校正方法、电子元件的质量检查方法及特性测量系统的制作方法

文档序号:6042057阅读:361来源:国知局
专利名称:校正方法、电子元件的质量检查方法及特性测量系统的制作方法
技术领域
本发明涉及一种用于校正电子元件的电学特性的校正方法,该元件是通过具有由参考测量系统所假定获得的电子特性的测量结果的实际测量系统测量的,该系统与参考测量系统不同;本发明还涉及一种利用电子元件的校正方法的质量检查方法;以及用于在电子元件上执行校正方法的特性测量系统。
2.现有技术的描述在电子元件的电学特性检测过程中,有时,同样的电子元件或者相同的类型的元件是由多个测量系统测量的,例如,一个设置在电子元件制造厂的测量系统以及其它的设置在电子元件的用户端的其它测量系统。
在这种情况下,由于在每个测量系统中测量误差是不同的,测量精度的可再现性是较低的,这样对于同样的电子元件或者同种类型的元件就存在着测量结果的不一致性的问题。
这样的测量误差在一个低频率区域的电子特性测量中是相对较低的,因此在这一点上没有太多的问题。但是,在一个100MHz或者更高的频率区域内,测量系统之间的测量误差是很大的,这样为了提高测量精度的再现性,尤其在几GHz或者更高的高频区域内要执行利用绝对校正方法的校准。
预先提供了一个标准设备,其在于具有一个精确确定的目标电子特性,例如一个打开/短路/装载/通过(open/short/load/through),其中的一个例子是由Agilent技术公司所生产的模型85052B。每一个测量系统的标准设备的各种测量确定每一个测量系统的误差因子。这样,诸如高精度完整两端口校正方法的校准将用于消除确定的误差因子,提高测量可再现性的精度(这样的校正方法以后被称为绝对校正方法)。
以这样的方法,一个测量系统能够通过执行上面描述的使用标准设备的高精度校准来提高测量可再现性的精度。但是,这样的校准仅能够在具有同轴形式的电子元件中(以后被称为同轴类型电子元件)被执行从而能够精确地测量。
但是,上面描述的校准在一个具有非同轴形式的电子元件上执行是有困难的(以后被称为非同轴电子元件)。其原因将在下文进行描述。
制造一个与同轴类型电子元件的性能完全相同的用于非同轴电子元件的标准设备是极端困难的,并且对于一个这样的标准设备制造费用也是极端昂贵的。而且,即使标准设备被生产出来了,以较高的精度来表明其电子性能也是很困难的。
而且,即使准备了一个非同轴类型的电子元件的标准设备,在能够执行高精度校准的测量系统中(例如完整的两端口校正方法),能够执行上面描述的校准的标准设备被限制在实现其值的设备中(典型的,打开/短路/装载/通过(open/short/load/through)),该值除非该元件是同轴类型的元件才能实现。因此,上面涉及的校准方法很难在非同轴类型的电子元件上执行。
在执行一种TRL校准方法中,一种校准方法,一种用于非同轴类型电子元件的标准设备(典型的,through/reflection/line的标准设备),例如波导或者微带线是很容易生产的。但是即使在一个适用于TRL校正方法的标准设备中,以较高的精度来表明电子特性也是困难的。
如上所述,在非同轴类型电子元件的电学特性的测量中,通过执行基于绝对校正方法的校准来提高测量精度是很困难的。因此,到目前为止,在非同轴类型电子元件的电学特性的测量中,在电子元件的连接点的校准没有被执行,但该测量是在被连接到测量设备的状态下进行的,下文将进行描述。
这里提供了一种测量设备,其具有用于测量系统的同轴输入-输出端,同时具有用于非同轴类型电子元件的非同轴输入-输出端。这种测量设备被电连接到一块同轴电缆上,与测量系统的输入-输出终端相连。这样,非同轴类型的电子元件被安装在测量系统中从而使元件的电学特性被测量。此外,最好是,诸如完整两端口校正方法的校准在连接到测量系统的输入-输出端直至顶端的同轴电缆上执行。
在这样的利用测量设备的非同轴类型的电子元件的电学特性测量方法中,校准不能包括测量设备而被执行。因此,测量结果的可再现性是很低的。为了提高测量结果的再现性,需要执行下面的测量系统的调整。
在这种调整中,一个测量系统被看作是具有一个参考测量设备的参考测量系统,另一个被看作是具有实际测量设备的实际测量系统,这样实际测量系统的实际测量设备能够被调整从而从实际的测量系统以及从参考测量系统获得测量结果。尤其是,任意样本(电子元件)的电子特性是由参考测量系统测量的;同样样本的电子特性被实际的测量系统测量,然后,实际的测量设备被调整从而使两个测量结果都等效。调整是如下进行的。
实际的测量设备是这样配备的,连接到测量系统的同轴电缆连接盒被连接到一个具有连接到样本器的输入-输出端的印刷电路板上,其被暴露于基底表面的配线末端。在一个上面描述结构的实际的测量设备中,调整是如下进行的。当印刷电路板上的部分印刷配线被切断,或者焊料被加到印刷电路板上的时候,对测量结果的变化进行测量,并且当获得了与参考测量系统中的测量结果相同的电学特性以后,这种处理结束。
上面描述的电子元件的电学特性的测量方法无论对于同轴类型的电子元件的测量还是对于非同轴类型电子元件的测量都具有下面的问题。
在同轴类型的电子元件的测量方法中,尽管能够得到校准所必需的参考设备,但是它是非常昂贵的,这样就存在着校准成本增加的问题,而且,此外,用于测量电子元件的电学特性的成本也会增加。
在非同轴类型的电子元件的测量方法中,由于上面提到的实际测量设备的调整方法在理论上没有解释,仅是依靠经验和感觉,并且十分的麻烦,因此即使对于一个熟练的人员来说以高精度再现调整也是困难的。
而且,这种实际测量设备的调整方法是一种仅当测量在调整中使用的样本的时候能够保证再现性的方法,当其它的样本被测量的时候,再现性是不能被保证的,这样不得不说再现性是不稳定的。
发明概述因此,本发明的一个主要目的是提供一种测量误差的校正方法,其中实际测量的测量结果被校正到与参考测量系统的测量结果相同的级别上,实际的测量系统与参考测量系统不同。
为了实现上述的目的,提出了一种测量误差校正方法,其中当目标电子元件的电学特性被一个具有与参考测量系统不一致的测量结果的实际测量系统测量以后,测量值被校正为假定由参考测量系统所获得的电学特性,测量误差校正方法包括步骤预先准备一个校正数据获得样本,其通过测量操作产生与目标电子元件的任意电学特性相同的电学特性;分别由参考测量系统和实际测量系统测量校正数据获得样本的电学特性;获得表明参考测量系统的测量结果与实际测量系统的测量结果之间的相互关系的等式;以及通过将实际测量系统测量的目标电子元件的电学特性代入到关系等式中用于计算从而将目标电子元件的电学特性校正为假定由参考测量系统获得的电学特性。因此就提供了下述的功能。
根据具有不确定的电子特性的校正数据获得样本的测量结果,能够获得实际测量系统与参考测量系统之间的关系等式。这样,根据该关系等式目标电子元件的电学特性被校正为假定由参考测量系统所获得的电学特性,这样就除去了使用昂贵的可靠样本和测量设备的调整的校准。而且,电学特性的校正是由理论计算执行的,这样具有任何形状(同轴或非同轴)的电子元件的电学特性测量的可重复性就可以提高。
本发明提出了一种使用关系等式的校正方法的解析相对校正方法以及近似相对校正方法。
为了获得解析相对校正方法的关系等式,本发明可以包括下列步骤分别产生一个用于获得实际测量系统对于信号传送模型的测量实际值的理论等式以及一个用于获得参考测量系统对于信号传送模型的测量实际值的理论等式;根据上述的两个理论等式,产生一个包括一个数学表达式的关系等式,其包括一个不定系数,并且直接和专用地表示实际测量系统的测量实际值以及参考测量系统的测量实际值之间的关系;分别由参考测量系统和实际测量系统测量校正数据获得样本的电学特性;以及通过将两种测量系统测量的校正数据获得样本的电学特性的值代入到关系等式中来确定不定系数。
为了获得近似关系校正方法的关系等式,本发明还包括下述步骤产生一个包含一个n级(n为一个自然数)表达式的关系等式,其包括一个不定系数并且近似的表示实际测量系统的测量值以及参考测量系统的测量值之间的关系;分别由参考测量系统和实际测量系统测量校正数据获得样本的电学特性;以及根据关系等式产生一个不定系数计算等式,以便将两个测量系统所测量的校正数据获得样本的电学特性代入到不定系数计算等式从而确定不定系数。
最好是,测量误差校正在包含在一个目标电子元件中的多个电学特性上被执行。在这种关系中,具有测量系统所测量的彼此不同的电学特性的多个样本被用作校正数据获得样本。因此,关系等式的校正精度被进一步提高。而且,准备具有任意电学特性的校正数据获得样本是充分的,该任意的电学特性不需要确定特性的物理实际值,简化了生产或者可利用性。
最好是,测量误差校正的特性是一个S参数,构成测量系统的测量设备是一个网络分析器。
S参数的例子可以是一个前向方向上的反射系数,前向方向上的传送系数,后向方向上的反射系数,以及后向方向上的传送系数。
接下来将要介绍产生近似相对校正方法中的关系等式的特殊的步骤。
用于产生关系等式的方法包括以下步骤产生接下来的关系等式(B2),它包括一个线性表达式以及接下来的不定系数计算等式(B1a)到(B1d);准备5个具有电学特性的校正数据获得样本,其是由测量测量的测量操作产生的,并且彼此不同,然后分别由参考测量系统和实际测量系统测量校正数据获得样本的S参数(S11n,S21n,S12n,S11n,n1-5的自然数);通过将测量的S参数(S11n,S21n,S12n,S22n)代入到不定系数计算等式(B1a)到(B1d)来确定不定系数(am,bm,cm,dm,m0到4的整数);以及将确定的不定系数(am,bm,cm,dm)插入到关系等式(B2)。S111*S112*S113*S114*S115*=S111MS211MS121MS221M1S112MS212MS122MS222M1S113MS213MS123MS223M1S114MS214MS124MS224M1S115MS215MS125MS225M1a1a2a3a4a0---B1a]]>S211*S212*S213*S214*S215*=S111MS211MS121MS221M1S112MS212MS122MS222M1S113MS213MS123MS223M1S114MS214MS124MS224M1S115MS215MS125MS225M1b1b2b3b4b0---B1b]]>S121*S122*S123*S124*S125*=S111MS211MS121MS221M1S112MS212MS122MS222M1S113MS213MS123MS223M1S114MS214MS124MS224M1S115MS215MS125MS225M1c1c2c3c4c0---B1c]]>S221*S222*S223*S224*S225*=S111MS211MS121MS221M1S112MS212MS122MS222M1S113MS213MS123MS223M1S114MS214MS124MS224M1S115MS215MS125MS225M1d1d2d3d4d0---B1d]]>
S11n*,S21n*,S12n*,S22n*参考测量系统测量的校正数据获得样本的S参数,S11nM,S21nM,S12nM,S22nM实际测量系统测量的校正数据获得样本的S参数。S11*S21*S12*S22*=a1a2a3a4b1b2b3b4c1c2c3c4d1d2d3d4S11MS21MS12MS22M+a0b0c0d0---B2]]>S11*,S21*,S12*,S22*假定由参考测量系统获得的目标电子元件的S参数,S11M,S21M,S12M,S22M实际测量系统测量的目标电子元件的S参数。
产生近似相对校正方法中的关系等式的其它的特殊方法将在下文中进一步描述。
产生关系等式的方法包括以下步骤产生接下来的关系等式(C2a)到(C2d),它包括一个二次表达式以及接下来的不定系数计算等式(C1a)到(C1d);准备15个具有电学特性的校正数据获得样本,其是由测量操作产生的,并且彼此不同,然后分别由参考测量系统和实际测量系统测量校正数据获得样本的S参数(S11p,S21p,S12pS11p,p1-15的自然数);通过将测量的S参数(S11p,S21p,S12p,S11p)代入到不定系数计算等式(C1a)到(C1d)来确定不定系数(aq,bq,cq,dq,q为0-14的整数)以及将确定的不定系数(aq,bq,cq,dq)插入到关系等式(C2a)到(C2d)。

S11p*,S21p*,S12p*,S22p*参考测量系统测量的校正数据获得样本的S参数,S11pM,S21pM,S12pM,S22pM实际测量系统测量的校正数据获得样本的S参数。
S11*,S21*,S12*,S22*假定由参考测量系统获得的目标电子元件的S参数,S11M,S21M,S12M,S22M实际测量系统测量的目标电子元件的S参数。
根据本发明的测量误差校正方法最好被应用于电子元件的质量检查方法中。在这种情况下,在电子元件的质量检查方法中,具有将由参考测量系统测量的所需的电子特性的目标电子元件将被一个实际测量系统所测量从而根据测量的结果检查质量,该实际测量系统具有与参考测量系统的测量值不一致的测量结果。
在根据本发明的检查方法中,实际测量系统测量的目标电子元件的电学特性利用根据本发明的测量误差校正方法而被校正,这样,目标电子元件可以通过将校正的电学特性与所需的电学特性相比较而被检查。因此,目标电子元件的质量能够以较高的精度被检查。
根据本发明,接下来提出了一种电子元件特性测量系统,作为一种能够执行上面描述的测量误差校正方法的测量系统。
一种电子元件特性的测量系统包括测量装置,用于测量目标电子元件的电学特性,测量系统的测量结果与参考测量系统的结果不一致;存储装置,用于存储参考测量系统所测量的电学特性,校正数据获得样本产生与目标电子元件的任意电学特性相同的电学特性;关系等式计算装置,用于计算测量装置所测量的校正数据获得样本的电学特性与参考测量系统所测量的并且存储在存储装置中的校正数据获得样本的电学特性之间的关系式;以及校正装置,用于通过将测量装置所测量的目标电子元件的电学特性代入到关系等式中用于计算从而将目标电子元件的电学特性校正为假定将由参考测量系统所获得的电学特性。
当根据本发明的测量系统被根据解析相对校正方法配置的时候,关系等式计算装置最好包括假定装置,用于假定两个测量系统中的信号传送模型,在测量过程中包含有测量误差因子;产生装置,用于产生一个用于获得实际测量系统对信号传送模型的测量实际值的理论等式以及一个用于获得参考测量系统对信号传送模型的测量实际值的理论等式;产生装置,用于根据上述的两个理论等式,产生一个包括一个数学表达式的关系等式,其包括一个不定系数,并且直接的专用的表示实际测量系统的测量实际值以及参考测量系统的测量实际值之间的关系;测量装置,分别由参考测量系统和实际测量系统测量校正数据获得样本的电学特性;以及确定装置,用于通过将两种测量系统测量的校正数据获得样本的电学特性的值代入到关系等式中来确定不定系数。
当根据本发明的测量系统被根据近似相对校正方法配置的时候,关系等式计算装置最好包括产生装置,用于产生一个包含一个n级(n为一个自然数)表达式的关系等式,其包括一个不定系数并且近似地表示实际测量系统的测量值以及参考测量系统的测量值之间的关系;测量装置,分别由参考测量系统和实际测量系统测量校正数据获得样本的电学特性;以及确定装置,用于将两个测量系统所测量的校正数据获得样本的电学特性代入到计算等式从而确定不定系数。
根据本发明,在将实际测量系统的测量结果校正为参考测量系统的测量结果的过程中,校正不是通过一个传统的绝对校正方法执行的,而是通过一个相对校正方法执行的。下面描述的就是相对校正方法。
相对校正方法就是用于将实际测量系统(包括实际测量设备)测量的目标电子元件的电学特性(样本实际值+实际测量系统的测量误差)校正为假定由参考测量系统(包括参考测量设备)获得的电学特性(样本实际值+参考测量系统的测量误差)的方法。相对校正方法具有这样的特点,就是目标电子元件的样本实际值不局限于是已知的,它也可以是未知的。
本发明提出了一种解析相对校正方法以及近似相对校正方法作为一个相对校正方法。在由解析相对校正方法校正的过程中,包含有两个系统中的测量误差因子的信号传送模型都被假设。在这种情况下,信号传送模型可以充分的与测量误差因子相应,这样,其可以被假定为任意的一个。对于这样的一个信号传送模型,传统的在绝对校正方法中使用的模型也可以被使用。解析相对校正方法原则上能够高精度的校正全部线性误差。但是,解析相对校正方法不能校正非线性误差。解析相对校正方法的这些特点与绝对校正方法相同。
近似相对校正方法是一种当解析等式变得过于复杂的时候利用近似等式替代解析等式的校正方法。在近似相对校正方法中,由于近似等式的近似精度具有局限,所以附加的误差难以避免。但是,在近似相对校正方法中,校正数据获得样本的数目可以被减少。而且,它也能够校正非线性误差。
如上所述,根据本发明,与参考测量系统不绝对一致的测量结果能够被校正为与参考测量系统的测量结果相等。
本发明的其它特点和优点将根据下文参照附加的附图对本发明的描述而变得清楚。
附图的简要说明附

图1是一个平面图,表明根据本发明用于执行测量误差校正方法的测量系统的设备轮廓图;附图2是一个平面图,表明根据本发明的用于执行测量误差校正方法的测量设备的设备图;附图3是一个方框图,表明根据本发明的用于执行测量误差的校正方法的测量系统的结构图;附图4是一个表明根据本发明构成用于执行测量误差校正方法的测量系统的校正数据获得样本以及目标电子元件设备的背部视图;附图5是一个表明根据本发明构成用于执行测量误差校正方法的测量系统的校正数据获得样本的平面图;附图6是一个表明根据本发明构成用于执行测量误差校正方法的测量系统的校正数据获得样本的等价电路框图;附图7是一个表明根据本发明的第一实施例的在执行测量误差校正方法中使用的信号传送模型(误差模型)的示例附图8是一个表明根据本发明的第一实施例执行测量误差校正方法中获得的校正数据的曲线图;附图9是一个表明根据本发明的第一实施例执行测量误差校正方法中获得的校正数据的曲线图;附图10是一个表明根据本发明的第一实施例执行测量误差校正方法中获得的校正数据的曲线图;附图11是一个表明根据本发明的第二实施例的在执行测量误差校正方法中使用的信号传送模型(误差模型)的例子的图;附图12是一个表明根据本发明的第一实施例执行误差校正方法中获得的校正数据的曲线图;附图13是一个表明根据本发明的第二实施例的执行测量误差的校正方法所获得的校正数据的图表;附图14是一个表明根据本发明的第三实施例的执行测量误差的校正方法所获得的校正数据的图表;附图15是一个表明根据本发明的第二实施例以及实际测量结果的执行测量误差的校正方法所获得的校正数据的曲线图;附图16是一个表明根据本发明的第三实施例以及实际测量结果的执行测量误差的校正方法所获得的校正数据的曲线图。
尽管本发明已经参照特定的实施例进行描述,但是本发明的其它的变形或者改变以及其它的应用对于本领域的技术人员来说将是显而易见的。因此,本发明并不仅局限于这里的特定公开中,仅是由随后的权利要求来确定。
优选实施例的描述第一实施例根据第一实施例,当用于测量的目标电子元件--表面SAW(声表面波)滤波器的电特性被一个具有一个网络分析器的测量系统测量的时候,本发明被结合在测量误差的校正方法中。
附图1是一个表明根据本实施例的测量系统的结构的平面图;附图2是表明测量设备的结构的平面图;附图3是表明实际的测量系统的网络分析器的结构方框图;附图4是表明用于测量的电子元件以及校正数据获得样本的背部视图;附图5是表明校正数据获得样本的平面图;以及附图6是表明校正数据获得样本的等价电路图。
构成参考测量系统1和实际测量系统2的测量系统,如图1所示,包括网络分析器3A和3B,同轴电缆4A和4B,以及测量设备5A和5B。而且,网络分析器3A和测量设备5A被提供在参考测量系统1中,而网络分析器3B和测量设备5B被提供在实际测量系统2中。
网络分析器3A和3B是用于测量在高频使用的电子元件的电学特性的测量系统,并且每一个都具有一个具有两个端口的输入-输出接口(端口1和端口2)。对于端口1和2,同轴电缆4A和4B被分别连接。同轴电缆4A和4B的其它端口被提供到同轴电缆连接器6。
测量设备5A和5B,如图2所示,包括一个绝缘基底7,一个配线连接器8,以及同轴连接器9A和9B。形成在绝缘基底7的表面7a上的配线连接器8包括信号传送介质8a和8b,以及接地线8c到8f。在绝缘基底7的表面7a上,信号传送介质8a和8b分别从基底的两端向基底的中央延伸,这样,两个延伸端被配置在基底表面7的中央,彼此相对,中间留有预定的分隔空间。接地线8c到8f被分别配置在基底表面7的中央,信号传送介质8a和8b两边。位于传送介质8a的那边的线8a和8b以及位于传送介质8b的那边的线8e和8f被配置在基底表面7的中央,彼此相对并且具有一定的分隔距离(同样都相对于信号传送介质8a和8b)。
信号传送介质8a和8b被连接到基底末端的同轴电缆连接器9A和9B的内部配线连接器(未视出)。地线8c到8f通过中空的连接器10连接到基底的背部表面的接地电路图(未示出)。地线8c到8f被进一步通过接地电路图连接到同轴电缆连接器9A和9B的外部配线连接器上(未示出)。
在图2中,参考测量系统1的测量设备5A(以后被称为参考测量设备)以及实际测量系统2的测量设备5B(以后被称为实际测量设备)具有同样的形状。但是它们不必是相同的。尤其是,实际测量系统5B可以具有与参考测量系统5A完全不同的形状,例如适用于自动对测量系统的形状。
构成实际测量系统2的网络分析器3B,如图3所示,包括一个网络分析器部分20以及控制单元21。控制单元21包括一个控制单元部分22,一个存储器23,一个关系等式计算装置24以及一个校正装置25。
目标电子元件11A以及校正数据获得样本11B,如图4所示,包括传送介质终端12a和12b,或者伪传送介质终端14a和14b,以及接地终端12c到12f,或者伪接地终端14c到14f,其形成在背部基底11a上。将目标电子元件11A的背部表面11a与测量设备5的表面7a上的校正数据获得采样11B相连,传送介质终端12a和12b(或者伪传送介质终端14a和14b)以及地线终端12c和12f(或者伪地线终端14c和14f)分别在信号传送介质8a和8b以及地线8c到8f处被压力接合。因此,目标电子元件11A和校正数据获得样本11B被分别配置在测量设备5A和5B上用于测量。
根据该实施例,对于校正数据获得样本11B,样本被配置成产生一个如测量系统1和2的测量操作所产生的目标电子元件11A的任意电子特性的相同的电子特性。而且,根据本实施例,对于校正数据获得样本11B也被配制成多个具有与测量系统所产生的电子特性彼此不同的采样值11B1-6。
校正数据获得采样11B1-6,如图5所示,包括一个具有与目标电子元件11A相同形状的框架。框架13被配置成具有伪传送介质终端14a和14b以及伪地线终端14c到14f,这些分别与目标电子元件11A的传送介质终端12a和12b以及地线终端12c到12f的排列相同。这些伪传送介质终端14a和14b以及伪地线终端14c到14f通过侧表面从框架13的底部表面向顶部表面13a延伸。伪传送介质终端14a和14b以及伪地线终端14c到14f在顶部表面13a上的这些延伸的终端分别构成了装配终端15a到15f。
在彼此邻近的装配终端(15a和15b),(15a和15d),(15a和15c),(15b和15e),以及(15b和15f)之间,配置了由电阻元件构成的电学特性调整元件16a到16e。
在具有以这样的方式安装于其上的电学特性调整元件16a到16e的校正数据获得样本11B1-6中,如图6的等价电路所示,在输入和输出终端17A和17B之间,配置了电阻元件R1。在输入和输出终端17A和17B以及隐含的地线之间配置了电阻元件R2和R3。电学特性调整元件16a到16e的任意设定的电学特性(电阻元件的电阻值)使校正数据获得样本11B1-6的特性(测量系统所测量的电学特性)能够被随意设定。根据本实施例,不需要预先将测量系统的测量操作所产生的电学特性的精确值设定成校正数据获得样本11B1-6。因此,制造校正数据获得样本11B1-6的成本就会降低。
根据本实施例以及由测量系统所执行的测量误差的校正方法(解析相对校正方法)将在下文中进行描述。
首先,将描述其要点。对于在非同轴类型样本的高频特性测量中存在的普遍问题,对于不同的测量系统,特性的测量结果(分散系数,等)彼此不同。尤其是,包括一个保证用户质量的设备(参考测量设备5A)的测量系统的校正数据获得样本11B的测量结果(参考测量系统1)与包括用于传递检查的设备(实际测量设备5B)的测量系统(实际测量系统2)的校正数据获得样本11B的测量结果不同。测量结果之间的差异使得用户在传递检查(inspection)上的质量无法保证。
这样,根据本实施例,为了克服这样的问题,参考测量系统1的测量结果通过使用相对校正方法的计算而根据实际测量系统的测量结果来假设。
根据本实施例的校正方法(解析相对校正法)的原则将在下文中进行描述,这种方法是与两端口不平衡测量系统相对应的。
首先,测量系统的(参考测量系统1和实际测量系统2)的误差因子根据如图7所示的信号传送模型被模拟。图7所示的信号传送模型与通常所使用的2-端误差模型是相同的。在图中,Src是应用到测量系统的激励,特别信号源输出分散系数测量是特殊的测量,以使之成为参考;S11A、S21A、S12A和S22A是在通常测量中获得的样本分散系数;S11M、S21M、S12M和S22M是分散系数的观察值;EDF和EDR是前向和后向的方向的方向误差;ERF和ERR是前向和后向方向的反映频率响应误差;ESF和ESR是前向和后向方向的源匹配;ELF和ELR是前向和后向方向的负载匹配;ETF和ETR是前向和后向方向的传送频率响应误差;EXF和EXR是前向和后向方向的泄漏图7所示的信号传送模型(误差模型)是一个用于同轴测量系统的非常精确的模型。严格的说,它对于非同轴的测量系统不是很精确,这是由于泄漏处理部分地偏离实际的物理现象的事实造成的。
根据本实施例,该信号传送模型(误差模型)已经被采用,因为尽管严格的说,对于一个非同轴的测量系统而言,它不是非常的精确,但是它已经被世界上所广泛使用了很长一段时间了。但是,根据需要,可以制造出一个更为精确的信号传送模型从而推论出相对校正方法的规则。尽管图7示出的信号传送模型在测量设备发生泄露的时候可能导致一些误差,但是当测量设备仅是有较小的泄露(具有较好的隔离)的时候,误差是非常小的。
如果整个的误差因子与信号传送模型中的相同。根据校正数据获得样本11B1-6的测量值(S11M,S21M,S12M,S22M),根据理论上的等式(A1a)到(A1d)可以获得分散系数的实际值(S11A,S21A,S12A,S22A)。理论等式(A1a)到(A1d)能够通过根据图7所示的信号传送模型所建立起来的等式来推论。S11A=((S11M-EDF)*(ESR*(S22M-EDR)/ERR+1)/ERF-ELF*(S12M-EXR)*(S21M-EXF)/(ETF*ETR))/((ESF*(S11M-EDF)/ERF+1)*(ESR*(S22M-EDR)/ERR+1)-ELF*ELR*(S12M-EXR)*(S21M-EXF)/(ETF*ETR))…(A1a)S21A=(S21M-EXF)*((ESR-ELF)*(S22M-EDR)/ERR+1)/(ETF*((ESF*(S11M-EDF)/ERF+1)*(ESR*(S22M-EDR)/ERR+1)-ELF*ELR*(S12M-EXR)*(S21M-EXF)/(ETF*ETR)))…(A1b)S12A=((ESF-ELR)*(S11M-EDF)/ERF+1)*(S12M-EXR)/(ETR*((ESF*(S11M-EDF)/ERF+1)*(ESR*(S22M-EDR)/ERR+1)-ELF*ELR*(S12M-EXR)*(S21M-EXF)/(ETF*ETR)))…(A1c)S22A=((ESF*(S11M-EDF)/ERF+1)*(S22M-EDR)/ERR-ELR*(S12M-EXR)*(S21M-EXF)/(ETF*ETR))/((ESF*(S11M-EDF)/ERF+1)*(ESR*(S22M-EDR)/ERR+1)-ELF*ELR*(S12M-EXR)*(S21M-EXF)/(ETF*ETR))…(A1d)当校正数据获得样本11B1-6,其中分散系数实际值为(S11A,S21A,S12A,S22A),被测量之后,在参考测量系统1中,分散系数值(S11D,S21D,S12D,S22D)被测量,同时在实际参考测量系统2中,分散系数值(S11M,S21M,S12M,S22M)被测量。
在下文的描述中,参考测量系统1(测量设备5A)的误差因子采用在误差因子的名称上加上脚标1来表示,如EDP1,而实际测量系统2(测量设备5B)的误差因子利用在误差因子的名称上加上脚标2来表示,例如,EXR2.误差因子的名称与图7所示的相应。
其中,校正数据获得采样11B的分散系数实际值(S11A,S21A,S12A,S22A),参考测量系统1(测量设备5A)以及实际测量系统2(测量设备5B)的误差因子的值实际上都是不可能知道的。但是,参考测量系统1的测量值(S11D,S21D,S12D,S22D)以及实际测量系统2的测量值(S11M,S21M,S12M,S22M)都是可以通过实际的测量知道的。
根据本实施例,相对校正方法的目的是根据实际测量系统2的测量值来获得参考测量系统1的测量值。
假设参考测量系统1(测量设备5A)与实际测量系统2(测量设备5B)的误差因子是相同的。此时,当表明参考测量系统1和实际测量系统2的每一个测量值与其分散系数之间的关系的理论算术等式被根据前面所述的理论等式(A1a)到(A1d)考虑的时候,下面的理论算术等式(A2a)到(A2d)以及理论算术等式(A3a)到(A3d)将被实现。这些理论算术等式表明样本分散系数能够根据测量值由测量系统1和2(测量设备5A和5B)计算,只要测量系统1和2(测量设备5A和5B)的误差因子相同。S11A=((S11D-EDF1)*(ESR1*(S22D-EDR1)/ERR1+1)/ERF1-ELF1*(S12D-EXR1)*(S21D-EXF1)/(ETF1*ETR1))/((ESF1*(S11D-EDF1)/ERF1+1)*(ESR1*(S22D-EDR1)/ERR1+1)-ELF1*ELR1*(S12D-EXR1)*(S21D-EXF1)/(ETF1*ETR1))…(A2a)S21A=(S21D-EXF1)*((ESR1-ELF1)*(S22D-EDR1)/ERR1+1)/(ETF1*((ESF1*(S11D-EDF1)/ERF1+1)*(ESR1*(S22D-EDR1)/ERR1+1)-ELF1*ELR1*(S12D-EXR1)*(S21D-EXF1)/(ETF1*ETR1)))…(A2b)S12A=((ESF1-ELR1)*(S11D-EDF1)/ERF1+1)*(S12D-EXR1)/(ETR1*((ESF1*(S11D-EDF1)/ERF1+1)*(ESR1*(S22D-EDR1)/ERR1+1)-ELF1*ELR1*(S12D-EXR1)*(S21D-EXF1)/(ETF1*ETR1)))…(A2c)S22A=((ESF1*(S11D-EDF1)/ERF1+1)*(S22D-EDR1)/ERR1-ELR1*(S12D-EXR1)*(S21D-EXF1)/(ETF1*ETR1))/((ESF1*(S11D-EDF1)/ERF1+1)*(ESR1*(S22D-EDR1)/ERR1+1)-ELF1*ELR1*(S12D-EXR1)*(S21D-EXF1)/(ETF1*ETR1))…(A2d)S11A=((S11M-EDF2)*(ESR2*(S22M-EDR2)/ERR2+1)/ERF2-ELF2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2))/((ESF2*(S11M-EDF1)/ERF2+1)*(ESR2*(S22M-EDR2)/ERR2+1)-ELF2*ELR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2))…(A3a)S21A=(S21M-EXF2)*((ESR2-ELF2)*(S22M-EDR2)/ERR2+1)/(ETF2*((ESF2*(S11M-EDF2)/ERF2+1)*(ESR2*(S22M-EDR2)/ERR2+1)-ELF2*ELR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)))…(A3b)S12A=((ESF2-ELR2)*(S11M-EDF2)/ERF2+1)*(S12M-EXR2)/(ETR2*((ESF2*(S11M-EDF2)/ERF2+1)*(ESR2*(S22M-EDR2)/ERR2+1)-ELF2*ELR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)))…(A3c)S22A=((ESF2*(S11M-EDF2)/ERF2+1)*(S22M-EDR2)/ERR2-ELR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2))/((ESF2*(S11M-EDF2)/ERF2+1)*(ESR2*(S22M-EDR2)/ERR2+1)-ELF2*ELR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2))…(A3d)顺便提一句,如果同样的样本被参考测量系统1和实际测量系统2来测量,理论算术等式(A2a)到(A2d)以及理论算术等式(A3a)到(A3d)之间的样本分散系数就相同了。这样,当样本分散系数(S11A,S21A,S12A,S22A)从每一个理论算术等式(A2a)到(A2d)以及理论算术等式(A3a)到(A3d)中除去的时候,就能够获得下面的关系等式(A4a)到(A4d)。关系等式(A4a)到(A4d)表明参考测量系统1和实际测量系统2的测量结果之间的关系。S11D=EDF1+ERF1*((-ESR1*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)+ELF2*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-ELF2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)+ELF1*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)-(S11M-EDF2)/ERF2))/(ESF2*ESR1*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-ESF1*ESR1(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-ELF2*ESF2*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)+ELF2*ESF1*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-ESR1*(S22M-EDR2)/ERR2+ELF2*(S22M-EDR2)/ERR2+ELF2*ESF2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)-ELF1*ESF2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)-ELF2*ELR1*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)+ELF1*ELR1*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)+ESF2*(S11M-EDF2)/ERF2-ESF1*(S11M-EDF2)/ERF2-1)…(A4a)[公式15]S21D=EXF1+ETF1*(-(S21M-EXF2)*(ESR1*(S22M-EDR2)/ERR2-ELF1*(S22M-EDR2)/ERR2+1))/(ETF2*(ESF2*ESR1*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-ESF1*ESR1*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-ELF2*ESF2*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)+ELF2*ESF1*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-ESR1*(S22M-EDR2)/ERR2+ELF2*(S22M-EDR2)/ERR2+ELF2*ESF2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)-ELF1*ESF2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)-ELF2*ELR1*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)+ELF1*ELR1*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)+ESF2*(S11M-EDF2)/ERF2-ESF1*(S11M-EDF2)/ERF2-1))…(A4b)S12D=EXR1+ETR1*((-ESF1*(S11M-EDF2)/ERF2+ELR1*(S11M-EDF2)/ERF2-1)*(S12M-EXR2))/(ETR2*(ESF1*ESR2*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-ELR2*ESR2*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-ESF1*ESR1*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)+ELR2*ESR1*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)+ESR2*(S22M-EDR2)/ERR2-ESR1*(S22M-EDR2)/ERR2+ELR2*ESR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)-ELR1*ESR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)-ELF1*ELR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)+ELF1*ELR1*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)-ESF1*(S11M-EDF2)/ERF2+ELR2*(S11M-EDF2)/ERF2-1))…(A4c)[公式17]S22D=EDR1+ERR1*((-ESF1*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)+ELR2*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-(S22M-EDR2)/ERR2-ELR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)+ELR1*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)))/(ESF1*ESR2*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-ELR2*ESR2*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)-ESF1*ESR1*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)+ELR2*ESR1*(S11M-EDF2)*(S22M-EDR2)/(ERF2*ERR2)+ESR2*(S22M-EDR2)/ERR2-ESR1*(S22M-EDR2)/ERR2+ELR2*ESR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)-ELR1*ESR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)-ELF1*ELR2*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)+ELF1*ELR1*(S12M-EXR2)*(S21M-EXF2)/(ETF2*ETR2)-ESF1*(S11M-EDF2)/ERF2+ELR2*(S11M-EDF2)/ERF2-1)…(A4d)
以这种方式获得的关系等式(A4a)到(A4d)要根据实际测量系统2(测量设备5B)所测量的测量值(S11M,S21M,S12M,S22M)来重新排列。而且,为了简化重排的等式,误差因子可以适当的用变量来代替。这样,就能够得到下面的关系等式(A5a)到(A5d)。在关系式OLE-LINK1(A5a)到(A5d)OLE-LINK1中,a0,a1,a3,b0,b1,b3,c0,c1,c3,d0,d1,e0,e1,e3,f0,f1,k和m总共18个系数,以EXF1,EXR1,EXF2,EXR2,总共4个系数,都是包含在关系等式中的不定系数。对S11D,S21D,S12D,S22D而言,在等式的右边部分的分母中使用的不定系数采用同样的标记表示,表明每一个系数彼此是完全相同的。S11D=(c0*S11M*S22M+c1*(S12M-EXR2)*(S21M-EXF2)+k*c0*S11M+c3*S22M+k*c3)/a0*S11M*S22M+a1*(S12M-EXR2)*(S21M-EXF2)+k*a0*S11M+a3*S22M+k*a3)…(A5a)S21D=EXF1+(d0*(S21M-EXF2)*S22M+d1*(S21M-EXF2))/(a0*S11M*S22M+a1*(S12M-EXR2)*(S21M-EXF2)+k*a0*S11M+a3*S22M+k*a3)…(A5b)S12D=EXR1+(e0*(S12M-EXR2)*S11M+e1*(S12M-EXR2))/(b0*S11M*S22M+b1*(S12M-EXR2)*(S21M-EXF2)+m*b0*S11M+b3*S22M+m*b3)…(A5c)S22D=(f0*S11M*S22M+f1*(S12M-EXR2)*(S21M-EXF2)+m*f0*S22M+f3*S11M+m*f3)/(b0*S11M*S22M+b1*(S12M-EXR2)*(S21M-EXF2)+m*b0*S22M+b3*S11M+m*b3)…(A5d)
在这样产生的关系等式(A5a)到(A5d)中,能够充分的判断前面确定的22个不定系数。这些关系等式(A5a)到(A5d)是有理表示,并且泄漏可以最大程度的假设为可以忽略的,其中两个变量(例如a0和b0)被设定为1作为参考。
根据上面的描述,关系等式(A5a)到(A5d)的不定系数的数目实际上是16。
而且,当一个样本被测量的时候,可以得到四个等式。
根据上面的描述,当四个校正数据获得样本11B被测量的时候,包含在关系等式(A5a)到(A5d)中的不定系数能够被理论地确定。
但是,不定系数k和m出现了,其为其它参数的乘积,并且确定在关系等式(A5a)到(A5d)中出现的不定系数很不容易。这样,尽管在一定程度上校正数据获得样本11B所需的数目增加了,但是不定系数的计算能够被简化,这种简化能够通过将其它参数的乘积所产生的系数k和m作为一个独立的变量从而使等式线性化。这些置换的结果被显示在关系等式(A6a)到(A6d)。在这些关系等式中,不定系数是a0到a4,b0到b4,c0到c4,d0,d1,e0到e4,f0,f1,这些总共22个系数,以及EXF1,EXR1,EXF2,EXR2四个系数。S11D=(c0*S11M*S22M+c1*(S12M-EXR2)*(S21M-EXF2)+c2*S11M+c3*S22M+c4)/(a0*S11M*S22M+a1*(S12M-EXR2)*(S21M-EXF2)+a2*S11M+a3*S22M+a4)…(A6a)S21D=EXF1+(d0*(S21M-EXF2)*S22M+d1*S21M)/(a0*S11M*S22M+a1*(S12M-EXR2)*(S21M-EXF2)+a2*S11M+a3*S22M+a4)…(A6b)S12D=EXR1+(e0*(S12M-EXR2)*S11M+e1*(S12M-EXR2))/(b0*S11M*S22M+b1*(S12M-EXR2)*(S21M-EXF2)+b2*S11M+b3*S22M+b4)…(A6c)S22D=(f0*S11M*S22M+f1*(S12M-EXR2)*(S21M-EXF2)+f2*S11M+f3*S22M+f4)/(b0*S11M*S22M+b1*(S12M-EXR2)*(S21M-EXF2)+b2*S11M+b3*S22M+b4)…(A6d)
在关系等式(A6a)到(A6d)中,四个系数EXF1,EXR1,EXF2,EXR2被称为端口之间的所谓的泄漏,它们在具有较好的隔离的测量系统1和2(测量设备5A和5B)中可以被忽略。在这种情况下,可以将这些不定系数简单的设置为0。即使在不被忽略的时候,端口之间的泄漏也可以简单地被估计。例如,没有附带有校正数据获得样本11B的测量系统1和2(测量设备5A和5B)的分散系数的测量值可以适当的被认为是端口之间的泄漏。通过使用这样的合适的方法来对这些泄漏误差进行确定所执行的变量的替代使关系等式(A6a)到(A6d)能够重新排列成下面的关系等式(A7a)到(A7d)。这种变量的替代简化了公式,因此下面将描述替代之后的处理。S21W=S21M-EXF2…(A7a)S12W=S12M-EXR2…(A7b)S21V=S21D-EXF1…(A7c)S12V=S12D-EXR1…(A7d)剩余的不定系数24构成了等式的右边部分,关系等式(A6a)到(A6d)基本上是有理表示的,这样包含在分子和分母中的至少一个系数能够被任意的确定。例如,假设a0和b0都为1,并且当等式被排列成矢量等式的时候,关系等式(A6a)到(A6d)可以进一步的被排列成下面的等式(A8a)到(A8d)。在关系等式(A8a)到(A8d)中的符号t表示一个矢量,其中列被行所代替。(-S11D*S12W*S21W-S11D*S11M-S11D*S22M-S11DS11M*S22MS12W*S21WS11MS22M1)(a1a2a3a4c0c1c2c3c4)t=S11D*S11M*S22M…(A8a)(-S21V*S12W*S21W-S21V*S11M-S21V*S22M-S21VS21W*S22MS21W)(a1a2a3a4d0d1)t=S21V*S11M*S22M…(A8b)(-S12V*S12W*S21W-S12V*S11M-S12V*S22M-S12VS12W*S11MS12W)(b1b2b3b4e0e1)t=S12V*S11M*S22M…(A8c)(-S22D*S12W*S21W-S22D*S11M-S22D*S22M-S22DS11M*S22MS12W*S21WS11MS22M1)(b1b2b3b4f0f1f2f3f4)t=S22D*S11M*S22M…(A8d)
应当注意样本分散系数(S11A,S21A,S12A,S22A)没有包含在关系等式(A8a)到(A8d)中,并且22个不定系数仅被包含在其中。就是说,用参考测量系统1(测量设备5A)和实际测量系统2(测量设备5B)测量一个校正数据获得样本11B,我们能够获得关系等式(A8a)到(A8d)。
因此,用参考测量系统1(测量设备5A)和实际测量系统2(测量设备5B)测量5.5个(22/4,实际上是6)校正数据获得样本11B1-6,能够使得在关系等式(A8a)到(A8d)中所用的全部不定系数被确定。
如上所述,当泄漏误差(EXF1,EXR1,EXF2,EXR2)没有被消除的时候,需要一个附加的校正数据获得样本11B来测量它们,这样总共就需要7个校正数据获得样本11B1-7。
一旦不定系数被确定以后,参考测量系统(参考测量设备)所测量的值就能够根据实际测量系统2(实际测量设备5A)所测量的任意目标电子元件11A的值,利用关系等式(A8a)到(A8d)进行计算。
利用关系等式(A8a)到(A8d)确定不定系数可以采用任何方法;但是没有计算机将是非常的麻烦。下面将要描述一个利用计算机来确定不定系数的方法的例子。
首先,测量系统1和2(测量设备5A和5B)的本征泄漏误差(EXF1,EXR1,EXF2,EXR2)通过在没有校正数据获得样本11B1-6附着在测量设备5A和5B的状态下测量分散系数来确定。这样,接下来,六个校正数据获得样本11B1-6的乘积的特性(分散系数)被参考测量系统1(参考测量设备5A)和实际测量系统2(实际测量设备5B)测量。因此,就能够得到每一参考测量系统1和实际测量系统2的六个测量值。校正数据获得样本11B1-6的测量值以最后的脚标来区分,例如S11D1,S11D2,...,S11D6,以及S11M1,...,S11M6。
接下来,校正数据获得样本11B1-6的测量值被代入到关系等式(A8a)到(A8d)中,并且校正数据获得样本11B6的测量值被代入到关系等式(A8a)。接下来通过将这些测量值的替代等式重新排列成行列式,就能够获得下面的等式(A9)。
由于等式(A9)中的系数矩阵的参数和右边部分的常量矢量都是已知的,等式(A9)仅是一个对于不定系数(a1到a4,c0到c4,d0以及d1)而言的11系统耦合线性等式。通过使用一种已知的诸如LU分解和Gaussian消除的方法通过计算机来获得确定的系数是很容易的。相似的,根据关系等式(A8c)和(A8d),就能够获得不定系数(b1到b4,e0到e4,f0和f1)。
由于在许多情况下,泄漏误差相对简单的被确定,根据上面描述的实施例,泄漏误差首先被个别的确定,然后,参考测量系统1和实际测量系统2的测量值之间的差,其是由剩余误差的影响所产生的,利用校正数据获得样本11B1-6来校正。此外,参考测量系统1和实际测量系统2的测量值之间的差,其也包括泄漏误差,可以利用校正数据获得样本11B1-6来校正。
根据本发明,描述了两端口测量系统;但是,一端口以及三或者更多端口的测量系统当然也可以被包含在本发明当中。
根据本实施例,描述了通常使用的两端口误差模型(信号传送模型);但是,差误差模型(信号传送模型)当然可以包含在本发明中,与诸如设备的测量系统相应。
在关系等式(A4a)到(A4d)中,如果参考测量系统1(测量设备5A)的误差因子是一个绝对没有误差的测量系统的值,就是说,当EXF=0,EXR=0),EDF=0,EDR=0,ERF=1,ERR=1,ESF=0,ESR=0,ETF=1,ETR=1,ELF=0,ELR=0,那么关系等式(A4a)到(A4d)与理论等式(A1a)到(A1d)相符。从上面的描述中能够理解,通常使用的两端口校正方法是与根据本实施例的相对校正方法的特定情况(参考设备是理想的)相应的。
根据本实施例,通过确定参考测量系统1(测量设备5A)和实际测量系统2(测量设备5B)的误差因子,本发明已经进行了详细的描述;此外,测量设备5A和5B的误差因子,测量系统1和2以及测量电缆的误差因子的组合可以被看作是一个误差因子。在这种情况下,信号传送模型(误差模型)也可以直接根据理论等式(A1a)到(A1d)来得到。
因此,根据从具有附着于其上的实际测量设备的非校准实际测量系统所得到的测量值,能够精确的得到具有一个附着于其上的参考测量设备的校准参考测量系统所测量的值。
除了根据本实施例的确定不定因子的方法,还有几个校正数据获得样本11B能够预先测量,并且通过使用这些测量值,不定因子也可以利用由最小平方方法所表示的最大似然法所确定。这样的确定能够降低在样本测量过程中的测量误差的影响。
除了泄漏,通过四校正数据获得样本11B,解析相对校正方法的校正等式的系数通常能够确定。但是根据本实施例,其中使用的是5.5(实际上是6)校正数据获得样本11B1-6。这是被普遍所接受的用于简化等式的方法。
但是,在确定使用5.5校正数据获得样本11B1-6的系数中,存在着彼此需要满足的因子之间的关系由于校正数据获得样本的测量误差的影响而无法被满足的情况。例如,在比较关系等式(A5a)到(A5d)与关系等式(A6a)到(A6d)中,应当满足关系a1/a3=c4/c3;但是,满足这种关系的因子不能够依靠测量来获得。
在这种情况下,因子能够通过将四校正数据获得样本11B1-4的测量结果作为评价函数和将5.5校正数据获得样本11B1-6所获得的系数作为初始值的重复计算而被修改成更为精确的值。这是因为暂定处理的初始值能够容易的通过牛顿方法被改变成实际的值,只要初始值与实际值相近。
上面的描述是在两端口测量系统中的相关校正方法的原则。接下来,将描述校正数据获得样本11B的设计。在执行相关校正方法中,为了精确校正存在一个非常重要的问题就是怎样产生校正数据获得样本11B。如果校正数据获得样本11B能够分别被参考测量系统1(参考测量设备5A)以及实际测量系统2(实际测量设备5B)没有误差的测量,在解析相对校正方法中的校正等式的系数能够直接和排它的确定,只要上面提到的等式(A9)的左半部分矩阵不是特殊的。
但是,在校正数据获得样本11B的测量中,实际上一定会出现一些误差(包括系统误差和偶然误差)。因此在等式(A9)所获得的解析相对校正方法的校正等式的系数中就产生了误差。
在以这种方式所产生的系数误差中,影响的大小依赖于校正数据获得样本11B的不同类型的分散系数而不同。例如,在假设具有最小影响的校正数据获得样本11B的条件下,一种情况是等式(A9)的左边部分矩阵接近于一个单位矩阵。此外,实际上,等式(A9)是通过应用这样的一种最小平方的方法而不象使用等式那样运行的;上面的条件在这种情况下是相同的。
下面将要描述在解析相对校正方法中校正等式的产生,其非常的困难的受到校正数据获得样本11B的测量误差的影响。这里假设主要通过组合电阻来产生校正数据获得样本11B。这是为了简化校正数据获得样本11B的产生。
为了以较高的精度在解析相对校正方法中产生校正等式,下面是非常重要的校正等式的系数的计算的可靠性;准备的多个校正数据获得样本11B之间的特性接近性;以及准备的多个校正数据获得样本11B之间的特性相关性。
首先,将要描述在解析相对校正方法中校正等式的系数能够安全计算的条件。使用具有完全相同特性装置的两个校正数据获得样本11B,校正数据获得样本11B的数目就减少1个。因此,很容易理解,这是校正系数不能被计算的条件之一。这种条件也能够算术的和简单的表示。就是说,等式(A9)的左边部分的行列式的值为0。这样,校正系数就不能够被计算。因此,只要相反的条件,就是等式(A9)的左边部分的行列式的值不为0的条件被满足,等式(A9)就存在一个解。
但是,等式(A9)的左边部分的行列式的值不为0的条件对于设计校正数据获得样本11B而言是太抽象了。因此,根据本实施例,使用了下面的测量。尽管这种测量稍有些不够精确,但是为了实用的目的,在这样的简单方法(使用这种测量的方法)中使用没有问题,因为行列式的值为0的情况是很少发生的。
第一测量是校正数据获得样本11B的设计分散系数所确定的接下来的计算值在整个的校正数据获得样本11B中不是非常的小或者相似。计算的值是S11,S21,S12,S22,S11*S22,S21*S12,S21*S22,S12*S11,S11*S21*S12,S22*S21*S12。在该测量中,这些计算的值构成了与每个系数相应的矩阵元,并且如果第一测量被满足,矩阵可以接近为0。
第二测量是上面提到的每一个校正数据获得样本11B的计算值的不等式尽可能的彼此不同。该测量是根据如果不等式不同,矩阵不接近于0的事实进行的。
通过满足上面所述的测量,解析关系校正方法中的校正等式的系数能够被安全的计算。
接下来,将要描述准备的多个校正数据获得样本11B之间的特性接近性。在根据本发明的解析关系校正方法中,影响该方法的测量误差无法被避免。为了抑制这样的测量误差的影响,准备的多个校正数据获得样本11B之间的特性接近性被尽可能的分开是很重要的,下面将进行描述。
在校正数据获得样本11B的测量中,即使样本被仔细的测量也一定会产生一些误差。这些误差包括诸如当校正数据获得样本11B被附着于测量设备5A和5B以及测量系统1和2的测量的漂移或者分散所产生的位置误差在内的所有误差。
这种方法在至少有两个校正数据获得样本11B具有非常相近的特性的时候被误差的影响较大。这可以从特性邻近的校正数据获得样本11B的不同的系数是由校正数据获得样本11B的特性距离(范数)除以临近校正数据获得样本11B特性差之间的值而给出的事实中很容易的被理解。就是说,当除数很小的时候,被除数的微小误差就会被放大。
因此,为了抑制测量误差的影响,将校正数据获得样本11B的特性之间的范数保持尽可能的大是有效的。作为范数,可以使用简单的几何距离(S11到S22的系数差的平方和的平方根)。
应当注意到,当校正数据获得样本11B仅是由电阻产生的时候,其特性必须集中到实轴上,并且虚轴方向的分量很少被提供。只要测量误差不存在,即使在虚轴分量没有在校正数据获得样本11B的特性中被提供的情况下,测量设备5A和5B的误差因子的虚成分被大部分的覆盖,导致了假设精确校正系数(不定系数)。但是,具有仅是部分校正数据获得样本11B的特性具有虚成分的情况。在这种情况下,能够理解,获得了校正系数(不定系数),其导致了具有相位旋转的校正数据获得样本11B的校正结果具有大量的误差。这尤其在具有相位角的分散系数中的设备中(例如绝缘体)有实现的可能,其中相位角的前向与后向不同。
当充分降低校正数据获得样本11B的大量测量误差(不能被平均消除,例如测量系统1和2的漂移)很困难的时候,应用具有不同相位角的校正数据获得样本11B是非常有效的。尤其是,能够通过在校正数据获得样本11B上安装一个延时线以及诸如电容和电感的阻抗元件来实现。
在具有与校正数据获得样本11B不同的相位角的目标电子元件11A中,也能够有效的使用目标电子元件11A本身作为一个校正数据获得样本11B。但是,在任何方法中,能够被测量的频率带宽被限制在校正数据获得样本11B中。在上面描述的方法中,测量误差的影响能够被降到最小。
接下来,将要描述准备的多个校正数据获得样本11B之间的特性相关性。上面描述的关系等式(A6a)到(A6d)是用于根据实际测量系统2(实际测量设备5B)的测量值来假定将被参考测量系统1(参考测量设备5A)测量的的值的等式。这些等式都是简单的有理表示,并且分子分母都是在校正数据获得样本11B中测量的分散系数以及系数的乘积的线性组合。因此,下面将要描述项目之间产生的线性相关性。
例如,在关系等式(A6a)中,它是S11D的估计等式,在分子中具有c2*S11M+c3*S22M。如果根据校正数据获得样本11B的测量结果精确假定了c2和c3,就可以利用任何校正数据获得样本11B的特性关系校正来执行精确的校正。但是,如果c2的值非常的大或者相反,c3具有一个与c2相反的符号,那么很有可能c2*S11M+c3*S22M的每项被彼此相消,这样就从校正数据获得样本11B获得一个看起来类似S11D的校正结果。这样,在除了校正数据获得样本11B的样本(目标电子元件11A)中,S11D被假定为一个非常大或者非常小的误差值。
为了避免这样的错误,可以在校正数据获得样本11B的特性中加入一个线性相关非典型的组合。对于例子S11和S22,线性相关被看作是S11增加以及S22增加,或者S11增加以及S22减小。因此,为了避免线性相关,校正数据获得样本11B可以被合并,从而导致下述的情况(1)S11增加以及S22增加(2)S11增加以及S22减小。
类似的,如果下面的情况发生,从S22测得线性相关就不会发生(3)S11减小以及S22增加(4)S11减小以及S22减小。
作为关系等式(A6a)到(A6d)的特性组合,其中发生了线性相关,除了S11和S22,还有S11*S22,S21*S12的组合。因此,对于这些组合,校正数据获得样本11B的特性设计也可以通过注意上面描述的相似点来实现。
下面将详细描述根据本实施例的测量误差校正方法。
准备的六个校正数据获得样本11B1-6被安装在参考测量系统1上。这样,就在每一个频率点上测量校正数据获得样本11B1-6的电学特性。与校正数据获得样本11B1-6相应的SAW滤波器是一个高频电子元件,并且这里将被测量的电学特性是一个S参数,该参数包括前向方向的分散系数S11,前向方向的分散系数S21,后向方向的分散系数S12以及后向方向的分散系数S22。
参考测量系统1的校正数据获得样本11B1-6的S参数的测量结果(S11n*,S21n*,S12n*,S22n*n为1-6的自然数)通过其数据输入单元(未示出)预先输入到实际测量2中。参考测量系统1测量的输入结果(S11n*,S21n*,S12n*,S22n*)通过控制单元部分22存储到存储器23中。
另一方面,类似的,校正数据获得样本11B1-6也被安装在实际测量系统2上。在每一频率点上测量校正数据获得样本11B1-6的电学特性。
实际测量系统2的校正数据获得样本11B1-6的S参数的测量结果(S11nM,S21nM,S12nM,S22nMn为1-6的自然数)通过控制单元部分22输入到关系公式计算装置24。
在实际测量系统2测量的校正数据获得样本11B1-6的结果(S11nM,S21nM,S12nM,S22Nm)被输入以后,关系公式计算装置24通过控制单元部分22从存储器23中读出参考测量系统1的测量结果(S11n*,S21n*,S12n*,S22n*)。
关系等式计算装置24根据测量结果(S11nM,S21nM,S12nM,S22Nm)和测量结果(S11n*,S21n*,S12n*,S22n*)计算实际测量系统2的测量结果和参考测量系统1的测量结果之间的关系等式。计算方法在上文中已经参照理论等式(A1a到(A1d),(A2a)到(A2d)以及(A3a)到(A3d)以及关系等式(A4a)到(A4d),(A5a)到(A5d),(A6a)到(A6d),(A7a)到(A7d),(A8a)到(A8d)以及(A9)进行了描述,这里将省略其中的描述。
在上面所述的初步处理完成以后,目标电子元件11A的电学特性(S参数S11M,S21M,S12M,S22m)由实际测量系统2的网络分析器部分20所测量。目标电子元件11A的测量结果通过控制单元部分22输入到校正装置25。
在目标电子元件11A的测量结果被输入以后,校正装置24通过控制单元部分22从存储器23读出关系等式。校正装置25将电学特性(S参数S11M,S21M,S12M,S22m)代入关系等式中被计算,其中电学特性是目标电子元件11A的测量结果。这样,校正装置25将实际测量系统2的目标电子元件11A的测量结果(电学特性)校正为电学特性(S11*,S21*,S12*,S22*),该电学特性是假定通过正在被参考测量系统测量的时候而获得的。校正装置25通过控制单元部分22将计算的校正值输出。输出可以被显示在显示单元(未示出)或者可以作为数据被数据输出单元(未示出)输出。
此外,这种计算过程,如上所述,可以通过建立在网络分析器3B中的控制单元21来执行,或者测量的结果可以被输出到与网络分析器3B相连的外部计算机上,从而允许外部计算机执行计算处理。
下面将参照附图8到10描述根据本实施例的由实际测量系统2(实际测量设备5B)测量的目标电子元件11A(两端口)电子特性的两端口校正方法的特定的校正结果。
对于参考测量设备5A,使用了一个所谓的具有安装于其上的传导橡胶的用于用户的质量保证的基底。对于实际测量系统5B,使用了一个具有附着于其上的两Pf电容的参考测量设备5A,用于产生一个较大的误差因子。对于校正数据获得样本11B,使用了一个具有附着于其上的片形电阻的绝缘包。附图8示出了前向方向上的分散系数的校正结果;附图9示出了前向方向上的分散系数的校正结果的部分放大图;以及附图10示出了后向方向上的分散系数的校正结果。
从这些附图中能够理解,如果执行了根据本实施例的校正方法,实际测量系统2(测量设备5A)和参考测量系统1(测量设备5A)之间的较大的测量差就能够被基本精确的校正。就是说,根据实际情况的相关校正方法能够获得校正的结果,并且如果校正的结果符合“实际测量的测量值”,就表明校正被正常的执行,而且实际上已经被执行。参照附图9,其被局部放大,很明显,其已被基本精确的校正。
在测量数据中的接下来的内容也应当被注意。就是,尽管由于校正数据获得样本11B完全是由电阻构成的,其显然是一个不定向设备,但是对于显然是一个定向设备诸如绝缘体的目标电子元件11A的相关校正也可以精确的进行。这是由于下述的原因造成的。由于在等式(A9)中S21和S12不是暂态连接的关系,相关校正系数能够在不使用定向设备作为校正数据获得样本11B的情况下而完全被确定。因此,由不定向设备构成的目标电子元件11A的相关校正也能够以高精度执行。
这具有以下的优点。就是,制造一个宽带的由定向设备构成的校正数据获得样本11B是极端困难的,所以在实际执行相关校正方法中不需要这样的一个校正数据获得样本11B是非常重要的。但是,由于目标电子元件11A可能对于测量误差非常敏感,当目标电子元件11A具有较强的方向特性,诸如绝缘体的时候,一个这种设备本身实际上就能够被用作校正数据获得样本11B。
上面描述的是在非平衡两端口测量系统中执行该实施例的情况。接下来,将描述在一个非平衡一端口测量系统中执行该实施例的情况。
如图11所示,测量系统(参考测量系统1和实际测量系统2)的误差因子被信号传送模型所模拟。在图11中,Src和Src′是应用于测量系统的激励,特别信号源输出分散系数测量是特殊的测量,以使之成为参考1;S11A是在通常测量中获得的样本分散系数;S11D和S11M是分散系数的观察值;a和a′是方向误差;b和b′是频率响应;c和c′是负载匹配。图11所示的信号传送模型是与通常所使用的一端口误差模型相同。
在信号传送模型中,如果误差因子被完全的确定,校正数据获得样本11B的分散系数实际值S11A能够根据下面的理论等式(A10a)和(A10b)从测量值S11M获得。理论等式(A10a)到(A10b)能够从图11所示的信号传送模型中推导出来。S11A=S11M-acS11M+b-ac---(A10a)]]>S11A=S11D-a′c′S11D+b′-a′c′---(A10b)]]>当其中分散系数的实际值是(S11A)的校正数据获得样本11B被测量的时候,参考测量系统1的分散系数S11D被测量以及实际测量系统2的分散系数S11M也被测量。
实际上,精确的知道校正数据获得样本11B的分散系数实际值S11A以及参考测量系统1(测量设备5A)和实际测量系统2(测量设备5B)的误差因子的值是不可能的。另一方面,参考测量系统1的测量值S11D和实际测量系统2的测量值S11M能够根据实际测量得知。
根据本实施例,相关校正方法的目的是根据实际测量系统2的测量值获得参考测量系统1的测量值。
比较理论等式(A10a)与理论等式(A10b),左边部分是相同的分散系数实际值S11A。因此,根据等式(A10a)和(A10b)能够推导出下面的等式(A11)。S11D-a,c,S11D+b,-a,c,=S11M-acS11M+b-ac---(A11)]]>而且,相对于S11D对等式(A11)进行重排,能够得到接下来的关系等式(A12),关系等式(A12)是一个表明实际测量系统2的测量结果与参考测量系统1的测量结果之间的关系的等式。S11D=(a,c,-a,c-b,)S11M-aa,c,+aa,c+ab,-a,b(c,-c)S11M-ac,+ac-b---(A12)]]>在关系等式(A12)中,如果参考测量系统(测量设备5A)的误差因子是完全没有误差的测量系统的值,即a’=0,b’=0,以及c’=0,能够根据关系等式(A12)推导出下面的等式(A13)。等式(A13)与理论等式(A10a)以及(A10b)相一致。从上面的描述中可以理解通常使用的一端口校正方法与根据本实施例的相关校正方法的特殊情况(参考设备是理想的)相应。S11D=S11M-acS11M-ac+b---(A13)]]>详细的看关系等式(A12),(-aa’c’+aa’c+ab’+a’b),(c-c’)以及(-ac’+ac-b),其构成了关系等式(A12),能够分别被代入到一个不定系数中。这样,如果这些部分被分别带入到不定系数α,β,χ,关系等式(A12)能够被重新排列成下述的关系等式(A14)。S11D=S11M+αβS11M+γ---(A14)]]>而且,由于在关系等式(A14)中存在三个未知的量α,β以及χ,所以要准备三个校正数据获得样本来分别测量其特性,这样这些量就能够被确定。因此,使用同样的编码作为两端口的码允许产生关系等式(A15a到A15c)。α=-(S11N1(S11M1(S11M3S11N2-S11M2S11N3)+S11M2S11M3S11N3-S11M2S11M3S11N2)+S11M1S11N2(S11M2S11N3-S11M3S11N3))S11N1(S11M2S11N3+S11M1(S11N2-S11N3)-S11M2S11N2)+S11N2(S11M2S11N3-S11M3S11N3)---(A15a)]]>β=-(S11M1(S11N3-S11N2)-S11M2S11N3+S11M3S11N2+(S11M2-S11M3)S11N1)S11N1(S11M2S11N3+S11M1(S11N2-S11N3)-S11M2S11N2)+S11N2(S11M2S11N3-S11M3S11N3)---(A15b)]]>γ=S11M1(S11M3S11D3-S11M2S11D2)-S11M2S11M3S11D3+S11M2S11M3S11D2+S11M1S11D1(S11M2-S11M3)S11D1(S11M2S11D3+S11M1(S11D2-S11D3)-S11M2S11D2)+S11D2(S11M2S11D3-S11M3S11D3)---(A15c)]]>
根据关系等式(A15a到A15c),如果准备了三个校正数据获得样本11B1-3分别来测量特性,就能够确定不定系数α,β以及χ(相关校正系数)。
在如上所述的确定了不定系数以后,所执行的测量值的实际校正操作与两端口测量系统中的校正操作相同,这样,其描述就被省略。
下面将要参照附图12描述实际测量系统2(测量设备5B)测量的并进一步由根据本实施例的两端口相关校正方法校正的目标电子元件11A一端口的电特性的特定结果。
从图12中可以清楚看到,根据本实施例的校正方法,即使在一端口电子元件中,可以理解实际测量系统2(实际测量设备5B)与参考测量系统1(参考测量设备5A)之间的较大的测量值的差也能够被充分精确的校正。就是说,能够根据附图中的图表所示的实际测量系统的测量值来获得校正的结果。如果校正的结果与参考测量系统的测量值一致,校正就被正常的执行,并且实际上以上述的方式进行。
根据上面所述的实施例,测量结果的校正方法具有以下的优点。就是说,在保证元件制造商的电子元件的特性中,电子元件的特性是根据安装在制造商端的测量系统的测量结果保证的。但是,当电子特性被安装在购买该元件的用户端的测量系统所测量的时候,结果不需要完全相同。因此,由制造商所保证的特性不能被确定,这导致了没有再现性的非确定担保。
但是,当在制造商端的测量系统为参考测量系统而位于用户端的测量系统为实际测量系统的时候,如果根据本实施例的测量误差校正方法被执行,假设与制造商端的测量结果相同的电学特性能够由用户根据用户端的测量系统的测量结果来计算。这样,制造商的电子元件的保证就能够被重复并且足够安全,使得这种担保能够被用户所接受。
而且,上面描述的校正方法能够在不需要对实际测量系统2进行严格检查(例如,实际测量系统2的测量设备5B的特性被调整为与参考测量系统1的测量设备5A的特性相同)的情况下被执行,这样,用于测量所需的成本就会被限制很多。
而且,在用户端,在大批量上安装了许多自动测量和归类设备,这些设备也可以被选择作为实际测量系统,这样,测量(在这种情况下是缺陷元件归类成本)所需的成本能够被进一步降低,同时减少了测量所需的时间。
而且,不仅是源于测量设备5A和5B的测量误差,还有整个实际测量系统的测量误差能够被同步的校正,这样,诸如完全两端口校正方法的校准不需要在实际测量系统2中被执行,这样进一步降低了测量成本。
还有,在根据本实施例的测量系统中,即使在使用了实际测量系统5B的时候,其中在自动测量和归类的机器中结合的性能以及长寿命被认为优先于测量特性的稳定,测量结果也可以不被影响,这样用于测量所需的成本就能够被进一步的抑制,同时测量所需的时间能够被降低。
第二实施例根据第二实施例,在本发明中结合了一种测量误差校正方法,其中选择一个声表面波SAW滤波器作为一个目标电子元件,SAW滤波器的电特性被具有一个网络分析器的测量系统所测量。根据第二实施例,测量值被仅与第一实施例略有不同的近似相对校正方法所校正。因此,测量系统1和2以及测量设备5A和5B的排列与第一实施例中的相同,这样第一实施例中的设备配置相应的被应用到本实施例中,并且其描述将被省略。
首先,准备了多个(例如5个)校正数据获得样本11B1-5。准备的5个校正数据获得样本11B1-5被装入到参考测量系统1中。这样,在每一个频率点上都会测量校正数据获得样本11B1-5的电学特性。与校正数据获得样本11B1-5相应的SAW滤波器是一个高频电子元件,并且这里将被测量的电学特性是一个S参数,包括前向方向的分散系数S11,前向方向的分散系数S21,后向方向的分散系数S12以及后向方向的分散系数S22。
参考测量系统1的校正数据获得样本11B1-5的S参数的测量结果(S11n*,S21n*,S12n*,S22n*;n为1到5的自然数)通过其数据输入单元(未示出)预先输入到实际测量系统2中。参考测量系统1测量的输入结果(S11n*,S21n*,S12n*,S22n*)通过控制单元部分22存储到存储器23中。
另一方面,类似的,校正数据获得样本11B1-5也被装入到实际测量系统2上。这样就在每一频率点上测量校正数据获得样本11B1-5的电学特性。
实际测量系统2的校正数据获得样本11B1-5的S参数的测量结果(S11nM,S21nM,S12nM,S22nMn为1到5的自然数)通过控制单元部分22输入到关系公式计算装置24。
在实际测量系统2测量的校正数据获得样本11B1-5的结果(S11nM,S21nM,S12nM,S22Nm)被输入以后,关系公式计算装置24通过控制单元部分22从存储器23中读出参考测量系统1的测量结果(S11n*,S21n*,S12n*,S22n*)。
关系等式计算装置24存储关系等式,该关系等式大致的表明了实际测量系统的测量结果以及参考测量系统的测量结果和不定系数计算等式之间的关系。该关系等式是由下面的线性表达式(B2)表示的,并且包括不定系数(am,bm,cm,以及dmm;0到4的整数)。不定系数计算等式是有下述等式(B1a)到(B1d)形成的。不定系数计算等式(B1a)到(B1d)用于计算不定系数(am,bm,cm,以及dmm;0到4的整数)并且是根据关系等式(B2)产生的。S111*S112*S113*S114*S115*=S111MS211MS121MS221M1S112MS212MS122MS222M1S113MS213MS123MS223M1S114MS214MS124MS224M1S115MS215MS125MS225M1a1a2a3a4a0---B1a]]>S211*S212*S213*S214*S215*=S111MS211MS121MS221M1S112MS212MS122MS222M1S113MS213MS123MS223M1S114MS214MS124MS224M1S115MS215MS125MS225M1b1b2b3b4b0---B1b]]>S121*S122*S123*S124*S125*=S111MS211MS121MS221M1S112MS212MS122MS222M1S113MS213MS123MS223M1S114MS214MS124MS224M1S115MS215MS125MS225M1c1c2c3c4c0---B1c]]>S221*S222*S223*S224*S225*=S111MS211MS121MS221M1S112MS212MS122MS222M1S113MS213MS123MS223M1S114MS214MS124MS224M1S115MS215MS125MS225M1d1d2d3d4d0---B1d]]>S11*S21*S12*S22*=a1a2a3a4b1b2b3b4c1c2c3c4d1d2d3d4S11MS21MS12MS22M+a0b0c0d0---B2]]>S11*,S21*,S12*,S22*假定由参考测量系统1获得的目标电子元件11A的S参数。S11M,S21M,S12M,S22M实际测量系统2测量的目标电子元件11A的S参数。
关系等式计算装置24通过将这两个测量结果,即S参数(S11nM,S21nM,S12nM,S22nM)和S参数(S11n*,S21n*,S12n*,S22n*)代入到不定系数计算等式(B1a)到(B1d)中来计算不定系数(am,bm,cm,以及dmm;0到4的整数)。
关系等式计算装置24通过将确定的不定系数(am,bm,cm,dm)插入到关系等式(B2)中来确定实际测量系统2的测量结果与参考测量系统1的测量结果之间的关系等式。关系等式在每一个频率点上都被确定,确定的关系等式通过控制单元部分24由关系等式计算装置24输入并存储在存储器23中。
在上面描述的初步处理以后,目标电子元件11A的电学特性(S参数S11M,S21M,S12M,S22M)由实际测量系统2中的网络分析器20所测量。目标电子元件11A的测量结果通过控制单元部分22被输入到校正装置25。
当目标电子元件11A的测量结果被输入以后,校正装置25通过控制单元部分22从存储器23中读出关系等式。校正装置25将电学特性(S参数S11M,S21M,S12M,S22M),即目标电子元件11A的测量结果代入到关系等式中从而被计算。这样,校正装置25将实际测量系统2的目标电子元件11A的测量结果(电学特性)校正为电学特性(S11*,S21*,S12*,S22*),即被假定为当参考测量系统1正在被测量的时候所获得的。校正装置通过控制单元部分22输出计算的校正值。输出可以显示在显示单元上(未示出)或者可以被作为数据由数据输出单元(未示出)输出。
此外,如上所述,计算过程可以由建立在网络分析器3B中的控制单元21来执行,或者测量的结果可以被输出到连接在网络分析器3B上的外部计算机从而允许外部计算机执行计算处理。
根据本实施例的测量结果的校正方法具有以下的优点。就是,在保证元件制造商的电子元件的特性中,电子元件的特性是根据安装在制造商端的测量系统的测量结果保证的。但是,当电子特性被安装在购买该元件的用户端的测量系统所测量的时候,结果不需要完全相同。因此,由制造商所保证的特性不能被确定,这导致了没有再现性的非确定担保。
但是,当在制造商端的测量系统为参考测量系统而位于用户端的测量系统为实际测量系统的时候,如果根据本实施例的测量误差校正方法被执行,假设与制造商端的测量结果相同的电学特性能够由用户端根据用户端的测量系统的测量结果来计算。这样,制造商的电子元件的保证就能够被重复并且足够安全,使得这种担保能够被用户所接受。
而且,上面描述的校正方法能够在不需要对实际测量系统2进行严格检查(例如,实际测量系统2的测量设备5B的特性被调整为与参考测量系统1的测量设备5A的特性相同)的情况下被执行,这样,用于测量所需的成本就会被限制很多。
而且,在用户端,在一个批量生产线上安装了许多自动测量和归类设备,这些设备也可以被选择作为实际测量系统,这样,测量(在这种情况下是缺陷元件归类成本)所需的成本能够被进一步降低,同时减少了测量所需的时间。
而且,不仅是源于测量设备5A和5B测量误差,还有整个实际测量系统的测量误差能够被同步的校正,这样,诸如完全两端口校正方法的校准不需要在实际测量系统2中被执行,这样进一步降低了测量成本。
还有,在根据本实施例的测量系统中,即使在使用了实际测量系统5B的时候,其中在自动测量和归类的机器中结合的性能以及长寿命被认为优先于测量特性的稳定,测量结果也可以不被影响,这样用于测量所需的成本就能够被进一步的抑制,同时测量所需的时间能够被降低。
而且,在根据本实施例的测量系统中(近似相对校正方法),非线性误差也能够被校正。
第三实施例根据第三实施例的执行测量误差校正方法的设备排列基本上与第一和第二实施例相同,在每一个实施例中同样的参考标记指明同样的元件,其描述将被省略。
根据本实施例,尽管所执行的校正方法与第二实施例相同,但是执行校正的计算方法还是与第二实施例有细微的不同的。根据本实施例,准备了15个具有电学特性的样本11B1-15作为校正数据获得样本11B,它们是由测量系统的测量操作产生的并且彼此不同。
准备的15个校正数据获得样本11B1-15被装入到参考测量系统1和实际测量系统2中用于测量S参数。
关系等式计算装置24存储近似表明实际测量系统的测量结果与参考测量系统的测量结果以及不定系数计算等式之间的关系的关系等式。关系等式是由下述的二次方程式(C2a)到(C2d)表示的,并且包括不定系数(aq,bq,cq,dq;;q为0到14的整数)。不定系数计算等式是由下述的等式(B1a)到(B1d)构成的。不定系数计算等式(C1a)到(C1d)使用于计算不定系数(aq,bq,cq,dq;;q为0到14的整数)的,并根据关系等式(C2a)到(C2d)产生。

S11P*,S21P*,S12P*,S22P*参考测量系统1测量的校正数据获得样本11B1-15的S参数,S11PM,S21PM,S12PM,S22PM实际测量系统2测量的校正数据获得样本11B1-5的S参数。
[公式9] S11*,S21*,S12*,S22*假定将由参考测量系统1获得的目标电子元件11A的S参数,S11M,S21M,S12M,S22M实际测量系统2测量的目标电子元件11A的S参数。
关系等式计算装置24通过将测量结果((S11P,S21P,S12P,S22Pp1-15的自然数)代入到不定系数计算等式(C1a)到(C1d)中确定不定系数(aq,bq,cq,dqq0到14的整数)。
关系等式计算装置24通过将确定的不定系数(aq,bq,cq,dq)插入到关系等式(C2a)到(C2d)中来确定实际测量系统2的测量结果与参考测量系统1的测量结果之间的关系等式。关系等式在每一个频率点上都被确定,确定的关系等式通过控制单元部分22由关系等式计算装置24输入并存储在存储器23中。
在上面描述的初步处理以后,目标电子元件11A的电学特性就由实际测量系统2所测量。实际测量系统2的目标电子元件11A的测量结果(电学特性)通过将测量的电学特性(S参数)代入到关系等式(C2a)到(C2d)中从而将其校正为假定由参考测量系统1所获得的电学特性。
第三实施例具有与第二实施例同样的优点,并且还具有下列的优势。就是,即使实际测量系统2包括一个更为复杂的误差,校正也能够被精确的执行。这是由于本实施例具有表达复杂关系的能力,因为根据本实施例在两个四维空间上的每一点都有与二次等式的一一对应。
根据第二实施例,在本发明中结合了使用线性表达式的相关校正方法,而根据第三实施例,在本发明中结合了使用二次近似表达式的相关校正方法。但是,本发明并不局限于这些实施例,一个使用了任意n级表达式的相关校正方法当然也可以被结合到本发明当中。表达式的级别越高,尽管由于复杂的结构计算时间会增加,但是校正的精度会有所提高。
而且,不使用任意级别n的近似表达,等式中的一些项可以在精度降低允许的程度上任意的忽略。例如,当S21≈S12的时候,忽略包括S21或者S12的项不会影响假设的精确。在一个对于信号的传送方向不定向的电子元件中,S21=S12。以这样的方式,校正数据获得样本的数目就会有所降低。
即使一个样本具有对称的电特性,由于测量误差的存在也会测量出一些轻微的差值。因此最好使用S21和S12的平均值。
以这种方式简化的校正等式就成为下述的等式(D1)和等式(D2)。等式(D1)与上述的等式(B1a)和等式(C1a)相应。在等式(B1b)到(B1d)以及等式(C1b)到(C1d)中,简化是类似的,说明省略。等式(D2)与上述的等式(B2)和等式(C2a)到(C2d)相应。在等式(D1)和(D2)中不定系数SAnM表示S21Nm和S21nM的平均值(n0到5的自然数)[公式29]S111*S112*S113*S114*=S111MSA1MS221M1S112MSA2MS222M1S113MSA3MS223M1S114MSA4MS224M1a1a2a3a0---D1]]>[公式30]S11*=a1a2a3a4S11MSAMS22M1]]>附图13示出了根据第二实施例的测量误差校正方法对实际测量系统2的测量结果进行校正后的数据;附图14示出了根据第三实施例的测量误差校正方法对实际测量系统2的测量结果进行校正后的数据。根据这些数据,可以确定根据本发明的测量误差校正方法校正的值接近电子元件的电学特性的实际值。
附图15和附图16示出了分散系数S21的校正结果与S21的实际测量结果之间的关系,S21是一个S参数。附图15示出了根据第二实施例的的校正方法校正的结果与实际测量结果之间的关系;附图16示出了根据第三实施例的校正方法校正的结果与实际测量结果之间的关系。
如图15和16所示,可以理解根据第二实施例的使用线性表达式的校正方法校正的结果与实际测量结果基本一致;根据第三实施例的使用二次表达式的校正方法校正的结果与实际测量结果更为精确的一致。
根据第一到第三实施例的测量误差校正方法都可以合适的结合到电子元件的下述质量检查方法中。
为一个目标电子元件设定的所需的特性可以是参考测量系统所测量的特性。在诸如基于与参考测量系统不一致的实际测量系统的测量结果的电子元件的质量检查中,提高检查精度是很困难的。
在根据第一到第三实施例的测量误差校正方法应用到电子元件的质量检查方法中,能够达到具有较高精度的检查结果。
尤其是,实际测量系统测量的目标电子元件的电学特性是由根据第一到第三实施例的测量误差校正方法所校正的,这样,通过比较校正的电学特性和所需的特性,目标电子元件的质量被确定。这样做,校正的电子特性可以直接的与所需的特性相比较,这样能够提高目标电子元件的质量检查的精度。
权利要求
1.一种测量误差校正方法,其中当目标电子元件的电学特性被具有与参考测量系统不一致的测量结果的实际测量系统测量以后,测量值被校正为假定由参考测量系统所获得的电学特性,测量误差校正方法包括步骤预先准备一个校正数据获得样本,其产生与目标电子元件的任意电学特性相同的电学特性;分别由参考测量系统和实际测量系统测量测量校正数据获得样本的电学特性;获得参考测量系统的测量结果与实际测量系统的测量结果之间的关系等式;以及通过将实际测量系统测量的目标电子元件的电学特性代入到关系等式中用于计算从而将目标电子元件的电学特性校正为假定由参考测量系统获得的电学特性。
2.根据权利要求1所述的方法,其特征在于,获得关系等式的步骤包括分别产生一个用于在信号传送模型中获得实际测量系统的测量实际值的理论等式以及一个用于在信号传送模型中获得参考测量系统的测量实际值的理论等式;根据上述的两个理论等式,产生一个包括一个数学表示的关系等式,其包括一个不定系数,并且直接唯一地表示实际测量系统的测量实际值和参考测量系统的测量实际值之间的关系;分别由参考测量系统和实际测量系统测量校正数据获得样本的电学特性;以及通过将两种测量系统测量的校正数据获得样本的电学特性的值代入到关系等式中来确定不定系数。
3.根据权利要求1所述的方法,其特征在于,获得关系等式的步骤包括下述过程产生一个包含一个n级(n为一个自然数)表达式的关系等式,其包括一个不定系数并且近似的表示实际测量系统的测量值和参考测量系统的测量值之间的关系;分别由参考测量系统和实际测量系统测量校正数据获得样本的电学特性;以及根据关系等式产生一个不定系数计算等式,将两个测量系统所测量的校正数据获得样本的电学特性代入到不定系数计算等式从而确定不定系数。
4.根据权利要求1所述的方法,其特征在于,具有与测量系统的测量结果彼此不同的电学特性的多个样本被用作校正数据获得样本。
5.根据权利要求2所述的方法,其特征在于,具有与测量系统的测量结果彼此不同的电学特性的多个样本被用作校正数据获得样本。
6.根据权利要求3所述的方法,其特征在于,具有与测量系统的测量结果彼此不同的电学特性的多个样本被用作校正数据获得样本。
7.根据权利要求4所述的方法,其特征在于,目标电子元件的电学特性是S参数特性并且其中测量的步骤包括利用一种网络分析器测量。
8.根据权利要求5所述的方法,其特征在于,目标电子元件的电学特性是S参数特性并且其中测量的步骤包括利用一种网络分析器测量。
9.根据权利要求6所述的方法,其特征在于,目标电子元件的电学特性是S参数并且其中测量的步骤包括利用一种网络分析器测量。
10.一种电子元件的质量检测方法,其中具有所需的将被参考测量系统测量的电学特性的目标电子元件被具有测量结果的实际测量系统所测量,其中所述测量结果与参考测量系统的测量结果不一致,该质量检查方法包括步骤使用根据权利要求1-9中的任何一个测量误差校正方法,校正实际测量系统测量的目标电子元件的电学特性;以及通过将校正的电学特性与所需的电子元件的电学特性相比较来检查目标电子元件的质量。
11.一种测量电子元件的电学特性的测量系统,包括目标电子元件测量装置,用于测量目标电子元件的电学特性;存储装置,用于存储参考测量系统所测量的产生与目标电子元件的任意电学特性相同之电学特性的校正数据获得样本的电学特性;关系等式计算装置,用于计算测量装置所测量的校正数据获得样本的电学特性与参考测量系统所测量的并且存储在存储装置中的校正数据获得样本的电学特性之间的关系式;以及校正装置,用于通过将测量装置所测量的目标电子元件的电学特性代入到关系等式中用于计算从而将目标电子元件的电学特性校正为假定将由参考测量系统所获得的电学特性。
12.根据权利要求11所述的测量系统,其特征在于,关系等式计算装置包括理论等式产生装置,用于产生一个用于在信号传送模型中获得实际测量系统的测量实际值的理论等式以及一个用于在信号传送模型中获得参考测量系统的测量实际值的理论等式;关系等式产生装置,用于根据上述的两个理论等式,产生一个包括一个数学表示的关系等式,其包括一个不定系数,并且直接的专用的表示实际测量系统的测量实际值与参考测量系统的测量实际值之间的关系;校正数据获得测量装置,分别由参考测量系统和实际测量系统测量校正数据获得样本的电学特性;以及确定装置,用于通过将两种测量系统测量的校正数据获得样本的电学特性的值代入到关系等式中来确定不定系数。
13,根据权利要求11所述的测量系统,其特征在于,关系等式计算装置包括产生装置,用于产生一个包含一个n级(n为一个自然数)表达式的关系等式,其包括一个不定系数并且近似的表示实际测量系统的测量值以及参考测量系统的测量值之间的关系;校正数据获得测量装置,分别由参考测量系统和实际测量系统测量校正数据获得样本的电学特性;以及确定装置,用于将参考测量系统所测量的校正数据获得样本的电学特性代入到关系等式从而确定不定系数。
全文摘要
与参考测量系统不精确一致的实际测量结果被校正到与参考测量系统的测量结果相同的级别上。在参考测量系统和实际测量系统分别测量校正数据获得样本的电学特性以后,获得了实际测量系统的测量结果与参考测量系统的测量结果之间的关系等式。这样,通过将实际测量系统测量的目标电子元件的电学特性代入到关系式中进行计算,目标电子元件的电学特性就能够被校正为假定由参考测量系统所获得的电学特性。
文档编号G01R27/28GK1490629SQ0215184
公开日2004年4月21日 申请日期2002年12月9日 优先权日2001年12月10日
发明者神谷岳 申请人:株式会社村田制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1