专利名称:离心机的制作方法
技术领域:
本发明涉及一种离心机,更具体地,涉及一种离心机的驱动结构,其中从多种转子中选出的合适的转子能够变化并设在最佳的轴上。
背景技术:
传统离心机中,由诸如电动机等的动力发生器产生的转矩通过旋转驱动轴传至转子以使转子旋转。多个试管设置于转子之上,所述试管每个封入试样,试管中的试样通过转子旋转进行离心分离。角度转子、摆动转子等用于这种离心机。试样的数量根据试管变化,依赖于血液等的收集程度。因此,将多个试管放置于转子之上时,整个转子和试管的重心有与旋转轴分离的倾向,即,所谓的质量偏心,所述试管封有不同质量的试样。
如图10所示,角度转子A整体上具有圆的外形,多个试管插入孔以与旋转轴X成预定角度制成。由于本身的固定负载,角度转子A具有相对小的尺寸,并且没有进行严格的离心应力限制。此外,角度转子通过机械加工制成,因此能够获得高的处理精度。并且因为可附上的试管数量小,在旋转过程中质量偏心的倾向小。这样,用于离心机的角度转子A不能一次分离太多数量,但适用于高速旋转范围进行分离,如6000转/分钟到10000转/分钟,所述离心机称为多冷离心机且具有最大约10000转/分钟的转速。虽然高速旋转转子的定义不明确,但所述高速旋转转子用于试样的离心或分离,所述试样离心或分离需要高的离心加速度。
另一方面,如图11所示,在摆动转子状况下,多(四)臂从轴X沿半径方向水平延伸。每个臂的末端分支成两个。邻近臂的相对分支方向设有销轴。具有带底圆筒状的桶枢轴可移动地支撑至每对销轴。每个桶设有与销轴对应的接合部分。所述接合部分是可从销轴上拆卸的。每个桶内设有支架,其中所述支架上制有多个试管孔。试管插在这些试管孔内。分离处理时,这些桶接合并通过销轴悬挂于全部臂上,图11中略去两个桶以便于理解。当设在离心机上的摆动转子S达到预定转速时,由于离心力的作用,每个桶枢轴地在绕销轴移动至水平方向,因此实现试样的成分分离。
摆动转子与角度转子相比更大,有利于更多数量的试管插入。然而,插入更多的试管也意味着试管中试样有更大变化的倾向。摆动转子的旋转半径大,中心部分具有相对小的质量。并且摆动转子S的每个臂有复杂的形状,在许多情况下为了节省制造成本通过铸造而成。这样,尺寸精度就比角度转子A低。并且,每个桶可从销轴上拆卸,以致销轴与桶的接合部分之间有卡嗒声。如上所述,在摆动转子S中,在销轴和接合部分产生的离心应力大。并且,考虑质量,试样间的变化大。因此,质量偏心的倾向与角度转子A相比大的多,而且不适合于高速旋转。因此,摆动转子主要用于大数量的试样分离且转速较低的范围,如2000转/分钟到5000转/分钟。
其次,与轴承的反作用力相关将描述离心机的旋转驱动轴。对于制造适用于低速旋转的大转子的情况,提高旋转轴的刚度,转变弯曲振动频率至高于正常工作范围的速度以提升具有高刚度的工作能力。现基于图12具体说明。图12说明一种旋转情况转子R1同轴地连接到高刚度轴S1上,高刚度轴S1也同轴地连接到电机M的输出轴之上,所述电机M作为动力发生器。高刚度轴意味着这样一种轴在工作旋转速度范围内是刚性的。这时,电机M输出轴通过轴承B支撑于电机外壳或未示出的同类装置中。这里,转子R1的质量是m,几何中心与实际重心的偏差是ε,所述偏差ε由转子不平衡导出,旋转角速度是ω,高刚度轴S1的曲率是ρ,高刚度轴S1的抗挠刚度是k,由不平衡导出的离心力FS表达如下,根据R.Gasch和H.Pfutzner合著的“旋转元件的动力学”,所述“旋转元件的动力学”由Shuzo Miwa翻译,Morikita-shuppan出版。
Fs=mεω2轴承反作用力Fu由下式得到。
Fu×L1=(L1+L2)×Fs
Fu={(L1+L2)/L1}×mεω2从而等到关系Fu∝ω2另一方面,使转子以高速旋转的情况下,弹性轴用来作为旋转驱动轴。这里所述的弹性轴是一种可弹性变形的轴,例如在工作旋转速度范围内弯曲。在弹性轴中,旋转驱动轴的抗挠刚度降低,以使弯曲固有频率旋转时处于低速范围内。即,弹性轴的安装使由不平衡而产生的反作用力在高速侧减小。更明确地,图13说明这样一种旋转状况转子R2同轴地连接于弹性轴S2,且弹性轴S2同轴地连接于电机M的输出轴。此时,电机M输出轴通过轴承B支撑于电机外壳或未示出的同类装置中。这里转子R2的质量是m,几何中心与实际重心的偏差是ε,所述偏差ε由转子不平衡导出,旋转角速度是ω,弹性轴S2的曲率是ρ,高刚度轴S2的抗挠刚度是k,由不平衡导出的离心力Fd如所示。
Fd=m(ε+ρ)ω2=ρk根据此式得出ρ如下。
ρ=mεω2/(k-mω2)如果弯曲固有频率由下式表示(k/m)=ωn,]]>k=mωn2,则得到下式。
ρ=ε×(ω/ωn)2/{1-(ω/ωn)2}这里存在ω/ωn=1,即当旋转速度等于弯曲固有频率(在谐振点),曲率变得无穷大。旋转速度超过固有频率后,曲率趋近于ε。因此,旋转速度超过固有频率后且旋转速度进一步提高,轴承反作用力Fu′呈下列关系。
Fu′∝εk图14中的曲线说明高刚度轴和弹性轴之间轴承反作用力的差异。图中,纵轴代表轴承负载F,横轴代表角速率。由于高刚度轴具有高刚度,其具有好的可用性。然而,随旋转速度的升高,不平衡导致的轴承反作用力急剧增大。另一方面,弹性轴在低速时具有谐振点(1.0的区域)。但是旋转速度超过谐振点后可以得到稳定的高速旋转。注意通过设置一个外部阻尼机构使谐振点的弯曲减小到很低。
鉴于上述,当高速转子和大容量低速转子用在同一个离心机时,如采用弹性轴,高速下能够得到稳定的旋转。然而,如大容量转子附于旋转轴之上,所述轴的刚度低使旋转轴很容易弯曲。某些情况下,旋转轴可能折断。此外,如前所述,在使用者处理试样中具有大容量的转子导致严重不平衡。因此,如大的摆动转子在弹性轴上旋转,旋转轴的弯曲初始固有频率(初始谐振点)会变大,致使旋转转子可能与固定部件接触或旋转轴弯曲而损坏。综上所述,当采用弹性轴时,高速角度转子具有好的可用性而低速摆动转子具有不利的可用性或不能安装。
另一方面,当采用高刚度轴时,低速摆动转子具有好的可用性,但轴承反作用力的升高与旋转速度的平方成比例,所述轴承反作用力由试样不平衡导致。因此,在低速旋转范围内没有问题,除非在高速旋转范围内,轴承所受负荷升高。所以,会出现轴承寿命缩短、滚动声音大的问题。不可避免地去限制试样不平衡的容许数量并使之变小,操作者必须人工调整试管中试样趋于均衡。这是可用性的不利因素。综前所述,使用高刚度轴时,大容量低速转子具有好的可用性,而高速转子具有不利的可用性。
为解决上述的问题而提出本发明,本发明的目的是提供一种其内能选择地安装不同转子,而不用牺牲转子的可操作性的离心机。
发明内容
所述目的通过提供多个轴而实现,所述多个轴用于离心机的驱动部分,并且允许使用合适的轴,所述合适的轴根据所用转子的形状、质量、类型、最大旋转速度等进行选择。
即本发明提供一种离心机,所述离心机用于可选择地安装和旋转至少两个转子中的一个转子,所述两个转子包括第一转子和第二转子,每个转子具有与另一个转子不同的种类或尺寸,所述离心机包括主体;动力发生器,该动力发生器通过主体支撑并且具有一个输出轴,所述输出轴产生转矩,动力发生器通过轴承支撑输出轴;旋转驱动轴,该旋转驱动轴将所选第一转子与输出轴驱动地接合起来,以便将转矩传至第一转子;和支撑轴,该支撑轴支撑所选择的第二转子,支撑轴(a)通过旋转驱动轴经由所选择的第二转子可旋转;或(b)通过直接与输出轴相连可旋转;或(c)不可旋转地延伸,且为支撑轴提供附加的轴承。
由于离心机设有多个轴,能够选择适合于待用转子的轴,以至于试样间的平衡调整可以免去,且不用牺牲转子的可用性。此外,所选择的轴设有轴承,所述轴承具有合适的类型、刚度、尺寸,和/或数量,与待用的转子的形状和/或类型一致。因此,能够延长轴承和离心机装置产品的寿命。
优选地,旋转驱动轴和支撑轴与输出轴同轴。
更优选地,旋转驱动轴具有第一冠状部分,该冠状部分可与第一转子接合以支撑旋转第一转子,并且支撑轴制有空间允许旋转驱动轴延伸穿过,所述支撑轴具有第二冠状部分,该冠状部分可与第二转子相接合以支撑旋转第二转子。因此,仅通过将转子设于冠状部分之上,所选转子可能与合适的轴联系。
更优选地,如果支撑轴由所选择的第二转子通过旋转驱动轴的旋转而可旋转,则支撑轴由主体通过轴承可旋转地支撑,第二转子也与第一冠状部分相连,并且由旋转驱动轴可旋转地驱动,同时该旋转驱动轴由第二冠状部分支撑,此外,优选地,如果支撑轴由所选择的第二转子通过驱动轴的旋转可旋转,则支撑轴与输出轴断开连接,并且支撑来自所选第二转子的轴向负荷和径向负荷或仅支撑所选转子的径向负荷,转矩和/或轴向负荷由旋转驱动轴的冠状部分传至第二转子。
此外,优选地,旋转驱动轴提供一种抗挠刚度,该抗挠刚度与支撑轴的抗挠刚度不同。这样,当第一转子被选用时,在工作旋转速度范围内,旋转驱动轴提供一种弯曲固有频率;当第二转子被选用时,支撑轴以比危险旋转速度低的速度旋转,弯曲固有频率在所述危险旋转速度出现。
此外,旋转驱动轴是弹性轴,支撑轴是高刚度轴,所述高刚度轴在工作旋转速度范围内是刚性的,且其中第一转子具有比第二转子更高的容许旋转速度。
此外,优选地,至少一个圆柱形旋转轴可旋转地设在支撑轴周围,并与支撑轴同轴;并所述至少一个圆柱形旋转轴具有第三冠状部分,用于支撑第三转子,该转子具有与第二转子不同的负荷。
此外,优选地,假设支撑轴不可旋转地延伸,第二转子通过轴承可旋转地支撑至支撑轴,并且第二转子也与第一冠状部分相连,并通过旋转驱动轴旋转,且由第二支撑轴支撑。
可选择地,支撑轴直接与输出轴相连,用于可驱动地旋转第二转子及支撑第二转子。
此外,优选地,至少一个第一销轴从旋转驱动轴的第一冠状部分突出并固定至旋转驱动轴的第一冠状部分,并且至少一个第二个销轴从第一转子的一部分获第二转子的一部分突出并固定至第一转子的一部分或第二转子的一部分,每一部分与第一冠状部位是可连接的。旋转驱动轴的转矩根据第一销轴和第二销轴之间的接触传至第一转子或第二转子。
本发明更进一步提供一种离心机,所述离心机用于可选择地安装和旋转至少两个转子中的一个转子,所述两个转子包括第一转子和第二转子,所述第二转子具有比第一转子的质量偏心率更高的可能性。离心机包括主体;动力发生器,该动力发生器通过主体支撑,并且具有输出轴和支撑输出轴的轴承,所述输出轴产生转矩;旋转驱动轴,该旋转驱动轴将所选第一转子与输出轴驱动的连接起来,使转矩传至第一转子;和可旋转的支撑轴,该支撑轴支撑所选择的第二转子,当第一转子被连接时,旋转驱动轴提供工作旋转速度范围内的弯曲固有频率,支撑轴设有空间,通过此空间旋转驱动轴同轴延伸,并且支撑轴具有比工作旋转速度范围高的弯曲固有频率,而且当支撑轴支撑第二转子时,支撑轴以比危险旋转速度低的速度旋转,弯曲固有频率在所述危险旋转速度出现。
图1是说明根据本发明第一实施例的离心机的完整结构的局部横截面的前视图;图2是说明根据第一实施例的离心机的基本部分的横截面图,左侧和右侧分别说明高速角度转子和低速摆动转子的安装和旋转驱动情况;图3是说明根据本发明第二实施例的离心机的基本部分的横截面图,左侧和右侧分别说明高速角度转子和低速摆动转子的安装和旋转驱动情况;
图4是说明根据本发明第三实施例的离心机的基本部分的横截面图,右侧和左侧分别说明低速摆动转子和超低速大尺寸摆动转子的安装和旋转驱动情况;图5是说明根据本发明第四实施例的离心机的基本部分的横截面图,右侧和左侧分别说明高速角度转子和低速摆动转子的安装和旋转驱动情况;图6说明关于一种结构的修改例,所述结构用于传送旋转轴的转矩至转子;图7是说明根据本发明第五实施例的离心机的基本部分的横截面图,右侧和左侧分别说明高速角度转子和低速摆动转子的安装和旋转驱动情况;图8是说明第五实施例的基本部分的横截面图,该第五实施例是弹性轴、冠状部分、高刚度轴及摆动转子之间位置关系的说明;图9是说明第五实施例中冠状部分和其周围部分的透视图;图10是说明角度转子的透视图;图11是说明配有试管的桶粘附于摆动转子臂上的情况的透视图;图12是说明高刚度轴中由不平衡导致的轴承反作用力的示意图;图13是说明弹性轴中由不平衡导致的轴承反作用力的示意图;图14是说明高刚度和弹性轴之间轴承反作用力之间差异的示意图。
具体实施例方式
现参照图1和图2说明根据本发明的第一实施例的离心机。离心机1包括箱式壳体2,箱式壳体2制有上部的开口端和上部隔离件3以及下部隔离件4,所述隔离件4水平固定于壳体2之上。因此,隔离件将壳体2分成上部室5、中间室6和下部室7。壳体2和隔离件3及4构成主体。上部室5的开口端设有可开/关的盖8。同样,杯型的绝热件10设在上部室5中以限定离心室9。冷却管11用于冷却离心室9的内部,所述冷却管设在绝热件10的内周表面。开口10a(图2)制在绝热件10的底部,在上部隔离件3也设置类似的开口。感应电动机12的电动机外壳13被插入并安置在这些开口的空间内,所述感应电动机12作为动力发生器。电动机外壳13通过橡胶制成的阻尼件14悬挂于上部隔离件3之上。电动机外壳13的主要部分位于中间室6。未出示的冷冻设备设在下部室7内,以使冷却液通过冷却管11循环。
图1中,角度转子17与感应电动机12的转子(输出轴)16通过后述的弹性轴30相连并由其支撑。上部隔离件3也由下部隔离件4通过筋15支撑,所述筋15在中间室6内沿垂直方向延伸。因此,旋转负荷由阻尼件14所吸收,所述旋转负荷由感应电动机7的旋转所致的角度转子17的质量偏心导致。角度转子17和感应电动机12的质量由隔离件3和4以及筋15支撑。此外,角轮18安置在外壳2的底部使离心机可移动。
图2说明用于驱动转子的驱动部分20。该驱动部分20除上述的感应发动12以外,还包括尾架21,所述尾架21也作为感应电动机12的外壳;弹性轴30,所述弹性轴作为旋转驱动轴;高刚度旋转轴34,所述高刚度旋转轴34作为支撑轴;和冠状部分31。如前所述,弹性轴意味着这样一种轴其导致诸如在工作旋转速度范围内的弯曲的弹性变形;高刚度轴意味着这样一种轴其在工作旋转速度范围内是刚性的。尾架12包括凸缘部分22,该凸缘部分22形成电动机外壳13的一部分;和中空轴承支撑部分23,该支撑部分23从凸缘部分22突出并与输出轴16同轴。轴承支撑部分23包括电动机侧小内径部分23a和相对的电动机侧大内径部分23b。凸缘部分22与上述的阻尼件14连接并且被支撑于上部隔离件3。输出轴16由轴承24和轴承25可旋转地支撑以保持来自于输出轴16的轴向负荷,所述轴承24设置在轴承支撑部分23内,所述轴承25设置在电动机外壳13的底部。开口10a通过安装在轴承支撑部分23周围的盖26实现关闭,所述开口10a位于绝热件10的底部。盖26的上表面覆有橡胶元件27以防止由于转子旋转致使空气通过开口10a进入离心室9。
输出轴16的上端侧与弹性轴30的下端同轴相连,并且弹性轴30向上延伸通过轴承支撑部分23内部空间。冠状部分31固定在轴30的上端。弹性轴30设计有低速范围内(几十到几百转/分钟)的初始的固有频率。冠状部分31具有上端,一对销轴32植入所述上端,所述销轴32垂直向上延伸,以便与转子17和36其中之一接合;和下端,所述下端制有锥形部分31A。注意,该对销轴32设置在一个虚拟相同圆周的位置上,但与虚拟圆周的相同直径位置有偏差(见图9)。
直接地在冠状部分31的下部,高刚度轴34由轴承33支撑,所述轴承33设在尾架21的轴承支撑部位23的大内径部分23b。高刚度轴34绕轴是可旋转的,所述轴与弹性轴30和尾架21是同轴的。为了使弹性轴30宽松插入,高刚度轴34的中心部位设有中空部分。锥形部分34A制在轴34的上部,其下部形成直径缩小部分,该直径缩小部分与轴承33接合。注意,锥形部分34A作为第二冠状部分。
图2的左半部分说明高速角度转子17的安装状况。高速角度转子17具有大体上的圆形,如图9所示。本实施例中,设置凹部17a作为转子17的中心连接部分。凹形部位17a具有一种结构,所述结构与冠状部分31的上端及外周形状一致,并与锥形部分31A的形状一致。因此,角度转子17仅与冠状部分31相连,与高刚度轴34间隔开以避免接触,也不与高刚度轴34接合。未出示的一对销轴从凹部17a向下突出。该销轴设在上述冠状部分31的那对销轴32的相同虚拟圆上,并且安装在虚拟圆的直接相对侧。因此,当角度转子17被定位在冠状部分31之上并设置在冠状部分31上时,由于弹性轴30的旋转,冠状部分31的销轴32与角度转子17的销轴接触,使弹性轴30的转矩传至角度转子17。这时,冠状部分31的销轴32不具有180度的间隔,因此防止了角度转子销轴的自由端与冠状部分31销轴的上端匹配和骑在其上。
图2的右半部分说明低速摆动转子36的安装情况,低速摆动转子36具有径向延伸臂37,如图11所示,并且桶38通过未出示的销轴可转动地支撑于臂37。每一个桶38中,固定了制有多个试管插入孔的安装有架39,并且密封试样的试管40插入架39中。注意图2所示的情况说明桶38由于离心力的作用,可以旋转地水平移动,执行试样的离心分离。本实施例中的摆动转子36的每个臂37的基部设有联结部分,所述联结部分具有第一凹部36a和第二凹部36b。第一凹部36a不与冠状部分31的上部和外周接触也不与锥形部分接触,并且第二凹部36b具有可与高刚度轴34的锥形部分34A接触的锥形部分。一对销轴41从第一凹部36a的顶部向下突出。该销轴紧靠冠状部分31的销轴32,并且与上述角度转子17的未出示的销轴类似。
摆动转子36和冠状部分31能仅通过销轴32和41相互接合。摆动转子36与锥形部分34A接触,并安装在高刚度转子34之上。因此,如摆动转子36定位于冠状部分之上并安装在锥形部分34A上,则在弹性轴30旋转时,冠状部分31的销轴32与摆动转子36的销轴接触,使弹性轴30的转矩能够传至摆动转子36。此外,摆动转子36的质量不能由冠状部分31接收而是由高刚度轴的锥形部分34A接收。
用具有上述结构的高速角度转子17实现离心分离的状况下,可以仅在角度转子17和冠状部分31之间仅通过在冠状部分31上设置角度转子17提供动力连接。因此,自角度转子17的轴向负荷和径向负荷由冠状部分31的锥形部分31A接收,以至于角度转子17被弹性轴30旋转地驱动。弹性轴30的初始弯曲固有频率设置在低速范围。加速期间,当旋转速度经过初始弯曲固有频率时振动加剧。然而,由于驱动部分20由上部隔离件3通过阻尼件14支撑,该振动可以减弱,所述阻尼件14具有外部减振功能。在旋转速度超过初始固有频率之后,由于中心自动调整功能,旋转中心向角度转子17的重心位置靠近,以获得稳定的旋转。由于旋转驱动基于弹性轴30,由试管35中的试样变化导致的不平衡力不会与旋转速度的平方成比例增大,不像高刚度轴。
另一方面,用低速摆动转子36实现离心分离的情况下,摆动转子36的质量仅由高刚度轴34支撑,并且摆动转子36与冠状部分31仅通过销轴32和销轴41连接。因此,来自于摆动转子36的轴向负荷和径向负荷由高刚度轴34的锥形部分34A支撑,并且摆动转子36的旋转由轴承33支撑。即,由弹性轴30生产的摆动转子36的旋转传至高刚度轴34,所述高刚度轴34通过锥形部分34A的磨擦力支撑摆动转子36的质量。高刚度轴34通过轴承33相对于尾架21旋转。换言之,当摆动转子36旋转时,弹性轴30仅传递转矩,使摆动转子36由高刚度轴34支撑并与之一起旋转。此时,控制弹性轴30的最大旋转速度使高刚度轴34转速低于危险旋转速度,所述危险旋转速度导致高刚度轴34的初始弯曲固有频率。
如上所述,安装时,高速度角度转子17自动选择弹性轴30,以使来自高速旋转范围的不平衡的对驱动部分的影响(轴承负荷)最小。安装时,低速摆动转子36可由高刚度轴34自动支撑,所述低速摆动转子36具有导致严重不平衡的更大的可能性。因此,低速旋转时的离心分离很容易实现而不用考虑试样的变化。
下面参照图3说明根据本发明第二实施例的离心机。以下描述中的标号与前一实施例相同以避免重复说明。
第一实施例中,高刚度轴34由单轴承33旋转地支撑。相反,第二实施例中,高刚度轴34由两个轴承(轴承)133和133旋转支撑。为了这种效果,高刚度轴134缩小的外径部分的长度可以制作成长于第一实施例,并且,尾架121的轴承支撑部分123的大内径部分123b的轴向长度也可以制作成长于第一实施例的,从而能装配两个轴承。
根据第二实施例的结构,能有效避免高刚度轴134的旋转轴不必要的倾斜,并且可分散作用在轴承133上的反作用力。因此,可以预期的优点在于减小了分别作用在轴承133和轴承24与25(图2)上的负荷而使其寿命延长。
现参照图4,说明根据本发明第三实施例的离心机。第三实施例可以选择设置上述摆动转子36或第二摆动转子136,所述第二摆动转子136比摆动转子36大。因此,除第一实施例中的高刚度轴34,在高刚度轴34的径向方向外部同轴旋转地设置第二高刚度轴234。在尾架221的轴承(轴承)支撑部分223的外周表面制有台阶部分223A,并且,轴承(轴承)223与台阶部分223接合,轴承(轴承)223具有大的负荷承受力。第二高刚度轴234通过轴承233由轴承支撑部分223旋转地支撑。在高刚度轴234的外周表面制有锥形部分234A,所述锥形部分234A能接触到第二摆动转子136的锥形表面。锥形部分234A作为第三冠状部分。
与第一实施例类似,当设置摆动转子36时,摆动转子36只与高刚度轴34接合,并且高刚度轴34和冠状部分31只通过销轴32与41接合。因此,来自于摆动转子36的轴向负荷和径向负荷由锥形部分34A接收,并且摆动转子36经过轴承33通过高刚度轴34由尾架221旋转地支撑。
另一方面,当安装大摆动转子136时,摆动转子136和冠状部分31只通过销轴接合,所述销轴包括销轴32和摆动转子136未示出的销轴,类似摆动转子36。然后,来自于摆动转子36的轴向负荷和径向负荷由锥形部分234A接收,并且摆动转子136经过轴承233通过第二高刚度轴234由尾架221旋转地支撑。即,摆动转子136的旋转传至第二高刚度轴234,所述旋转由弹性轴30的旋转产生,所述第二高刚度轴234通过锥形部分234A的磨擦力支撑摆动转子136的质量,使高刚度轴234相对于尾架221旋转。换言之,在摆动转子136旋转的情况下,弹性轴30仅传递转矩。摆动转子136由第二高刚度轴234支撑并与之一起旋转。大摆动转子136由轴承223支撑,所述轴承(轴承)223具有大的负荷承受力。因此,可以延长轴承233、33、24和25(图2)的寿命,使整个设备的寿命延长。
参照图5,说明根据本发明第四实施例的离心机。本实施例中,转子12的输出轴116向上突出的长度增加,并且弹性旋转轴30与突出部分顶端同轴接合。此外,中空高刚度旋转轴334与输出轴116的顶端部分外周表面同轴相连。锥形表面334A制在高刚度旋转轴334的外周表面,以接纳摆动转子36。
用此结构,角度转子17的设置与第一实施例相同。当摆动转子36安装时,摆动转子36凹部的锥形表面与高刚度旋转轴334的锥形表面334A接触。感应电动机12的转矩直接传至高刚度旋转轴334,使旋转力通过锥形部分334A的磨擦力传至摆动转子36。因此,不需要像上述实施例中一样通过销轴间的接触传递转矩。当转矩大到使作用在销轴上的力矩较大,或当作用在弹性轴30的扭曲力不能忽略时,该结构是有利的。
图6是说明关于扭矩传递的修改例。在上述实施例中,弹性旋转轴30的转矩传递通过销轴32和销轴41的接触来实现。然而,此修改例中,使用螺栓42和43代替销轴。螺栓42使角度转子117和冠状部分131连接,并且螺栓43使摆动转子236与冠状部分131连接。角度转子117的通孔117a不是与螺栓42螺纹接合,而是相对螺栓42可移动的。螺栓42仅与冠状部分131螺纹接合。此外,角度转子117的质量由锥形部分131A支撑。类似地,摆动转子236的通孔236a不与螺栓43螺纹接合,而是相对螺栓43可移动的。螺栓43仅与冠状部分131螺纹接合。此外,角度转子236的质量由高刚度轴34的锥形部分34A支撑,与上述的实施例类似。
下面参照图7和图9,说明根据本发明第五实施例的离心机。在上述实施例中,每个高刚度轴34、134、234和334都是旋转轴。然而,在第五实施例中,作为支撑轴的高刚度轴是固定轴434。尾架421的轴承支撑部分直接用作固定轴434。位于上端侧的固定轴434的外周表面形成缩小的外径部分,并且安装两个轴承333至缩小的外径部分。此外,摆动转子336的接合部分337内凹部336b的内周表面与轴承333的外圈接合,使摆动转子336通过轴承333绕轴承支撑部位(固定轴)434旋转。
与第一实施例类似,高速旋转角度转子17安装时,仅通过在冠状部分231上安装角度转子17,安装角度转子17提供驱动连接。此时,冠状部分231的这对销轴32与角度转子(未出示)的销轴接触。因此,来自于角度转子17的轴向负荷和径向负荷由冠状部分231的锥形部分231A接收,并且由于销轴间的接触,角度转子17由弹性轴30旋转地驱动。由于角度转子17与轴承333间隔开,轴承333不会旋转。
另一方面,当低速旋转摆动转子336安装时,摆动转子336通过轴承333由轴承支撑部分434可旋转地支撑。因此,摆动转子336在径向上的移动受轴承支撑部分434限制。虽然转矩从弹性轴30传至摆动转子336,因为摆动转子336在径向上的移动受到限制,不会出现弹性轴30过度变形,并且没有弹性轴30损坏的危险。换言之,由于摆动转子336接合部位337与轴承333与接合,弹性轴30仅具有传递旋转驱动力和支撑来自摆动转子336的轴向负荷的作用。因此,可在弹性轴30中限制初始弯曲谐振旋转速度时幅度的增大。此外,当以高于初始谐振旋转速度运转时,试样的不平衡导致旋转中心移向质量偏心点。此外,如果转子以高于初始谐振旋转速度旋转,不用考虑由于试样的不平衡导致所用的转子质量偏心旋转,弯曲应力不会强加在弹性轴30上,因为轴承支撑部位434作为刚性固定轴工作。虽然轴承333必须承受大部分由质量偏心导致的负荷,但只要所选轴承适于低速运转并具有较大的直径和承载力,轴承的寿命问题就可解决。这样,本实施例中,角度转子高速旋转,仅与弹性轴30有关联,所述角度转子具有低的质量偏心趋势。关于摆动转子336,只有连接部分337与轴承333接合,所述摆动转子336低速时容易导致质量偏心。因此,轴承333和轴承支撑部分434可用作刚度轴。因此,所述离心机能使较大容量的摆动转子336运转,所述大容量的摆动转子336低速时易导致质量偏心。
根据本发明的离心机并不限于上述的实施例,在权利说明书所述的范围内可以做不同修改。例如,作为动力发生器的电动机并不只限于感应电动机,只要可以获得转矩,可以是其它可利用的电动机,例如直流电动机;和诸如气涡轮机和油涡轮机的流体驱动电动机。
在每个实施例中,转子并不只限于上述的实施例,可以是其它可利用的不同转子,只要这些转子的形状适合于冠状部分或锥形部分。
此外,弹性旋转轴并不只限于上述的实施例,不同材料制成的轴都可用,只要它们的刚度比高刚度轴低。
第四实施例中,如需要,可在尾架321的轴承支撑部位323的凹部的内表面和高刚度轴334外周表面之间插入一个轴承。同样在第四实施例中,弹性轴30可由高刚度旋转轴代替。
图6所示的修改例中,角度转子17的通孔117a不与螺栓42螺纹接合,而是相对螺栓42可移动的。然而,外螺纹能从冠状部分131的上端延伸出来,并且通过通孔117a用螺母螺纹连接,所述外螺纹与弹性轴30同轴。
此外,第一实施例中,冠状部分31的这对销轴32呈180度的间隔排列,安装在电动机侧的销轴也呈180度的间隔排列。既使在这样的情况下,可以防止角度转子上销轴的自由端在一条直线,并且通过使全部销轴的自由端形成锐角,安装在冠状部分31的销轴32的自由端。此外,在每个冠状部分侧和转子侧设置一对销轴。然而,对每一侧至少一个销轴是足够的。
工业适用性当每个装有试样的多个试管放入转子时,实现对试样的离心分离而不用考虑试管中试样的数量变化。因此,使用者只需稍微注意离心机的运转,就导致高的工业适用性。根据本发明的离心机可用于不同领域各种试样的分析和分离,诸如医学、药学、农业等领域。
权利要求
1.一种离心机,用于可选择地安装和旋转至少两个转子中的一个转子,所述两个转子包括第一转子和第二转子,每个转子具有与另一转子不同的种类或尺寸,所述离心机包括主体;动力发生器,该动力发生器由主体支撑并且具有输出轴,所述输出轴产生转矩,所述动力发生器通过轴承支撑输出轴;旋转驱动轴,该旋转驱动轴将所选择的第一转子与输出轴驱动地连接,以将转矩传至第一转子;支撑轴,该支撑轴支撑所选择的第二转子,支撑轴(a)通过驱动轴的旋转经由所选择的第二转子可旋转;或(b)通过直接与输出轴连接可旋转;或(c)不可旋转地延伸,且为支撑轴提供附加的支承。
2.根据权利要求1所述的离心机,其中旋转驱动轴和支撑轴与输出轴同轴。
3.根据权利要求2所述的离心机,其中旋转驱动轴具有第一冠状部分,所述第一冠状部分可与第一转子接合以支撑旋转的第一转子,和其中支撑轴形成有允许旋转驱动轴延伸通过的空间,并且支撑轴具有第二冠状部分,第二冠状部分可与第二转子接合以支撑旋转的第二转子。
4.根据权利要求3所述的离心机,其中如果支撑轴通过旋转驱动轴的旋转经由所选择的第二转子旋转,则支撑轴由主体通过轴承可旋转地支撑,第二转子也与第一冠状部分相连并且由旋转驱动轴可旋转地驱动,同时第二转子由第二冠状部分支撑。
5.根据权利要求3所述的离心机,其中如果通过旋转驱动轴的旋转经由所选择的第二转子支撑轴旋转,支撑轴与输出轴断开连接,并且支撑来自所选第二转子的轴向负荷和径向负荷或仅支撑第二转子的径向负荷,转矩和/或轴向负荷由旋转驱动轴的冠状部分传至第二转子。
6.根据权利要求3所述的离心机,其中旋转驱动轴提供了与支撑轴的抗挠刚度不同的抗挠刚度。
7.根据权利要求6所述的离心机,其中当选择第一转子时,旋转驱动轴提供了在可工作旋转速度范围内的弯曲固有频率;当选择第二转子时,支撑轴以比危险旋转速度低的速度旋转,弯曲固有频率在所述危险旋转速度发生。
8.根据权利要求3所述的离心机,其中旋转驱动轴包括弹性轴,支撑轴包括高刚度轴,所述高刚度轴在可工作旋转速度范围内是刚性的,且其中第一转子具有比第二转子更高的容许旋转速度。
9.根据权利要求3所述的离心机,进一步包括至少一个圆柱形旋转轴,该圆柱形旋转轴可旋转地设置在支撑轴周围且与支撑轴同轴;所述至少一个圆柱形旋转轴具有第三冠状部分,所述冠状部分用于支撑第三转子,第三转子具有与第二转子不同的负荷。
10.根据权利要求9所述的离心机,其中旋转驱动轴包括弹性轴,和其中支撑轴和至少一个圆柱形旋转轴包括高刚度轴。
11.根据权利要求3所述的离心机,其中如果支撑轴不可旋转地延伸,则第二转子通过轴承可旋转地支撑于支撑轴,并且第二转子也与第一冠状部分连接,被旋转驱动轴旋转并由第二支撑轴支撑。
12.根据权利要求3所述的离心机,其中当选择第一转子时,旋转驱动轴提供可工作旋转速度范围内的弯曲固有频率;其中当选择第二转子时,支撑轴以比危险旋转速度低的速度旋转,弯曲固有频率在所述危险旋转速度发生。
13.根据权利要求3所述的离心机,其中支撑轴直接与输出轴连接,用于驱动第二转子旋转并且支撑第二转子。
14.根据权利要求3所述的离心机,进一步包括至少一个第一销轴,其从旋转驱动轴的第一冠状部分突出并固定至旋转驱动轴的第一冠状部分;和至少一个第二销轴,其从第一转子的一部分或第二转子的一部分突出并固定至第一转子的一部分或第二转子的一部分,每一部分可与第一冠状部分相连,旋转驱动轴的转矩通过第一销轴和第二销轴的接触传至第一转子或第二转子。
15.根据权利要求1所述的离心机,其中旋转驱动轴提供了与支撑轴的抗挠刚度不同的抗挠刚度。
16.根据权利要求1所述的离心机,其中支撑轴与输出轴分离,并且支撑来自所选第二转子的轴向负荷和径向负荷或仅支撑此径向负荷,转矩和/或轴向负荷由旋转驱动轴的冠状部分传至第二转子。
17.根据权利要求1所述的离心机,其中动力发生器包括电动机和流体操作电动机之一。
18.一种离心机,用于可选择地安装和旋转至少两个转子中的一个转子,所述两个转子包括第一转子和第二转子,所述第二转子比第一转子具有更高的质量偏心概率,所述离心机包括主体;动力发生器,该动力发生器由主体支撑,并且具有产生转矩的输出轴和支撑输出轴的轴承;旋转驱动轴,该旋转驱动轴将所选择的第一转子与输出轴驱动地连接,以便将转矩传至第一转子;和可旋转支撑轴,其支撑所选择的第二转子;当第一转子被连接时,所述旋转驱动轴提供可工作旋转速度范围内的弯曲固有频率;和所述支撑轴形成有空间,旋转驱动轴通过所述空间同轴延伸,并且支撑轴具有比可工作旋转速度范围高的弯曲固有频率,而且当支撑轴支撑第二转子时,支撑轴以比危险旋转速度低的速度旋转,在所述危险旋转速度支撑轴的正常振动发生。
全文摘要
在离心机室9中,弹性旋转轴30和高刚度旋转轴34同轴延伸。当将转子设置在离心机的室9中时,最优的轴自动与所选择的转子接合,该转子从具有不同的尺寸和形状的角度转子17和摆动转子36中选出。角度转子17由弹性轴30支撑和驱动,该角度转子17具有低的质量偏心倾向,所述弹性轴30适用于高速旋转。具有高的质量偏心倾向的摆动转子34由用于低速旋转的高刚度轴34支撑。转矩从弹性旋转轴传至摆动转子34。
文档编号F16D1/06GK1503698SQ0280834
公开日2004年6月9日 申请日期2002年4月19日 优先权日2001年4月20日
发明者今野达也, 二井内佳能, 三浦雅博, 楠元昭二, 清水隆宽, 二, 佳能, 博, 宽 申请人:日立工机株式会社