金属前缘保护带、对应的翼型件及制造方法

文档序号:5472115阅读:243来源:国知局
金属前缘保护带、对应的翼型件及制造方法
【专利摘要】一种金属前缘保护带(12)适于对涡轮机的翼型件的前缘提供冲击保护。保护带(12)由不锈钢或镍基合金形成,并且与由钛基合金形成的相同保护带相比,较密实且提供提高的强度和弹性特性。保护带特别适合用于复合叶片(10),而且允许有较薄的翼型件,从而改进发动机效率。还提供了对应的翼型件和制造这种翼型件的方法。
【专利说明】金属前缘保护带、对应的翼型件及制造方法
[0001]相关申请的交叉引用
本申请要求2012年7月30日提交的美国临时申请N0.61/677,179的优先权,该申请的内容通过引用而结合在本文中。

【技术领域】
[0002]本发明大体涉及适合复合翼型件的前缘保护带。特别地,本发明涉及用来保护翼型件构件的金属前缘(MLE)的金属和合金。

【背景技术】
[0003]许多当代燃气涡轮发动机翼型件构件(诸如风扇叶片和定子导叶)都由复合层压材料或模制纤维构成。MLE用来保护这样的复合构件的翼型件免受在发动机环境中经常发生的冲击和侵蚀损害。在传统实践中,通常用V形保护金属带包裹翼型件的前缘和侧部,以提供这种保护。
[0004]存在许多用于制造这样的MLE的工艺,但在这里不详细讨论。在美国专利申请US2011/0129600A1和US2011/0097213A1中已经公开了有关新兴工艺。另外,其它制造工艺(包括例如传统机械加工和蠕变成形)可用来制造MLE。蠕变成形在本领域中已知为在压力下使用高得足以使部件发生塑性变形的温度来对该部件实现期望形状的工艺。在工艺温度下可同时进行老化处理。至今,许多MLE已经主要由钛或其合金构成,因为制造便利且和重量减轻。另外,已经发现由钛或其合金制成的MLE的冲击强度是令人满意的。在Parkin等人的美国专利申请US2011/0194941A1中,公开了一种用于复合叶片的共同固化包壳。虽然不意于发起任何特别解释,但它看来像是公开了一种使用由钛、镍、钛合金或镍合金制成的包壳使MLE与聚合物基质复合物(PMC)叶片结构共同固化的方法。虽然较薄的涡轮发动机翼型件会提高整体叶片效率,从而减少发动机燃料消耗率(SFC),但由钛或其合金制成的MLE的厚度的任何减小都可导致构件的冲击强度降低。
[0005]冲击状况在确定翼型件的大小方面起重要作用。不考虑翼型件的厚度,MLE必须能够经受住与翼型件相同或相似的冲击状况。因此,为了大大减小发动机翼型件的厚度,期望有一种能够经受住相同冲击状况、厚度较小且因此材料量较少的MLE。使用屈服强度较高的较密实的材料允许有整体较薄的结构,从而使得系统机械属性(诸如例如,弯曲强度和径向质量)几乎与由钛或其合金制成的那些相同。航空器发动机研宄和发展的一个特定目标是改进的SFC,其在例如推力输出方面描述发动机设计的燃料效率。由于应用金属前缘来保护下面的复合叶片,所以厚度减小而不损害机械属性的前缘可提高燃料消耗率,同时对复合叶片提供所需的保护。因而,正在努力开发能够改进燃料消耗率而不损害MLE的期望机械属性的材料。


【发明内容】

[0006]本发明提供一种金属前缘(MLE)保护带,其适合用于在涡轮机中使用的类型的复合翼型件上,翼型件包括燃气涡轮发动机的风扇叶片。本发明的实施例进一步涉及作为与已知MLE成分相比,提高强度和密度特性的手段的MLE成分。
[0007]根据本发明的第一方面,提供一种金属前缘保护带,其适于对涡轮机提供冲击保护,金属前缘保护带使用不锈钢或镍基合金形成,其与由钛基合金形成的相同保护带相比,较密实且提供提高的强度和弹性特性。
[0008]本发明的第二方面是一种使用以下步骤来制造具有保护带的翼型件的方法:制造由聚合物基质复合物制成的翼型件;使用蠕变成形工艺或研磨而利用镍基合金或不锈合金制造保护带;使用粘结剂将保护带附连到翼型件;以及使粘结剂固化,以在保护带和翼型件之间形成粘合。
[0009]本发明的第三方面是一种涡轮机的翼型件,其具有受金属前缘保护带保护的前缘,该金属前缘保护带由以下任一制成:镍基超合金,其成分以重量计为:50-55%的镍、17-21% 的铬、2.8-3.33% 的钼、4.75-5.5% 的铌、0-1.0% 的钴、0.65-1.15 钛、0.2-0.8% 的铝、0-0.35%的锰、0-0.3%的铜、0-0.08%的碳、0-0.006%的硼,余量为铁和附带杂质;或者不锈钢合金,其成分以重量计为:14-15%的铬、3.5-5.5%的镍、0-0.45%的铌、2.5-4.5%的铜、高达0.07%的碳、高达1.00%的硅、高达1.00%的锰,余量为铁和附带杂质。
[0010]本发明的技术效果在于能够通过减小MLE的重量和/或厚度来实现燃料消耗率的降低,而基本不损害MLE的机械属性。
[0011]本发明的另一个技术效果在于能够通过引入用以将MLE附连到翼型件上的第二固化步骤来减小残余应力。
[0012]根据以下详细描述,将更好地理解本发明的其它方面和优点。

【专利附图】

【附图说明】
[0013]图1示意性地显示配备有MLE保护带的燃气涡轮发动机的风扇叶片。

【具体实施方式】
[0014]本文描述的实施例大体涉及用于燃气涡轮发动机的翼型件构件的金属前缘(MLE)保护带的成分,以及与某些成分相关联的各种特性和优点。
[0015]图1显示用于燃气涡轮发动机的复合风扇叶片10。叶片10的类型在本领域是已知的,而且其翼型件被显示为具有MLE保护带12。虽然图1显示燃气涡轮发动机的风扇叶片,但应注意的是,本发明不局限于所显示的特定风扇叶片或燃气涡轮发动机的翼型件。
[0016]根据本发明的优选方面,保护带12具有不锈钢或镍基成分。与传统的钛基保护带相比,保护带12的优选成分会展现提高的密度、提高的弹性模数和提高的强度。这三个特性的改进意于帮助在整体上提高保护带12经受住冲击状况的能力。如前面提到的Parkin等人的美国专利申请US2011/0194941A1中描述的那样,当由于以下原因而采用本发明的高强度材料时,使MLE与聚合物基质复合叶片结构共同固化被不认为是不合适的。由于MLE的优选的高强度材料的热膨胀系数(CTE)比钛(其具有大约4.5 ppm/°C的CTE)大大约25-60%,所以与聚合物基质复合物层压材料(具有大约1.0 ppm/°C的CTE )的共同固化操作将提高残余的粘合应力,这在系统的运行期间将是难以管理的。根据本发明的优选方面,使用第二固化操作(之前的聚合物基质复合叶片的固化被称为第一固化)来将保护带12粘合到复合叶片10上,从而允许在较低的温度下固化,以及允许在保护带12和叶片10的下面的复合材料之间有较顺从的粘结剂层。例如,保护带12可借助于粘结剂使用合适的材料和工艺来附连到复合叶片10上,粘结剂可在大约200-250 0F (大约93-121°C )的较低的温度下固化。适合形成这个粘合的粘结剂包括(但不限于)热固性环氧树脂/基于树脂的粘结剂,诸如AF 191,这是3M公司的产品。相比之下,复合叶片10典型地在较高的温度下固化,例如大约325 °F (大约163°C)或更高。因而,由于残余应力减小,温度较低的第二固化工艺是优选方面。在粘合工艺期间,叶片10的复合基本结构和金属MLE保护带12两者都加热到粘结剂固化温度。在粘结剂固化期间,两个工件基于它们的相对CTE而膨胀。在这个升高的粘结剂固化温度下实现粘合,在此之后,组件冷却到室温,从而保持由于CTE失配而引起的残余应力水平。通过使这个粘合固化温度保持尽可能低,CTE失配所产生的残余应力可最大程度地减小。由于在使用诸如镍基或不锈钢合金的高强度材料时,聚合物基质复合叶片和MLE之间的CTE失配会增大,所以使这个粘合固化温度保持最低(例如在大约200-250 0F (大约93-121°C )的范围内)是非常合乎需要的。
[0017]由于上面描述的高强度合金的密度与钛及其合金相比有提高,所以由这些高强度材料制成的保护带12也能够展现类似于用来形成现有技术的MLE的较大量传统钛基合金的那些机械属性的机械属性,尽管比由钛及其合金制成的那些保护带更薄。通过把从前缘到叶片10的下面的复合材料的相同负载传递定为目标,在下面的复合材料中产生的应变与使用传统钛基MLE的较厚的翼型件产生的那些大致相同。因此,将保护带12用于具有比传统MLE更薄且更轻的翼型件是可行的。预计这种翼型件厚度减小在某些情况下提供大约0.26%的风扇效率改进(作为风扇叶片传递单位体积空气所需的能量进行测量)。在考虑由于使用较高密度的MLE的叶片堆的设计要求而可能引起的任何效率损失之后,估计燃料消耗率的整体改进为大约0.1%。
[0018]特别适合带12的成分的示例包括可在名称Inconel?下在市场上获得的某些镍基合金。作为非限制性示例,Inconel 718的报告成分范围以重量计为:50-55%的镍、17-21%的铬、2.8-3.33% 的钼、4.75-5.5% 的铌、0-1.0% 的钴、0.65-1.15 钛、0.2-0.8% 的铝、0-0.35%的锰、0-0.3%的铜、0-0.08%的碳、0-0.006%的硼,余量为铁和附带杂质。其它特别适合带12的合金包括不锈钢,其非限制性示例是15-5PH不锈钢。对于15-5PH不锈钢,典型的成分范围以重量计为:14-15%的铬、3.5-5.5%的镍、0-0.45%的铌、2.5-4.5%的铜、高达0.07%的碳、高达1.00%的硅、高达1.00%的锰,余量为铁和附带杂质。基于比较,与传统钛基MLE材料相比,前面提到的合金提供大约75%的密度提高。这样的较高的密度会协助提高在旋转场下的叶片预应力状况,这会提高叶片10动态地抵抗在冲击负载下变形趋势的能力。与钛相比,Inconel 718和15-5PH使屈服强度提高大约15_30%,以及弹性模数提高大约70%。因此,这些高强度材料抵抗保护带12偏转和将应变传递到下面的复合叶片10中的趋势。这里描述的属性的组合允许整体较薄的带12具有与具有钛基金属前缘的传统叶片大致相同或改进的能力。
[0019]可像以下工艺中描述的那样制造本发明的具有保护带12的翼型件。翼型件(诸如叶片10的翼型件)由聚合物基质复合物形成,其在第一固化温度下经历固化,第一固化温度的非限制性示例为大约325 °F (大约163°C)。例如使用蠕变成形工艺或研磨,保护带12由镍基合金或不锈钢合金形成。然后保护带12使用热固性粘结剂附连到翼型件上,热固粘结剂可在第二固化温度下固化,第二固化温度低于第一固化温度,翼型件的聚合物基质复合物在第一固化温度下固化。例如,这种第二固化温度的范围可为大约200-250 °F (大约93-121?)。第二固化操作在翼型件和保护带12之间形成粘结剂粘合。如前面提到的那样,这个较低温度的固化会在翼型件-保护带组件中引起较小的残余应力。
[0020]虽然已经按照具体实施例来描述了本发明,包括合金的特定成分和属性和由其制成的金属前缘,但是本领域技术人员显然可采用其它形式。因此,应当理解,本发明不局限于特别公开的实施例。因此,本发明的范围仅由所附权利要求限制。
【权利要求】
1.一种适于对涡轮机的翼型件的前缘提供冲击保护的金属前缘保护带(12),所述保护带由不锈钢或镍基合金形成,并且与由钛基合金形成的相同保护带相比,较密实且提供提高的强度和弹性特性。
2.一种涡轮机的翼型件,其具有受权利要求1所述的金属前缘保护带(12)保护的前缘。
3.根据权利要求2所述的翼型件,其特征在于,所述翼型件由聚合物基质复合物形成。
4.根据权利要求1所述的金属前缘保护带(12),其特征在于,所述保护带(12)由镍基合金形成。
5.根据权利要求4所述的金属前缘保护带(12),其特征在于,所述镍基合金以重量计由下者构成:50-55%的镍、17-21%的铬、2.8-3.33%的钼、4.75-5.5%的铌、0-1.0%的钴、0.65-1.15 钛、0.2-0.8% 的铝、0-0.35% 的锰、0-0.3% 的铜、0-0.08% 的碳、0-0.006% 的硼,余量为铁和附带杂质。
6.一种涡轮机的翼型件,其具有受权利要求4所述的金属前缘保护带(12)保护的前缘。
7.根据权利要求6所述的翼型件,其特征在于,所述翼型件由聚合物基质复合物形成。
8.根据权利要求1所述的金属前缘保护带(12),其特征在于,所述保护带(12)由不锈钢合金形成。
9.根据权利要求8所述的金属前缘保护带(12),其特征在于,所述不锈钢合金以重量计由下者构成:14-15%的铬、3.5-5.5%的镍、0-0.45%的铌、2.5-4.5%的铜、高达0.07%的碳、高达1.00%的硅、高达1.00%的锰,余量为铁和附带杂质。
10.一种涡轮机的翼型件,其具有受权利要求8所述的金属前缘保护带(12)保护的前缘。
11.根据权利要求10所述的翼型件,其特征在于,所述翼型件由聚合物基质复合物形成。
12.一种制造具有保护带(12)的翼型件的方法,所述方法包括以下步骤: 制造由在第一温度下固化的聚合物基质复合物形成的翼型件; 使用蠕变成形工艺或研磨来制造由镍基合金或不锈钢合金形成的保护带; 使用粘结剂将所述保护带(12)附连到所述翼型件上;以及 使所述粘结剂在第二温度下固化,以在所述保护带(12)和所述翼型件之间形成粘合,所述第二温度低于所述第一温度。
13.一种使用根据权利要求12所述的方法制造的具有保护带(12)的翼型件。
14.一种涡轮机的翼型件,其具有受以下任一制成的金属前缘保护带(12)保护的前缘:镍基超合金,其以重量计由下者构成:50-55%的镍、17-21%的铬、2.8-3.33%的钼、4.75-5.5% 的铌、0-1.0% 的钴、0.65-1.15 钛、0.2-0.8% 的铝、0-0.35% 的锰、0-0.3% 的铜、0-0.08%的碳、0-0.006%的硼,余量为铁和附带杂质;不锈钢合金,其以重量计由下者构成:14-15%的铬、3.5-5.5%的镍、0-0.45%的铌、2.5-4.5%的铜、高达0.07%的碳、高达1.00%的硅、高达1.00%的锰,余量为铁和附带杂质。
15.根据权利要求14所述的翼型件,其特征在于,所述翼型件由聚合物基质复合物形 成。
【文档编号】F04D29/32GK104508246SQ201380040825
【公开日】2015年4月8日 申请日期:2013年6月28日 优先权日:2012年7月30日
【发明者】J. 克雷 N., 辛 D., W. 戴维斯 T. 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1