行限制,使得所述冲程小于预先设定的预定值。
12.根据权利要求9至11中的任意一项所述的对液体馈送泵进行控制的流量控制装置,其中,包括: 流量传感器,对从所述排出通路排出的流体的排出流量进行计量; 所述控制部根据所述计量出的排出流量进行限制,使得所述往复运动的驱动周期大于预先设定的预定值。
13.根据权利要求9至12中的任意一项所述的流量控制装置,其中,包括: 流量传感器,对从所述排出通路排出的流体的排出流量进行计量; 所述控制部具有如下的工作模式,即,当计量出的所述排出流量增加时延长所述往复运动的驱动周期,当所 述排出流量减少时缩短所述往复运动的驱动周期。
14.根据权利要求9至13中的任意一项所述的流量控制装置,其中,所述液体馈送泵具有: 流量传感器,对所述液体馈送泵的排出流量进行计量; 所述控制部通过反馈在所述往复运动的每一个驱动周期中以多个计量时刻计量的排出流量来进行流量控制。
全文摘要
本发明提供几乎不产生颗粒的液体馈送泵。本发明的液体馈送泵包括泵壳体;隔膜(180),在其与凹部面之间形成泵室(123),划分泵室(123)和孔;往复运动部件,以能够进行往复运动的方式插入孔中,通过往复运动使隔膜(180)变形;驱动部(140),使往复运动部件在往复运动的方向上发生位移;密封部,在凹部面的外周侧包围的位置处,通过夹持隔膜(180)来进行密封;隔膜接收面,设置在密封部与开口部之间,所述隔膜接收面与隔膜(180)抵接的面的面积、即抵接面积根据位移与泵室(123)的内压而发生变化。抵接面积随着往复运动部件向凹部面侧的位移的增加而减小,随着泵室(123)的内压的上升而增加。
文档编号F04B49/06GK103097730SQ201280002865
公开日2013年5月8日 申请日期2012年4月4日 优先权日2011年4月27日
发明者新田慎一 申请人:Ckd株式会社