包括相关方法的磁性光学生物盘和系统的制作方法

文档序号:5870256阅读:865来源:国知局
专利名称:包括相关方法的磁性光学生物盘和系统的制作方法
技术领域
本发明一般涉及分子和细胞的生物磁性测定,尤其是涉及在光学生物盘上进行的分子和细胞的生物磁性测定。本发明还涉及磁性光学(MO)分析盘和MO驱动系统,此后称作磁性光学生物盘系统(MOBDS)。更具体地说,但不局限于下文参照最佳实施方式所描述的具体实施例,本发明涉及利用磁性颗粒或磁珠,检测和选择性操纵细胞群及细胞群溶液中的特异性靶细胞的生物磁性方法(包括免疫磁性方法),并且还涉及磁性引导的神经突生长和神经再生。
2.背景技术终端用户对于各种类型的更快速和更远距离实施的诊断检定和法医检定具有很大的需求。理想的是,临床医生、病人、侦察员、军人、其他健康保健人员以及消费者应该能够检验自己,以确定他们的系统中是否存在某些因素或指征,以及犯罪现场或战场上是否存在某种生物材料。目前,有许多其上附着有核酸和/或蛋白质的硅基芯片,这些芯片可从商业上购得或者处于研究开发中。这些芯片不是由终端用户所使用的,或者说不能由缺乏非常专业的经验和昂贵设备的个人或单位来使用。

发明内容
本发明涉及实施生物磁性测定和实验室分析,尤其是涉及在光学生物盘(包括但不限于,CD、CD-R、DVD、DVD-R和MO盘)上使用磁性、顺磁性或超顺磁性颗粒(本文称作生物磁性或磁性颗粒或珠)。本发明的生物磁性测定可包括例如,在非磁性和磁性平台上实施的免疫磁性测定和分子磁性测定(诸如采用DNA和RNA的测定)。而非磁性平台可包括例如,微滴定板和非磁性光学生物盘系统。磁性平台包括诸如,磁性光学生物盘系统(MOBDS)。利用MOBDS进行的测定本文称作MO生物磁性测定(MOBMA),而利用非磁性光学生物盘进行的测定本文称作光学盘生物磁性测定(ODBMA)。诸如可利用联有可控电磁体的改型光学盘驱动器,来完成ODBMA。本发明包括测定的制备方法、测定的实施方法、实验室或临床分析的实施方法、用于实施测定或分析的盘、以及相关的检测系统。
生物样品可包括血液、血清、血浆、脑脊髓液、胸吸气、滑液、胸膜液、核周液、心包液、尿液、唾液、羊膜液、精液、粘液、头发、粪便、生物颗粒悬浮液、单链或双链核酸分子、细胞、器官、组织或组织提取物、或包括可通过化学或生物过程结合到磁性颗粒上的靶物的任何其它样品。有关多种靶物的选择和检测的其它方面的进一步细节,公开在诸如共同转让和共同待审的2001年3月26日提交、题为“用于检测医用靶物的双重珠测定”(Dual Bead Assays for DetectingMedical Targets)的第60/278,697号美国临时专利申请中,该申请作为参考全部引入本文。
感兴趣的靶物可包括肿瘤细胞、细菌、病毒、或靶剂分子例如疾病的核酸特征,或人的特异性核酸序列,或专门针对有机体或细胞种类(可以是细菌、病毒、支原体、真菌、植物或动物)的核苷酸序列或抗原决定簇。这种靶剂可包括与癌症有关的核酸分子或抗原决定簇。该靶核酸分子可包括核酸,此核酸是从由HER2neu、p52、p53、p21和bcl-2构成的组合中选择的基因的至少一部分。该靶剂可以是仅存在于受体中的抗体,其中该受体被HIV-1、病毒蛋白抗原或表征受体疾病状况的蛋白质所感染。本发明的方法和装置可用于确定受体是否被病毒感染,从受体获得的核酸是否显示出相对于相应野生型核酸序列的单个核苷酸突变(SNM),或者受体是否表达感兴趣的蛋白质,例如细菌蛋白、真菌蛋白、病毒蛋白、HIV蛋白、丙型肝炎蛋白、乙型肝炎蛋白、或专门与疾病相关的公知蛋白质。下面的例1中表示出一个检测核酸靶物的双珠实验的实例。
按照本发明的另一方面,提供了能够在一个光学分析盘上鉴定多种靶剂(例如十种、百种、甚至上千种不同的靶剂)的倍增方法。将多种捕获剂配备在与捕获场成一体或分别在离散的捕获场内的单个室中。可利用能够彼此区分开的不同的报道珠,例如在不同波长处发荧光的珠,或者不同尺寸的报道珠。利用倍增技术进行实验,以鉴定两种不同的靶物。下面的例2中论述了一种这样测定的实例。
按照再一方面,本发明提供了一种光学盘,这种盘具有基底、与基底相联的捕获层、以及结合到捕获层上的捕获剂,从而捕获剂结合到双珠复合物上。多种不同的捕获剂可用于不同类型的双珠复合物。该盘可被设计成,能够在具有适当室和射流结构的盘上进行一些双珠处理,并且该盘能够预装有报道珠和捕获珠,从而仅需加入样品就能够形成双珠复合物结构。
ODBMA细胞分析按照本发明的一个方面,提供了一种用于实施珠或珠-细胞测定的盘及盘驱动系统。这种盘驱动器包括用于实施分离过程的电磁体,并且可包括所用类型的报道珠的光源控制和检测装置。这种盘驱动器可是光学的或磁性光学的。
为了在盘上进行处理,该驱动器可有益地包括电磁体,并且该盘优选地具有混合室、废物室和捕获区。在此实施例中,使样品与珠在混合室内混合,将磁场施加到混合室的邻近处,而将磁体没有留滞的样品引到废物室,从而所有的磁珠,不论是否结合到双珠复合物内,都保留在混合室中。然后将磁珠引到捕获区。可利用许多不同的阀门设置之一来控制流动。
磁性光学盘系统(MOBDS)按照本发明的另一方面,利用MO盘来实施MOBMA,这种MO盘是为了与生物样品一起使用而制造的,并且可与盘驱动器(例如磁性光学(MO)盘驱动器)结合使用,其中盘驱动器能够在盘上选择性形成磁畴或磁域。在本发明的此MOBMA方面,以较高的可控和精确方式,在MO盘上形成磁畴。可有益地采用这些畴来磁性结合生物磁性颗粒例如磁珠(包括未结合的磁性捕获珠)和磁性复合物(包括与磁性捕获珠的双珠复合物、磁珠-细胞复合物、或具有至少一种磁性颗粒或者与之相关的磁性性质的任何生物或化学复合物,从而可以利用磁体或磁畴来结合这些复合物)。MO盘驱动器能够书写到盘上的选定部位,然后利用光学读出器来检测定位在那些磁畴或磁域处的特性。能够将这些磁畴选择性擦除,借此使一种珠及复合物有选择地释放。有关利用MOBDS进行分析的生物医学应用在下面有所描述。
按照本发明的又一方面,提供了一种包括在光学生物盘或医用CD上形成磁畴或磁域的生物盘及驱动器的使用方法。该方法包括将磁珠提供给盘,以使珠结合在磁畴上。该方法优选地还包括,优选地利用可检测的报道珠、诸如通过荧光或光学事件检测,而在磁珠结合生物样品的部位进行检测。通过采用多个室,就时间和部位而言,该方法可以多个阶段形成。将这些磁畴有选择地写在MO生物盘上的预定部位,而使样品在磁畴上移过,以便捕获磁珠或磁性复合物。然后将这些磁域有选择地擦除,并使磁珠或磁性复合物单独释放和重新定位(如果需要的话)。该方法使许多不同的检验能够一次进行,并能够使用户与盘驱动器之间具有一定的相互作用,从而在检验过程中能够产生额外的检验。有关磁性光学记录、磁性光学盘上磁域的精确产生、以及磁性光学检测方法的进一步细节诸如公开在以下专利中Maeda等人的U.S.6,212,136、Ohmori等人的U.S.5,329,503、Saito等人的U.S.4,985,881、Fujiwara等人的U.S.4,843,604以及Naito等人的U.S.4,748,606。所有这些专利都作为参考全部引入本文。
对于各种类型的MOBMA应用,还可使MO生物盘最优化,包括例如,MO生物盘的磁性光学堆的光学性质的最优化,以便使电磁辐射的入射跟踪和检测束部分穿过反射层,并且可修正利用单独的检测器和MO生物盘的可操作层的成分所检测的透射束,从而MO生物盘上产生的磁场和磁场强度强大得足以捕获附着有不同类型的磁珠的磁性复合物,并将这些复合物彼此区分开。而且,不同类型的电磁辐射源可与MOBDS结合使用,包括但不限于,红外、红、兰和荧光型光源。例如,通过下面诸如结合图28A、28B、29A和29B所述的反射和/或透射束的特征分析,或者通过采用与荧光检测器和荧光标记的靶分子或细胞结合的荧光型光源的荧光分析,可光学检测磁珠和磁性复合物。
按照本发明的生物磁性珠测定可在采用捕获珠和荧光报道珠的基因测定(本文称作分子磁性测定)中实施。这些生物磁性珠或颗粒分别包被有捕获探针和报道探针。这些捕获探针和报道探针与靶序列互补,但二者彼此之间不互补。使捕获珠与不同量的靶DNA混合。通过磁珠的磁选,将未结合的靶物从溶液中除去。然后使荧光报道珠结合到被捕获的靶DNA上。通过磁珠的磁选,将未结合的报道珠除去。于是,仅在靶序列的存在下,磁性捕获珠才结合到荧光报道珠上,从而导致双珠测定得以实现。
捕获探针的结合调查用于将探针结合到珠上的许多不同表面化学物和不同方法,包括通过EDC结合,将捕获探针或报道探针分别共价结合到羧化捕获珠和报道珠上。利用将探针附着到珠上的EDC结合法的一个观察结果是,探针的非共价附着。通过开发利用部分双链DNA探针的附着探针的方法,以及通过选择具有高结合效率的适当类型的珠,能够克服这种局限性。在结合过程中使用双链探针可显著减小探针对珠的非共价附着。通过采用适当类型的珠及结合条件,共价结合效率有95%那么高。有关DNA探针结合到固相表面上的细节诸如公开在共同转让的2002年2月28日提交、题为“用于减少包括相关光学生物盘和盘驱动系统的双珠测定中珠的非特异性结合的方法”(Methods forDecreasing Non-Specific Binding of Beads in Dual Bead AssaysIncluding Related Optical Bio-discs and Disc Drive Systems)的第10/087,547号美国专利申请中,该申请作为参考全部引入本文。
在靶DNA的捕获中使用磁珠可加速洗涤步骤,并使结合与未结合珠之间的分离步骤明显容易进行。而且,当靶物浓度有限时,每个靶分子可杂交到一个报道珠上。单个靶分子由于尺寸小,因此利用任何现存技术都不可检测。然而,1μm或更大的报道珠能够用各种方法容易地检测和定量。因此,这种珠测定大大提高了靶捕获的灵敏度。
生物盘驱动器和相关的信号处理系统按照又一主要方面,本发明还涉及在分析盘、改型光学盘、MOBDS或生物盘上实施上述方法。可利用生物盘驱动组件来旋转盘,读取和处理盘上存贮的任何编码信息,以及分析生物盘的流动通道中的样品。于是,这种生物盘驱动器配有用于旋转生物盘的电机、用于控制盘的旋转速率的控制器、用于处理从盘返回和/或透过盘的信号的处理器、以及用于分析被处理的信号的分析仪。控制电机的旋转速率,以实现盘所需的旋转。还可利用该生物盘驱动组件,在流动通道和靶区中的检验材料被驱动器的读取束所询问以及被分析仪分析之前或之后,将信息书写到生物盘上。生物盘可包括编码信息,该信息用于控制盘的旋转速率、提供专门针对待实施的检验类型的处理信息、以及将结果显示在与生物盘相联的监视器上。
本发明的装置和方法的多种实施例可被设计成由终端用户廉价地使用,而不需要专业经验和昂贵的设备。这种系统能够被制成便携式的,并因此可在传统的诊断设备通常不可用的远距离场所来使用。有关这种测定系统的部件和信号获得方法的其它相关方面诸如公开在以下文献中2002年1月4日提交的共同转让和共同待审的题为“包括用于改进特异性的共价键合及相关光学生物盘的双珠测定”(DualBead Assays Including Covalent Linkages for Improved Specificityand Related Optical Analysis Discs)第10/038,297美国专利申请;2001年3月1日提交的题为“利用包括光学生物盘和相关方法的双珠倍增的生物检定”(Biological Assays Using Dual Bead MultiplexingIncluding Optical Bio-Disc and Related Methods)的第60/272,525美国临时申请;以及分别于2001年3月14日、2001年8月24日和2002年1月30日提交的每个题为“用于固定捕获剂的表面组件和包括光学生物盘和相关方法的双珠测定”(Surface Assembly forImmobilizing Capture Agents and Dual Bead Assays IncludingOptical Bio-Disc and Methods Relating Thereto)的第60/275,643、60/314,906和60/352,270的美国临时申请。所有这些申请都作为参考全部引入本文。
通过以下的详细描述、附图和技术实例,本发明的其它特性和优点将变得显而易见。


本发明的其它目的以及致力于这些目的的附加特征和由此产生的优点将从下面对本发明优选实施例的详细说明中显现出来,优选实施例表示在附图中,图中相同标号表示相同部件,其中图1是按照本发明的光学盘系统的透视图;图2是按照本发明实施例的光学读取系统的方框直观显示图;图3A、3B和3C分别是按照本发明实施例的反射盘的分解图、顶视图和透视图;图4A、4B和4C分别是按照本发明实施例的透射盘的分解图、顶视图和透视图;图5A是图3A、3B和3C中所示反射光学生物盘的部分纵向截面图,表示出其中所形成的摆动槽;图5B是图4A、4B和4C中所示透射光学生物盘的部分纵向截面图,表示出其中所形成的摆动槽和顶部检测器;图6A是图5A中所示盘的部分径向截面图;图6B是图5B中所示盘的部分径向截面图;图7A、8A、9A和10A是与基因测定结合使用的捕获珠、报道珠以及双珠复合物的示意图;图7B、8B、9B和10B是与免疫化学测定结合使用的捕获珠、报道珠以及双珠复合物的示意图;图11A是制备基因双珠复合物溶液的方法的一个实施例的直观显示;图11B是免疫化学双珠复合物溶液的制备方法的一个实施例的直观显示;图12A是基因双珠复合物溶液的制备方法的另一实施例的直观显示;图12B是免疫化学双珠复合物溶液的制备方法的另一实施例的直观显示;图13是与混合或加料室结合的盘层的纵向截面图;图14与图13类似,表示出装有双珠复合物溶液的混合室;图15A和15B是盘和靶区的径向截面图,表示出在基因测定中将报道珠结合到捕获剂上的一个实施例;图16A和16B是盘和靶区的径向截面图,表示出在基因测定中将报道珠结合到捕获剂上的另一实施例;图17是盘和靶区的径向截面图,表示出在基因测定中将捕获珠结合到捕获剂上的一个实施例;图18是盘和靶区的径向截面图,表示出在基因测定中将捕获珠结合到捕获剂上的另一实施例;
图19A、19B和19C是部分截面图,表示出在基因测定中将双珠复合物的报道珠结合到捕获层上的按照本发明方法的一个实施例;图20A、20B和20C是部分截面图,表示出在免疫化学测定中将双珠复合物的报道珠结合到捕获层上的按照本发明方法的一个实施例;图21A、21B和21C是部分截面图,表示出在基因测定中将双珠复合物的报道珠结合到捕获层上的按照本发明方法的另一实施例;图22A、22B和22C是部分截面图,表示出在免疫化学测定中将双珠复合物的报道珠结合到捕获层上的按照本发明方法的另一实施例;图23A和23B是部分截面图,表示出在基因测定中将双珠复合物的捕获珠结合到捕获层上的按照本发明方法的一个实施例;图24A和24B是部分截面图,表示出在基因测定中将双珠复合物的捕获珠结合到捕获层上的按照本发明方法的另一实施例;图25A-25D表示出利用光学生物盘检测基因样品中靶DNA或RNA的存在的按照本发明的一种方法;图26A-26D表示出利用光学生物盘检测基因样品中靶DNA或RNA的存在的按照本发明的另一种方法;图27A-27D表示出利用光学生物盘检测生物检验样品中靶抗原的存在的按照本发明的一种方法;图28A图示出相对于按照本发明的光学生物盘轨道而定位的单个2.1μm报道珠和3μm捕获珠;图28B是利用来自按照本发明的光学驱动器的检测信号,由图28A的珠衍生的一系列信号轨迹;图29A图示出相对于按照本发明的光学生物盘轨道而定位的在双珠复合物中连接在一起的2.1μm报道珠和3μm捕获珠;图29B是利用来自按照本发明的光学驱动器的检测信号,由图29A的双珠复合物衍生的一系列信号轨迹;图30A是表示按照本发明的双珠测定结果的柱形图;
图30B是验证用荧光计检测的荧光珠的检测限的标准曲线;图30C是验证双珠复合物的形成的直观显示;图31是表示利用双珠复合物的盘驱动检测灵敏度的柱形图;图32是将用于按照本发明实施例的双珠测定倍增的珠结合在一起的示意图;图33A是按照本发明的射流回路的示意图,该回路与磁场发生器结合使用,以控制磁珠的运动;图33B-33D是第一射流回路的示意图,此回路具有按照本发明流体运送方面一个实施例的图33A的阀门结构;图34A-34C是第二射流回路的示意图,此回路具有按照本发明流体运送方面另一实施例的图33A的阀门结构;图35是磁场发生器和盘的透视图,此盘包括与按照本发明的磁珠结合使用的射流回路的一个实施例;图36A、36B和36C是表示利用图35所示射流回路的双珠测定的分离和检测方法的平面图;图37是磁性光学生物盘的透视图,该图表示出磁畴或磁域、磁性结合的捕获珠、以及按照本发明另一方面的双珠复合物的形成;图38表示出利用连接反应,以便在捕获与报道探针之间形成共价键;图39是表示用连接反应实验中的酶测定检测的基因测试结果的柱形图;图40是将所结合的珠数目作为利用2.1μm报道珠的靶物浓度的函数,对其在有连接反应和无连接反应这两种情形中的结果进行比较的柱形图;图41是将所结合的珠数目作为利用39mer桥接的靶物浓度的函数,对其在有连接反应和无连接反应这两种情形中的结果进行比较的柱形图;图42A是多种探针结构的示意图,这些结构包括采用按照本发明的可裂解或可取代间隔基的双珠复合物中所用的DNA序列;
图42B是在靶物结合之前连接双珠复合物的可裂解间隔基的直观示意图;图42C与图42B类似,表示出包括靶物结合之后连接双珠复合物的Notl的可裂解间隔基;图42D与图42C类似,表示出靶物结合之后以及由Notl进行裂解之后的双珠复合物;图43A是在靶物结合之前连接双珠复合物的可取代间隔基的直观示意图;图43B与图43A类似,表示出靶物结合之后取代探针初始结合到连接双珠复合物的可取代间隔基上;图43C与图43B类似,表示出在靶物介导的结合存在下连接双珠复合物的取代探针的完全取代;图44是共价附着到按照本发明的捕获珠上的可裂解间隔基的直观显示;图45与图44类似,表示出附着到共价结合到金属报道珠上的可裂解间隔基上的硫羟基;图46A是在靶物结合之前由可裂解间隔基结合到一起的一对双珠复合物的直观显示;图46B与图46A类似,表示出靶物结合之后以及没有靶物结合时,由可裂解间隔基结合到一起的双珠复合物;图46C与图46B类似,表示出酶裂解之后所解离的双珠复合物之一,以及由于靶物的存在而保持在一起的双珠复合物的另一员;图47A是由一对可裂解间隔基并利用结合到靶物上的桥接形成的双珠复合物的直观显示;图47B与图47A类似,表示出包括桥接的靶物结合之后的情形,桥接导致含有两个断裂的双螺旋的形成;图47C与图47B类似,表示出可裂解间隔基的限制酶切消化和双螺旋中的断裂连接之后的情形;图48A是两个双珠复合物的直观显示,其中每个双珠复合物正如在免疫化学测定中所实施的,在靶抗原结合之前由一对可裂解间隔基连接到一起;图48B与图48A类似,表示出在有靶物结合和无靶物结合的情形下,由可裂解间隔基结合到一起的双珠复合物;图48C与图48B类似,表示出酶消化之后解离的双珠复合物之一,以及由于靶物的存在而保持在一起的双珠复合物的另一员;图49是表示用于探针共价结合的固相的评估方法的示意图;图50示意性地详细列举出定量与固相基底共价结合和非共价结合的探针的各个步骤;图51A是用于探针的共价连接的磁珠载体的多个测试结果的图表;图51B是用于探针的共价连接的荧光珠载体的多个测试结果的图表;图52A是作为探针所涉及的单链和双链DNA之间的结构差别的直观显示;图52B是为了评估单链和双链DNA与固相的结合性质而设计的实验的结果的图表;图53A是双珠测定中所用的两种不同捕获珠的筛选的酶测定结果的图表,这些结果显示,这两种测试珠结合几乎相同量的靶物,而无论探针是共价结合还是非共价结合;图53B是为了检查由两种不同捕获珠所捕获的报道珠数目而设计的双珠测定的结果的图表,这些结果显示,探针与捕获珠的共价结合大大改善了测定的灵敏度;图54的图表证实,将PEG接头引入探针中可明显改善靶物介导的结合;图55是表示采用3μm珠的探针密度测定的柱形图;图56的柱形图证实,用包括鲑精DNA的多种消化剂对珠进行预处理可将非特异性结合减小10倍多;图57是表示双珠测定的检测范围的柱形图;
图58的柱形图表示使用不同浓度的NaCl以及相关的非特异性结合;图59的柱形图示意性表示增大EDTA的浓度以及相关的非特异性结合;图60的柱形图示意性表示增大的NaCl浓度以及相关的非特异性结合;图61A和61B的柱形图示意性表示增大的MgCl2浓度以及相关的非特异性结合;图62的直观示意图表示利用探针封闭剂来增大珠测定的灵敏度;图63的柱形图示意性表示杂交反应过程中的温育时间效果;图64的柱形图示意性表示用于增大双珠结合中的效率的混合方法;图65A和65B一起包括与结合图11A所讨论的方法相关的基因双珠复合物溶液制备方法的另一实施例的直观显示;图66A和66B一起形成与图11B所示类似的免疫化学双珠复合物溶液制备方法的另一实施例的直观显示;图67A和67B一起表示出基因双珠复合物溶液制备方法的又一实施例的直观显示,该方法与图12A所示的方法相关;图68A和68B一起形成与图12B所示类似的免疫化学双珠复合物溶液制备方法的再一实施例的直观显示;图69是证实无报道珠时的DNAseI消化效果的柱形图;图70是表示DNAseI的酶消化效果对双珠测定的效率的柱形图;图71是通过酶消化和物理或化学处理将报道珠与捕获珠分离的示意图;图72的柱形图示意性表示出在碱性溶液中洗涤前后的双珠复合物;图73A的柱形图示意性表示出在7M尿素溶液中洗涤前后的双珠复合物;图73B的柱形图示意性表示出在7M尿素溶液中洗涤前后(包括在尿素洗涤之后对解离的报道珠进行检测)的双珠复合物;图74的柱形图证实在双珠测定过程中用1.5M的异硫氰酸胍作为消化剂;以及图75的柱形图示意性表示出在双珠测定过程中用不同浓度的异硫氰酸胍作为消化剂;图76是具有射流回路的磁性光学生物盘的一部分的顶视图;图77A-77E是表示利用图76所示的射流回路分离和测试细胞的方法的平面图;具体实施方式
本发明的以下描述涉及光学分析盘、盘驱动系统、光学盘生物磁性测定、以及测定化学物和技术。本发明还涉及其它替换型磁性光学驱动系统、MO生物盘、MO生物盘系统、MO生物磁性测定、以及相关的处理方法。
盘驱动系统和相关的光学分析盘现在参照图1,该图是光学盘驱动器112中所用的光学分析盘、光学生物盘或医用CD 110的透视图。驱动器112在驱动器内结合有软件或者与单独的计算机相联,能够产生将显示在显示监视器114上的图像、图表或输出数据。如下所述,有不同类型的盘和驱动器,包括但不限于,磁性光学盘和磁性光学盘驱动器。盘驱动器可以在与控制计算机分开的单元内或者配备在计算机内的间格中。该驱动器可以像台式(laptop)计算机那样制成便携式的,并因此用电池电源以及在以前的诊断设备一般不能服务的远距离场所都是可用的。该驱动器优选地是具有极小或无硬件改动的常规驱动器,但却是专用的生物盘或医用CD驱动器。有关这些类型的驱动系统和相关的信号处理方法的进一步细节公开在诸如以下申请中1999年8月23日提交的题为“用于分析从光学盘获得的操作和非操作数据的方法和装置”(Methods and Apparatus for Analyzing Operational andNon-operational Data Acquired from Optical Discs)的共同转让和共同待审的第09/378,878号美国专利申请;1999年8月23日提交的题为“利用物理同步标记获得光学盘数据的方法和装置”(Methods andApparatus for Optical Disc Data Acquisition Using PhysicalSynchronization Markers)的第60/150,288号美国临时专利申请;1999年10月26日提交的题为“具有同时可读的分析材料的可追踪的光学盘”(Trackable Optical Discs with Concurrently ReadableAnalyte Matedrial)的第09/421,870号美国专利申请;2000年8月21日提交的题为“利用物理同步标记获得光学盘数据的方法和装置”(Methods and Apparatus for Optical Disc Data Acquisition UsingPhysical Synchronization Markers)的第09/643,106号美国专利申请;以及2002年1月10日提交的题为“包括生物和医学成像的相关方法的光学盘分析系统”(Optical Disc Analysis System Including RelatedMethods for Biological and Medical Imaging)的第10/043,688号美国专利申请。这些申请作为参考全部并入本文。
与本发明实施例一起使用的光学生物盘110可具有任何适宜的形状、直径或厚度,但优选的是,在具有与压缩盘(CD)、可记录的CD(CD-R)、CD-RW,数字通用盘(DVD)、DVD-R、DVD-RW、磁性光学盘或其它标准光学盘格式类似的直径和厚度的圆盘上实施。这种盘可包括用于实施、控制和后处理测试或测定的编码信息(优选地是公知格式的),例如这样的信息用于控制盘的旋转速率和方向、旋转定时、终止和启动、延迟期间、样品的部位、光源的位置以及光源的动力。这样的编码信息在本文中通常称作操作信息。
该盘可以是反射盘(如图3A-3C所示)、透射盘(图4A-4C)、或反射和透射盘的一些组合形式。在反射盘中,使入射光束聚焦到盘上(一般在编码信息的反射面上),反射,并通过光学部件返回到与光源在盘的同一侧上的检测器中。在透射盘中,光线穿过盘(或其一部分)到达与光源在盘的不同侧上的检测器中。在盘的部分透射中,一些光线还可作为反射光被反射和检测。
图2表示出光学盘读取系统116。这种系统可以是用于CD、CD-R、DVD、MO或其它公知的可比格式的常规读取器、这种驱动器的改型形式、或完全不同的专业设备。基本部件是用于旋转盘的电机、用于提供光线的光系统、以及用于检测光线的检测系统。
现在一般参照图2-4C,光源118向光学部件120提供光线,以产生入射光束122。在反射盘144的情形中(图3A-3C),使返回束124从反射表面156、174或186反射(图3C和4C)。返回束124返回到光学部件120,然后到达底部检测器126。在这种类型的盘中,返回束可携带操作信息或其它编码数据以及有关研究中的调查特性或测试样品的特征信息。
对于透射盘180(图4A-4C),来自入射束122的一些能量将与调查特性或测试样品产生光/物质相互作用,然后作为被顶部检测器130所检测的透射束128前行穿过盘。对于包括作为操作层的半反射层186(图4C)的透射盘而言,来自入射束122的一些能量将作为返回束124也从操作层反射,该返回束携带操作信息或存贮数据。光学部件120可包括透镜、光束分离器、以及四分之一波片,该波片改变光束的偏振,以便光束分离器引导反射束穿过透镜,从而使反射束聚焦到检测器上。象散部件(例如圆柱形透镜)可配备在光束分离器和检测器之间,以便将象散引入到反射光束中。光源是可控的,从而响应用户引入的数据或从盘读取的数据,而提供所需范围的不同波长和功率电平。当需要检测在不同波长处发荧光的多种不同结构时该控制是特别有用的。
现在继续参照图2,该图表示出,将来自检测器126和/或检测器130的数据提供给包括处理器134和分析仪136的计算机132。然后将图像或输出结果提供给监视器114。计算机132可以是台式计算机、可编程的逻辑设备、或一些其它处理设备,并且还可包括与其它处理和/或存贮设备的连接方式(例如在互联网上)。驱动电机140和控制器142用于控制盘144或180的旋转速率和方向或旋转。控制器142和计算机132与处理器134能够保持远程通信或者在同一计算机上完成执行。用于读取这种盘的方法和系统还表示在Gordon的U.S.5,892,577中,该文献作为参考并入本文。
能够将检测器设计成,通过其设计或外部滤波器,可检测到达检测器的所有光线,或者仅仅在特定波长处的光线。通过就可检测波长而言使检测器可控,能够单独检测在不同波长处发荧光的珠或其它结构。
硬件触发传感器138可与反射盘144或透射盘180一起使用。触发传感器138将信号提供给计算机132(或一些其它电子设备),以允许仅当入射束122位于靶区或检查区上时由处理器134收集数据。或者是,可利用从盘读取的软件来控制由处理器134进行的数据收集,而不依赖于盘上的任何物理标记。这种软件或逻辑触发在以下申请中有进一步的详细描述2002年1月28日提交的题为“与光学分析盘和相关盘驱动系统一起使用的逻辑触发方法和装置”(Logical TriggeringMethods And Apparatus For Use With Optical Analysis Discs AndRelated Disc Drive Systems)的共同转让和共同待审的第60/352,625号美国临时申请,该申请作为参考全部引入本文。
光学分析盘的基底层可压有螺旋形轨道,该轨道起始于盘的最里面的可读部分,然后螺旋到盘的最外面的可读部分。在不可记录的CD中,该轨道是由具有不同长度的一系列压痕制成的,每一压痕一般具有近似于可用来读取盘的光波长的四分之一的深度。压痕之间的不同长度和间隔用于编码操作数据。CD之类的可记录盘的螺旋槽具有可检测的染料而非压痕。而且,在MO盘中,将数据贮存到在MO盘上产生的磁畴内。这是记录操作信息例如旋转速率的地方。根据检验、测定或调查方案的不同,旋转速率可从加速、常速和减速的间隔或相邻期间方面来改变。可在旋转速度和时间上对这些期间紧密控制,以便混合、搅拌或分离具有剂(agent)、试剂、抗体或其它材料的流体或悬浮液。可与本发明一起使用或容易适合本发明的生物盘设计公开在诸如以下申请中2001年11月15提交的题为“具有反射层的光学生物盘”(Optical Bio-discs with Reflective Layers)的共同转让和共同待审的第09/999,274号美国专利申请;2001年12月7日提交的题为“用于测定分析物的光学盘”(Optical Discs for Measuring Analytes)的第10/005,313号美国专利申请;2001年12月10日提交的题为“利用光学盘和光学盘读取器检测分析物的方法”(Methods for DetectingAnalytes Using Optical Discs and Optical Disc Readers)的第10/006,371号美国专利申请;2001年12月10日提交的题为“用于检测分析物的多种数据层光学盘”(Multiple Data Layer Optical Discs forDetecting Analytes)的第10/006,620号美国专利申请;以及2001年12月10日提交的题为“用于执行测定的光学盘组件”(Optical DiscAssemblies for Performing Assays)的第10/006,619号美国专利申请,这些申请作为参考全部并入本文。
许多种设计和构造的光学拾波器和相关电子设备都可用在本发明实施例的上下文中。压缩盘和读取器的进一步细节及替换型设计在以下文献中有所描述Nakajima和Ogawa的“压缩盘技术”(CompactDisc Technology),IOS Press,Inc.(1992);Baert等人的“压缩盘手册,数字声频和压缩盘技术”(The Compact Disc Handbook,Digital Audioand Compact Disc Technology),Books Britain(1995);以及Starrett等人的“CD-Rom专业可记录CD手册实际台式CD的全指南”(CD-RomProfessional’s CD-Recordable HandbookThe Complete Guide toPractical Desktop CD),ISBN0910965188(1996);所有这些文献作为参考全部并入本文。
因此,利用盘驱动组件来旋转盘,读取和处理盘上存贮的任何编码操作信息以及分析盘测定区中的液体、化学、生物或生化调查特性。还可利用盘驱动组件,在用驱动器的读取束分析测定区中的材料之前、之中或之后,将信息书写到盘上。在其它替换型实施例中,实施盘驱动组件,以便将测定信息通过多种可能的接口,诸如通过Ethernet传送给用户、通过互联网传送到远程数据库、或者传送到良好地利用这些信息的任何地方。有关盘驱动器接口的进一步细节公开在以下申请中2001年11月7日提交的题为“用于分析生物样品和处理相关信息的交互系统及其使用”(Interactive System for Analyzing BiologicalSamples And Processing Related Information and The Use Thereof)的共同转让和共同待审的第09/986,078号美国专利申请,该申请作为参考全部并入本文。
现在具体参照图3A、3B和3C,所示出的反射盘144具有帽146、通道层148和基底150。通道层148可由薄膜粘合部件形成。帽146具有用于接收样品的入口152和排气孔154。帽146可以主要由聚碳酸酯形成,并可以在其底部涂有帽反射层156。反射层156优选地是由铝或金之类的金属制成。
通道层148通过具有从通道层148上切掉的所需形状,而限定出射流回路158。每个射流回路158优选地具有流动通道160和返回通道162,并且一些射流回路具有混合室164。混合室166可相对于流动通道160对称形成,而偏置混合室168形成到流动通道160的同一侧上。射流回路158结构相当简单,但射流回路能够包括其它通道和室,例如,诸如题为“盘中的实验室”(Laboratory in a Disc)的U.S.6,030,581中的制备区或废物区(如图所示),该文献作为参考并入本文。这些射流回路能够包括多个阀门和其它流体控制结构,例如本文所采用的那些替换型以及结合图33A-33D、34A-34C、35和36A-36C所进一步详细讨论的。通道层148可包括结合到基底和帽上的粘合剂。
基底150具有塑料层172,还有作为沉积在层172顶部的基底反射层174上开口的靶区170。在此实施例中,利用反射层174(在图3C中最佳示出)编码操作信息。例如,反射层174并不局限于单层,也可以是基底150上的几个反射层堆(诸如MO盘上的光学堆)。塑料层172优选地是由聚碳酸酯形成的。通过除去任何所需形状的部分基底反射层174,或者通过在施加基底反射层174之前掩蔽靶区区域,可形成靶区170。基底反射层174优选地是由铝、金或镁合金之类的金属形成的,并且配有多余基底,从而诸如通过摆动槽或通过坑或压痕(pits)设置,来编码用入射光读取的操作信息。于是,来自下面基底150的入射光被层174(但靶区170除外)所反射,也即是,在此处该入射光被层156所反射。靶区是检测调查特性的地方。如果该靶区是能够结合到靶物上的抗体、DNA链或其它材料所定位的地方,则将靶区称作捕获区。
现在具体参照图3C,将光学盘144切掉一部分,以示出部分截面透视图。在基底反射层174之上形成活性层176。活性层176通常可以由硝基纤维素、聚苯乙烯、聚碳酸酯、金、活化玻璃、改性玻璃或改性聚苯乙烯(例如聚苯乙烯共马来酐)形成。在该实施例中,通道层148位于活性层176之上。
在操作中,通过帽146的入口152引入样品。样品在旋转时,就从沿活性层176的入口152向外移动。通过许多生物或化学反应或工艺之一,可检测的特征(称作调查特征)可存在于靶区上。这些工艺的实例表示在以下文献中2001年11月16日提交的题为“用光学生物盘检测和定量淋巴细胞的方法和装置”(Methods and Apparatus forDetecting and Quantifying Lymphocytes With Optical Biodiscs)的共同转让和共同待审的第09/988,728号美国专利申请(公开号为U.S.6,030,581);以及2001年12月21日提交的题为“用于固定DNA捕获探针的表面组件和包括光学生物盘的珠基测定及其相关方法”(Surface Assembly for Immobilizing DNA Capture Probes andBead-Based Assay Including Optical Bio-Discs and Methods RelatingThereto)的第10/035,836号美国专利申请,这两件申请作为参考全部并入本文。
被具有捕获剂的捕获层捕获到靶区内的调查特征可以设计成,位于和反射层174共面的焦面上,入射束在此处一般聚焦在常规的读取器中。或者是,可以将调查特征捕获在与焦面分开的平面内。将前一种结构称作“近端”盘,而将后一种结构称作“远端”盘。
参照图4A、4B和4C,该图显示,透射光学盘180的一个具体实施例包括透明帽182、通道层148和基底150。透明帽182包括入口152和排气孔154,并且优选地主要由聚碳酸酯形成。触发标记184可包括在帽182上。通道层148具有射流回路158,该回路的结构和用途与结合图3A、3B和3C所述的类似。基底150可包括靶区170,并优选地包括聚碳酸酯层172。基底150可(但不是必需的)具有沉积在层172顶部的半反射薄层186。半反射层186优选地比反射盘144(图3A-3C)的基底150上的基底反射层174薄得多。例如,半反射层186并不局限于单层,也可以是基底150上的几个半反射层堆(诸如MO盘上的光学堆)。半反射层186优选地是由铝、金或镁合金之类的金属形成的,但薄得足以使一部分入射光束透过并穿过层186,而一些入射光反射回来。金膜层例如在厚度大于约700时具有95%的反射率,而通过金膜的光透射在约100的金膜厚度时具有约50%的透射率。
图4C是透射盘180的切掉一部分的透射图。层186的半反射性质使其整个表面可潜在地用作靶区(包括由盘上的触发标记或编码数据图形限定出的虚拟区)。还可通过掩蔽所示形状或其它任何所需形状的指定区,来形成靶区170。可以将指示靶区170的标记做在半反射层186上或基底150的底部(盘下)。可通过将油墨丝网印制到半反射层186上,来产生靶区170。
将活性层176施加到半反射层186上。活性层176可以由与层176(图3C)相同的材料(如上所述)形成,并且当通过盘180上的开口提供样品并旋转盘时基本上用作相同的目的。在透射盘180中,相比于反射盘144(图3C)中的反射层156,透明帽182上无反射层。
现在参照图5A,该图是贯穿按照本发明生物盘110(图1)的反射盘实施例144(图3A-3C)的轨道所作的截面图。如图所示,该图是沿盘的半径和流动通道纵向作图。图5A包括由塑料层172和基底反射层174组成的基底150。在该实施例中,基底150包括一系列槽188。槽188是从盘的中心附近伸向外缘的螺旋形式。槽188的实施使得询问或入射束122可沿盘上的螺旋槽188进行追踪。这种类型的槽188被称作“摆动槽”。槽188是由具有波状(undulating)或波形(wavy)侧壁的底部形成的。一个上升或提高部分在螺旋中的槽188的临近处分开。施加到本实施例中的槽188上的反射层174(如图所示)在性质上是一致的。图5A还表示出施加到反射层174上的活性层176。如图5A所示,通过在所需部位除去一个区域或一部分反射层174,或者通过在施加反射层174之前掩蔽所需的区域,而形成靶区170。如图5A进一步所示,将塑料粘合剂部件或通道层148施加到活性层176之上。图5A还表示出帽部分146和与之相联的反射表面156。因此,当将帽部分146施加到包括所需切掉形状的塑料粘合剂部件148上时,由此形成流动通道160。
图5B是与图5A类似的截面图,是贯穿按照本发明生物盘110(图1)的透射盘实施例180(图4A-4C)的轨道作图。该图是沿盘的半径和流动通道纵向作图。图5B表示出包括半反射薄层186的基底150。半反射薄层186允许入射或询问束122从光源118(图2)透过并穿过盘,以便被顶部检测器130所检测,而一些光线以返回束124的形式被反射回来。半反射薄层186的厚度由盘读取器为保持其追踪能力所需的最少量反射光来确定。本实施例中的基底150正如图5A中所述,包括一系列槽188。本实施例中的槽188优选地也是从盘的中心附近伸向外缘的螺旋形式。槽188的实施使得询问或入射束122可沿螺旋进行追踪。图5B还表示出施加到半反射薄层186上的活性层176。如图5B进一步所示,将塑料粘合剂部件或通道层148施加到活性层176之上。图5B还表示出透明帽182。因此,当将透明帽182施加到包括所需切掉形状的塑料粘合剂部件148上时,由此形成流动通道160,并且使一部分入射束122基本上不反射地穿过。然后可利用顶部检测器130检测透过的光量。
图6A与图5A类似,但是与盘的半径垂直所作的图,以便在从半径透视观察流动通道160时,可看到反射盘及其初始折射性质。以平行的比较方式,图6B是与图5B类似的视图,但是垂直于盘半径所作的图,以便在从半径透视观察流动通道160时,可看到透射盘及其初始折射性质。在图5A和5B中看不到槽188,因为截面是沿槽188所作的。图6A和6B表示出垂直于这些实施例中的槽188所定位的狭窄流动通道160的存在。图5A、5B、6A和6B表示出相应的反射和透射盘的整个厚度。在这些视图中,所示出的入射束122最初与具有折射性质的基底150相互作用,该性质改变入射束的路径(如图所示),从而使束122在反射层174或半反射薄层186上聚焦。
射流回路158的结构还可是等半径或“e-rad”形式的,其公开在2002年1月29日提交的题为“包括等半径和/或螺旋形分析区的光学盘以及相关的盘驱动系统和方法”(Optical Discs Including Equi-Radialand/or Spiral Analysis Zones and Related Disc Drive Systems andMethods)的共同转让和共同待审的第60/353,014号美国临时申请中,该申请作为参考全部并入本文。
测定化学物和双珠的形成现在参照图7A-10A和7B-10B,这些图表示出捕获珠190、报道珠192和双珠复合物194的形成。捕获珠190可与各种不同的测定一起使用,这些测定包括生物测定例如免疫测定(图7B-10B)、分子测定、以及更特异的基因测定(图7A-10A)。在免疫测定的情形中,将抗体转运探针196结合到珠上。抗体转运探针196包括用于捕获蛋白质靶物的蛋白质例如抗原或抗体。在分子测定的情形中,应该将寡核苷酸转运探针198结合到珠上。寡核苷酸转运探针198包括用于捕获基因靶物的核酸例如DNA或RNA。
如图7A所示,将从试样获得的诸如靶DNA或RNA202之类的靶剂加入到包被有寡核苷酸转运探针198的捕获珠190上。在这种实施方式中,转运探针198是由所需的核酸序列形成的。有关DNA探针结合到这种测定系统的固相上的方面在以下文献中有进一步的详细描述2001年3月26日提交的题为“”用于附着到固相上以减少非共价结合的双链DNA的应用(Use of Double Stranded DNA forAttachment to Solid Phase to Reduce Non-Covalent Binding)的共同转让和共同待审的第60/278,685号美国临时申请。该申请作为参考全部并入本文。
如图7B所示,将来自试样的靶剂例如靶抗原204加入到包被有抗体转运探针196的捕获珠190上。在此替换型实施方式中,转运探针196是由诸如抗体之类的蛋白质形成的。
捕获珠190具有使其与材料悬浮液或溶液分开的特征。可以基于所需的尺寸来选择捕获珠,且使其可分离的优选方式是,使其具有磁性。
图8A表示出在本发明的基因测定实施方式中靶DNA或RNA202与捕获珠190上的互补转运探针198的结合。图8B表示出图8A的免疫测定形式,其中转运探针196可替换性地包括用于结合到靶蛋白204上的抗体或抗原。
图9A表示出包被有与靶剂202(参见图8A)互补的寡核苷酸信号探针206的报道珠192。基于所需的尺寸以及用于检测和报道目的的材料特性,来选择报道珠192。在一个具体实施例中,采用2.1μm的聚苯乙烯珠。信号探针206可以是捕获靶DNA或RNA的DNA或RNA链。
图9B表示出包被有结合到靶剂204(如图8B所示)上的抗体信号探针208的报道珠192。基于所需的尺寸以及用于检测和报道目的的材料特性,来选择报道珠192。这种珠还可包括2.1μm的聚苯乙烯珠。信号探针208可以是用于捕获靶蛋白质或糖蛋白的抗原或抗体。
图10A是双珠复合物194的直观显示,该复合物能够由具有探针198的捕获珠190、靶剂202和具有探针206的报道珠192形成。分别结合在捕获珠190和报道珠192上的探针198和206具有与靶剂202互补但彼此不互补的序列。有关靶剂检测和减少靶剂与珠的非特异性结合的方法的进一步细节在以下申请中有所论述2001年3月23日提交的题为“包括利用限制性内切酶来减少非特异性结合的双珠测定”(Dual Bead Assays Including Use of Restriction Enzymes to ReduceNon-Specific Binding)的共同转让和共同待审的第60/278,106号美国临时申请;以及2001年3月23日提交的题为“包括利用化学方法来减少非特异性结合的双珠测定”(Dual Bead Assays Including Use ofChemical Methods to Reduce Non-Specific Binding)的第60/278,110号美国临时申请,这两件申请作为参考全部并入本文。
图10B是双珠复合物194的直观显示,该复合物能够由具有探针196的捕获珠190、靶剂204和具有探针208的报道珠192形成。分别结合在捕获珠190和报道珠192上的探针196和208仅结合到靶剂202上,彼此并不结合。
在本测定系统的一个替换型实施例中,通过使用暂时连接报道珠192和捕获珠190的可裂解间隔基或可取代间隔基,可增强靶剂结合的效率和特异性。由可裂解间隔基或可取代间隔基形成的双珠复合物实质上将转运探针和信号探针放得彼此非常靠近,由此对这两个探针的靶结合效率更大。一旦将靶剂结合到探针上,就可使间隔基裂解,从而使被结合的靶剂保留住双珠结构。在双珠测定系统中可裂解间隔基的使用进一步详细公开在以下申请中2001年3月26日提交的题为“利用可裂解间隔基来提高特异性和灵敏度的双珠测定”(Dual BeadAssays Using Cleavable Spacers to Improve Specificity andSensitivity)的共同转让和共同待审的第60/278,688号美国临时申请,该申请作为参考全部并入本文。以下还结合图42A-42D和43A-43C来描述可裂解间隔基和可取代间隔基的使用。
现在参照图11A,该图表示出一种利用“单步”杂交技术的分子测定的制备方法,以便按照本发明的一个方面在溶液中产生双珠复合物结构。该方法包括连续标为步骤I、II、III、IV和V的5个主要步骤。
在该方法的步骤I中,使许多包被有寡核苷酸转运探针198的捕获珠190沉积到含有缓冲液210的试管212内。此方法中所用的捕获珠190的数目可以诸如在10E+07的量级上,并且每个珠的直径在1μm或更大的量级上。将捕获珠190悬浮在杂交液中,并通过用吸移管214注射,装入试管212内。优选的杂交液是由0.2M NaCl、10mM MgCl2、1mM EDTA、pH7.5的50mM Tris-HCl和5XDenhart混合物组成。所需的杂交温度为37摄氏度。在本实施例的预备步骤中,通过EDC结合,将转运探针198结合到3um的磁性捕获珠190上。有关结合方法的进一步细节公开在以下申请中2001年2月27日提交的题为“将捕获DNA和报道DNA附着到固相上的方法,包括选择作为固相的珠的种类”(Methods forAttaching Capture DNA and Reporter DNA to Solid Phase IncludingSelection of Bead Types as Solid Phase)的共同转让和共同待审的第60/271,922号美国临时申请;以及2001年3月22日提交的题为“将捕获DNA和报道DNA附着到固相上的结合方法”(Methods ofConjugation for Attaching Capture DNA and Reporter DNA to SolidPhase)的第60/277,854号美国临时申请,这些申请作为参考全部并入本文。
正如在步骤II中所示,将靶DNA或RNA 202加入到溶液中。寡核苷酸转运探针198与DNA或RNA靶剂202互补。靶DNA或RNA202于是结合到附着到捕获珠190(如图8A所示)上的转运探针198的互补序列上。
现在参照步骤III,将包被有寡核苷酸信号探针206的报道珠192加入到溶液210中。还是如图9A和10A所示,信号探针206与靶DNA或RNA 202互补。在一个实施例中,使与一部分靶DNA或RNA 202互补的信号探针206结合到2.1μm的荧光报道珠192上。信号探针206和转运探针198各自具有与靶DNA 202互补但彼此不互补的序列。在加入报道珠192之后,形成双珠复合物194,从而靶DNA 202连接捕获珠190和报道珠192。通过利用专门、彻底的洗涤,报道珠192与捕获珠190之间的非特异性结合应该最小。最好使靶剂202与信号探针206在37摄氏度下杂交3-4小时。
在此实施例以及其它实施例中,发现间歇混合(即,定期混合,然后停止)比连续混合在杂交过程中产生的双珠复合物产率要大。因此,当在盘上实施该步骤时,可有利地采用盘驱动电机140和控制器142(图2),定期旋转盘,以获得所需的间歇混合。这可以在盘上编码的混合方案中来实施,该方案以一个方向旋转盘,随后使盘停止,此后用具有旋转和停止期间的优选工作循环的预定方式,再以相同方向旋转盘。或者是,编码混合方案可以第一方向旋转盘,随后使盘停止,此后用旋转、停止和逆旋转期间的优选工作循环,再以相反方向旋转盘。以下结合图33A和35来进一步详细论述本发明的这些特征。
接下来如图11A的步骤IV所示,杂交之后,将双珠复合物194与溶液中的未结合报道珠分离开。使该溶液暴露到磁场中,以便利用捕获珠190的磁性质捕获双珠复合物结构194。将磁场包裹在具有内装磁体218的磁性试管架216中,该磁体是永久性的或电磁性的,从而吸出磁珠并除去悬浮液中任何未结合的报道珠。注意,还将分离不结合到报道珠上的捕获珠。或者是,可以在盘上实施该磁性去除步骤(如图33A、35和36A-36C所示)。
在步骤IV中所示的纯化过程包括含有游离浮动颗粒的上清液的除去。将洗涤缓冲剂加入到试管内并充分混合珠溶液。用于一步测定的优选洗涤缓冲剂包括145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM和10mM EDTA。搅拌大部分的未结合报道珠182、游离的浮动DNA及非特异性结合的颗粒,并将其从上清液中除去。双珠复合物能够形成捕获珠、靶序列和报道珠矩阵,其中洗涤过程还有助于提取截留在重叠双珠颗粒的晶格结构中的浮动颗粒。有关减少报道珠与捕获珠的非特异性结合的方法的其它方面的进一步细节公开在诸如以下申请中2001年2月28日提交的题为“通过珠类型的选择和珠处理来减少双珠测定中的非特异性结合”(Reduction of Non-Specific Binding in Dual Bead Assays bySelection of Bead Type and Bead Treatment)的共同转让和共同待审的第60/272,134号美国临时申请;以及2001年3月12日提交的题为“通过缓冲剂条件和洗涤条件的选择来减少双珠测定中的非特异性结合”(Reduction of Non-Specific Binding in Dual Bufier Assays bySelection of Bead Condition and Wash Condition)的第60/275,006号美国临时申请。这两件申请作为参考全部并入本文。
图11A中所示的最后一个主要步骤是步骤V。在该步骤中,一旦双珠复合物已经用洗涤缓冲液清洗大约3-5次,就可以将测定混合物装入盘内,并准备进行分析。
与图11A类似,图11B表示出利用“单步”抗原结合法的免疫测定,以便在溶液中产生双珠复合物。该方法同样包括5个主要步骤。这些步骤分别被表示为图11A中的步骤I、II、III、IV和V。
如步骤I中所述,将包被有抗体转运探针196的捕获珠190(诸如数量在10E+07的量级上,且每个珠的直径在1μm或更大的量级上)加入到缓冲液210中。该溶液可以与图11A所示方法中采用的溶液一样,或者是为了用于免疫化学测定而专门制备的。抗体转运探针196对靶抗原204具有特异性亲和力。转运探针196特异性结合到靶抗原204(还是如图8B所示)内的表位上。在一个实施例中,可以通过EDC结合,将对一部分靶抗原具有亲和力的抗体转运探针196结合到3μm的磁性捕获珠190上。或者是,通过被动吸附,可以将转运探针196结合到捕获珠190上。
现在参照图11B中所示的步骤II,将靶抗原204加入到溶液中。靶抗原204结合到附着到捕获珠190(还是如图8B所示)上的抗体转运探针196上。
如步骤III中所示,将包被有抗体信号探针208的报道珠192加入到溶液中。抗体信号探针208特异性结合到靶抗原204(还是如图9B和10B所示)的表位上。在一个实施例中,将信号探针208结合到2.1μm的荧光报道珠192上。信号探针208和转运探针196各自结合到靶抗原的特异性表位上,但彼此不相互结合。加入报道珠192之后,形成双珠复合物194,从而靶抗原204连接捕获珠190和报道珠192。通过专门彻底的洗涤,报道珠192与捕获珠190之间的非特异性结合应该最小。
在步骤IV中,在步骤III中结合之后,使双珠复合物194与溶液中的未结合报道珠分离开。可以将该溶液暴露到磁场中,以便利用捕获珠190的磁性质捕获双珠复合物结构194。将磁场包裹在具有内装磁体218的磁性试管架216中,该磁体是永久性的或电磁性的,从而吸出磁珠并除去悬浮液中任何未结合的报道珠。注意,还将分离不结合到报道珠上的捕获珠。或者是,如上所述,可以在盘上实施该磁性去除步骤(如图33A、35和36A-36C所示)。
步骤IV的纯化过程包括含有游离浮动颗粒的上清液的去除。将缓冲剂加入到试管内并充分混合珠溶液。搅拌大部分的未结合报道珠182、游离的浮动蛋白质样品及非特异性结合的颗粒,并将其从上清液中除去。双珠复合物能够形成捕获珠、靶抗原和报道珠矩阵,其中洗涤过程还有助于提取截留在重叠双珠颗粒的晶格结构中的游离浮动颗粒。
图11B中所示的最后一个主要步骤是步骤V。在该步骤中,一旦双珠复合物已经用洗涤缓冲液清洗大约3-5次,就可以将测定混合物装入盘内,并由此准备进行分析。
图12A表示出用于产生双珠复合物且具有6个主要步骤的另一基因测定方法(本文称作“二步杂交”)。通常,捕获珠包被有与DNA或RNA靶剂互补的寡核苷酸转运探针198,且被置于缓冲液中。在该实施例中,通过EDC结合,将与一部分靶抗原互补的转运探针结合到3μm的磁性捕获珠上。可利用寡核苷酸转运探针与固相的其它类型的结合方法。这些方法包括诸如,被动吸附或利用链霉亲和素-生物素的相互作用。将按照本发明的该方法的这6个主要步骤连续表示为图12A中的步骤I、II、III、IV、V和VI。
现在更具体地参照图12A所示的步骤I,将悬浮在杂交液中的捕获珠190从吸移管214装入试管212中。优选的杂交液由0.2M NaCl、10mM MgCl2、1mM EDTA、pH为7.5的50mM Tris-HCl和5X Denhart的混合物组成。所需的杂交温度为37摄氏度。
在步骤II中,将靶DNA或RNA 202加入到溶液中,并使其结合到附着到捕获珠190上的转运探针198的互补序列上。在该方法的一个特定实施例中,使靶剂202与转运探针198于37摄氏度下杂交2-3小时。然而,于室温下在30分钟内可实现充分的杂交。在更高温度,可基本上瞬间实现杂交。
接着如步骤III所示,通过将溶液暴露到磁场中,以便利用捕获珠190的磁性质分离被结合的靶序列,而将结合到捕获珠上的靶剂202与溶液中未结合的物种分离开。将磁场包裹在具有内装永磁体218或电磁体的磁性试管架216中,以便通过溶液的吸移管提取,吸出磁珠并去除游离浮动在悬浮液中的任何未结合的靶DNA 202。与上述方法一样,在与之对应的盘上,可以实施该磁性去除步骤(如图33A、35和36A-36C所示)。加入洗涤缓冲剂并重复分离过程。优选的洗涤缓冲剂在转运探针198与靶DNA202杂交之后,包括145mM NaCl、pH7.5的50mM Tris和0.05%Tween。用于减少靶剂与珠的非特异性结合的杂交方法和技术进一步公开在以下申请中2001年3月26日提交的题为“利用封闭剂来减少双珠测定的非特异性结合”(Reduction ofNon-Specific Binding of Dual Bead Assays by Use of Blocking Agents)的共同转让和共同待审的第60/278,691号美国临时申请。该申请作为参考全部并入本文。
现在参照图12A所示的步骤IV,正如结合图11A所示方法所论述的,将报道珠192加入到溶液中。报道珠192包被有与靶剂202互补的信号探针206。在该方法的一个具体实施例中,将与一部分靶剂202互补的信号探针206结合到2.1μm的荧光报道珠192上。信号探针206和转运探针198各自具有与靶剂202互补但彼此不互补的序列。加入报道珠192之后,就形成双珠复合物结构190。正如本领域技术人员所容易理解的,只要存在感兴趣的靶剂,就形成双珠复合物结构。在该形成中,靶剂202连接磁性捕获珠190和报道珠192。利用优选的缓冲液,通过专门、彻底的洗涤,报道珠与捕获珠之间的非特异性结合最小。优选地使靶剂202与信号探针206于37摄氏度杂交2-3小时。与上述的步骤II一样,于室温下在30分钟内可实现充分杂交。在更高温度,还可基本上瞬间实现此步骤中的杂交。
现在参照图12A所示的步骤V,在步骤IV的杂交之后,使双珠复合物194与溶液中的未结合物种分开。再将溶液暴露到磁场中,以便利用捕获珠190的磁性质来分离双珠复合物194。还要注意,分离包括未结合到报道珠上的捕获珠的分离。象在与之对应的盘上进行的步骤III那样,可以实施该磁性分离步骤(如图33A、35和36A-36C所示)。
用于除去含有游离浮动颗粒的上清液的纯化过程包括将洗涤缓冲剂加入到试管内,并充分混合珠溶液。用于二步测定的优选洗涤缓冲剂包括145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM和10Mm EDTA。搅拌大部分的未结合报道珠、游离浮动DNA和非特异性结合的颗粒,并将其从上清液中除去。此双珠复合物能够形成捕获珠、靶剂和报道珠的矩阵,其中洗涤过程还有助于提取截留在重叠双珠颗粒的晶格结构中的游离浮动颗粒。用于减少报道珠、靶剂和捕获珠之间的非特异性结合的其它有关方面公开在诸如以下申请中2001年2月28日提交的题为“用于减少双珠测定中的非特异性结合的混合方法”(Mixing Methods to ReduceNon-Specific Binding in Dual Bead Assays)的共同转让的第60/272,243号美国临时申请;以及2001年3月1日提交的题为“包括用于减少非特异性结合的接头的双珠测定”(Dual Bead Assays IncludingLinkers to Reduce Non-Specific Bindng)的第60/272,485号美国临时申请,这两件申请作为参考全部并入本文。
图12A所示的最后一个主要步骤是步骤VI。在该步骤中,一旦双珠复合物194已经用洗涤缓冲液冲洗约3-5次,就将测定混合物装入盘内并进行分析。或者是,在该步骤中,可以连接寡核苷酸信号和转运探针,以避免双珠复合物在盘分析和信号检测过程中断裂。有关探针连接方法的进一步细节公开在以下申请中2001年3月26日提交的题为“利用连接反应改善的双珠测定”(Improved Dual BeadAssays Using Ligation)的共同转让和共同待审的第60/278,694号美国临时申请,该申请作为参考全部并入本文。
按照本发明的另一方面,图12B表示出一种免疫测定方法,该方法与图11B的免疫测定方法类似,并遵循图12A的基因测定步骤。该方法在本文中还被称作“二步”结合,以便在免疫化学测定中产生双珠复合物。与图12A所示的方法一样,该方法包括6个主要步骤。通常,将包被有特异性结合到靶抗原表位上的抗体转运探针的捕获珠置于缓冲液中。在一个特定实施例中,将抗体转运探针结合到3μm的磁性捕获珠上。根据用于实施测定的盘驱动器和盘组件的类型,可采用不同尺寸的磁性捕获珠。将按照本发明的此替换性方法的这6个主要步骤分别表示为图12B中的步骤I、II、III、IV、V和VI。
现在具体参照图12B所示的步骤I,通过从吸移管214注射,将悬浮在缓冲液210中的捕获珠190装入试管212内。
在步骤II中,将靶抗原204加入到该溶液中,并结合到附着在捕获珠190上的抗体转运探针196上。优选地使靶抗原204与转运探针196在37摄氏度下结合2-3小时。更短的结合时间也是可能的。
如步骤III所示,通过将溶液暴露到磁场中,以便利用捕获珠190的磁性质来分离所结合的靶蛋白或糖蛋白,而将结合到捕获珠190上的靶抗原204与溶液中的未结合物种分开。将磁场包裹在具有内装永磁体218或电磁体的磁性试管架216中,以便通过溶液的吸移管提取,吸出磁珠并去除游离浮动在悬浮液中的任何未结合的靶抗原204。加入洗涤缓冲剂并重复分离过程。
接下来如步骤IV中所示,正如结合图11B所示方法所论述的,将报道珠192加入到该溶液中。报道珠192包被有对靶抗原204具有亲和力的信号探针208。在此二步免疫化学测定的一个具体实施例中,将特异性结合到一部分靶剂204上的信号探针208结合到2.1μm的荧光报道珠192上。信号探针208和转运探针196各自结合到靶剂204的特异性表位上,但彼此并不结合。报道珠192加入之后,就形成双珠复合物结构190。正如本领域技术人员所容易理解的,只要存在感兴趣的靶抗原,就形成这些双珠复合物结构。在该形成中,靶抗原204连接磁性捕获珠190和报道珠192。利用优选的缓冲液,通过专门、彻底的洗涤,报道珠与捕获珠之间的非特异性结合最小。优选地使靶抗原204与信号探针208于37摄氏度下杂交2-3小时。与上述的步骤II一样,于室温下在30分钟内可实现充分杂交。在免疫测定情形中,高于37摄氏度的温度不是优选的,因为蛋白质将变性。
接下来翻到图12B所示的步骤V,在步骤IV所示的杂交之后,使双珠复合物194与溶液中未结合的物种分开。通过将溶液暴露到磁场中,以便利用捕获珠190(如图所示)的磁性质来分离双珠复合物194,而实现这种分离。还要注意,分离包括未结合到报道珠上的捕获珠的分离。
用于除去含有游离浮动颗粒的上清液的纯化过程包括将洗涤缓冲剂加入到试管内,并充分混合珠溶液。搅拌大部分的未结合报道珠、游离浮动的蛋白质和非特异性结合的颗粒,并将其从上清液中除去。此双珠复合物能够形成捕获珠、靶剂和报道珠的矩阵,其中洗涤过程还有助于提取截留在重叠双珠颗粒的晶格结构中的游离浮动颗粒。
图12B所示的最后一个主要步骤是步骤VI。在该步骤中,一旦双珠复合物194已经用洗涤缓冲液冲洗约3-5次,就将测定混合物装入盘内并进行分析。
正如上述其它方法的任一种,利用图33A-33D、34A-34C、35和36A-36C所示的盘、射流回路和装置,在盘上实施图12B所示方法中的磁性去除和分离步骤。
现在参照图13,该图是混合或加料室164的盘层(类似于图6)的截面图。通过入口152进入加料室164,在此入口将双珠测定制备物装入盘系统中。
图14与图13类似,该图表示出混合或加料室164,该室具有将双珠复合物194注入到盘上的吸移管214。在这个实例中,该复合物包括通过靶DNA或RNA 202连接到一起的报道珠192和捕获珠190。信号靶DNA 206被表示成与捕获剂互补的单链DNA。图13和14所示的盘可容易地适合包括上述免疫测定和通用的分子测定的其它测定,这些测定因此采用蛋白质(例如抗原或抗体)作为转运探针、靶剂和信号探针。
图15A表示出双珠复合物194锚到捕获剂220上之后的流动通道160和靶或捕获区170。通过将少量的捕获剂溶液施加到活性层176上以便在靶区170区域内形成捕获剂簇,而将该实施例中的捕获剂220附着到活性层176上。在该实施例中,捕获剂包括生物素或BSA-生物素。图15A还表示出作为双珠复合物194(正如本发明中所采用的)的成分的报道珠192和捕获珠190。在该实施例中,将锚剂222附着到报道珠192上。锚剂222在本实施例中可包括链霉亲和素或Neutravidin。因此当报道珠192距离捕获剂220非常近时,锚探针222/206与捕获剂220之间通过生物素-链霉亲和素的相互作用,就发生结合,由此将双珠复合物194保留在靶区170内。在这一点上,可利用指向靶区170的询问束224来检测靶区170内的双珠复合物194。
图15A和15B所示的实施例还可在图4A-4C、5B和6B所示的透射盘上实施。
图15B是与图15A类似的截面图,该图表示出盘旋转速度发生后成变化之后,报道珠192在靶区170内的包载。旋转速度的变化将捕获珠190从双珠复合物194中除去,最终分离出将要由询问或读取束224检测的靶区170内的报道珠192。
图16A是与图15A类似的截面图,该图表示出图15A的替换型实施例,其中报道珠192上的信号探针206或锚剂222直接杂交到捕获剂220上。图16A表示出双珠复合物194与捕获剂220锚定之后的流动通道160和靶或捕获区170。通过将少量的捕获剂溶液施加到活性层176上以便在靶区170区域内形成捕获剂簇,而将该实施例中的捕获剂220附着到活性层176上。或者是,利用共价结合到活性层176上的氨基,可将捕获剂220附着到该活性层上。在该实施例中,捕获剂包括DNA。图16A还表示出作为双珠复合物194(正如本发明中所采用的)的成分的报道珠192和捕获珠190。在该实施例中,将锚剂222附着到报道珠192上。锚剂222在本实施例中可以是与靶剂220互补的特异性核酸序列或寡核苷酸信号探针206本身。因此当报道珠192距离捕获剂220非常近时,锚剂222与捕获剂220之间就发生杂交,由此将双珠复合物194保留在靶区170内。在另一实施例中,信号探针206起锚剂222的作用。在这一点上,可利用指向靶区170的询问束224来检测靶区170内的双珠复合物194。
图16B表示出盘旋转速度随后发生的变化之后的图16A中的实施例。旋转速度的变化将捕获珠190从双珠复合物194中除去,最终分离出将要由询问束224检测的靶区170内的报道珠192和靶DNA序列202。
图16A和16B所示的实施例还可在图4A-4C、5B和6B所示的透射盘上实施。
现在参照图17,该图表示出图15A所示实施例的另一替换型实例。在该实施例中,将锚剂222附着到取代报道珠的捕获珠190上。本实施例中的锚剂222可包括链霉亲和素或Neutravidin。如图15A所示,靶区170包被有捕获剂220。捕获剂可包括生物素或BSA-生物素。图17还表示出作为双珠复合物194(正如本发明中所采用的)的成分的报道珠192和捕获珠190。当捕获珠190距离捕获剂220非常近时,锚探针222与捕获剂220之间就通过生物素-链霉亲和素的相互作用而发生杂交,由此将双珠复合物194保留在靶区170内。在这一点上,可利用指向靶区170的询问束224来检测靶区170内的双珠复合物194。图17所示的本发明实施例还可在图4A-4C、5B和6B所示的透射盘上实施。
图18是图16A所示实施例的替换型实施例。在该实施例中,将锚剂222附着到取代报道珠的捕获珠190上。在本实施例中,转运探针198,或捕获珠190上的锚剂222直接与捕获剂220杂交。在该实施例中,捕获剂220包括特异性核酸序列。本实施例中的锚剂222可以是与捕获剂220互补的特异性核酸序列或者是寡核苷酸信号转运探针198本身。因此当捕获珠190非常靠近捕获剂220时,锚剂222与捕获剂220之间就发生杂交,由此将双珠复合物194保留在靶区170内。在这一点,利用指向靶区170的询问束224来检测靶区170内的双珠复合物194。图18中所示的实施例还可以在图4A-4C、5B和6B所示的透射盘上实施。
图19A-19C是正如结合本文所论述的基因测定而实施的、本发明生物盘110的活性层176和基底174的详细部分截面图。图19A-19C所示的捕获剂220通过将少量的捕获剂溶液施加到活性层176上以便在靶区区域内形成捕获剂簇,而附着到活性层176上。捕获剂220与活性层176之间的键足以在旋转盘时,使捕获剂220继续附着在靶区内的活性层176上。图19A和19B还表示出来自结合到靶区内的捕获剂220上的双珠复合物194的捕获珠190。按照诸如图11A和12A所述的那些方法来制备这些双珠复合物。捕获剂220包括生物素和BSA-生物素。在该实施例中,通过生物素/链霉亲和素的相互作用,报道珠192锚接靶区内的双珠复合物194。或者是,靶区可以用链霉亲和素包被,并且可以结合生物素化报道珠。图19C表示出结合图19A和19B所述的那些实施例的一个替换型实施例,该实施例包括一个额外步骤。在这个优选实施例中,每分钟的盘旋转偏差可以产生足够大的离心力,从而基于珠的不同尺寸和/或质量,使捕获珠190从双珠复合物194中断裂出来。虽然盘的旋转速度有所偏移,但是报道珠192仍然锚接到靶区上。于是,使报道珠192保留在靶区内并利用光学生物盘或机械CD读取器来检测。
以上结合图19A-19C所述的本发明实施例可以在图3A-3C、5A和6A所示的反射盘上或者在图4A-4C、5B和6B所示的透射盘上实施。
图20A、20B和20C表示出图19A-19C中所述实施例的一个替换型实施例。图20A-20C是结合免疫化学测定所实施的靶区的详细部分截面图。图20A和20B还表示出来自结合到靶区内的捕获剂220上的双珠复合物194的捕获珠190。捕获剂220包括生物素和BSA-生物素。按照诸如图11B和12B所述的那些方法可以制备这些双珠复合物。在该实施例中,通过生物素/链霉亲和素的相互作用,报道珠192锚接靶区内的双珠复合物194。参照图20A-20C所述的本发明实施例可以在图3A-3C、5A和6A所示的反射盘上或者在图4A-4C、5B和6B所示的透射盘上实施。
现在参照图21A、21B和21C,这是包括本发明生物盘110的活性层176和基底174的靶区(正如结合本文所述的基因测定而实施的)的详细截面图。图21A-21C表示出利用氨基226附着到活性层176上的捕获剂220,其中氨基226是捕获剂220的组成部分。如图所示,捕获剂220位于靶区内。氨基226与捕获剂220,和氨基226与活性层176之间的键足以使捕获剂220在盘旋转时继续附着在靶区内的活性层176上。优选的氨基226是NH2。还可以在氨基226的位置采用硫羟基。在本发明的这个实施例中,捕获剂220包括与附着到报道珠192上的锚剂222或寡核苷酸信号探针206互补的特异性氨基酸序列。
图21B表示出诸如按照图11A和12A所述的那些实施例制备的、结合到靶区中的捕获剂220上的双珠复合物194的报道珠192。当双珠复合物194流向捕获剂220并距离其足够近时,就在锚剂222或寡核苷酸206与捕获剂220之间发生杂交。于是,报道珠192锚接靶区内的双珠复合物194。
图21C表示出结合图21A-21B所述的那些实施例的一个替换型实施例,该实施例包括一个额外步骤。在这个优选实施例中,每分钟的盘旋转偏差可以产生足够大的离心力,从而基于珠的不同的尺寸和/或质量,使捕获珠190从双珠复合物194中破裂出来。虽然盘的旋转速度有所偏移,但是具有靶DNA序列202的报道珠192仍然锚接到靶区上。或者是,象所期望的那样,将报道珠192保留在靶区内。
以上参照图21A-21C所述的本发明实施例可以在图3A-3C、5A和6A所示的反射盘上或者在图4A-4C、5B和6B所示的透射盘上实施。
图22A、22B和22C表示出图21A-21C中所述实施例的一个替换型实施例。图22A-22C是结合免疫化学测定所实施的靶区的详细部分截面图。图22A和22B还表示出按照诸如图11B和12B所述的那些方法制备的、结合到捕获区中的捕获剂220上的来自双珠复合物194的报道珠192。在该实施例中,捕获剂220包括利用氨基226结合到靶区上的抗体,其中氨基226是捕获剂220的组成部分。或者是,可以通过被动吸收以及疏水或离子相互作用,将捕获剂220结合到活性层176上。在该实施例中,报道珠192通过特异性抗体结合锚接靶区内的双珠复合物194。与图21C所示的实施例一样,图22C表示出结合图22A-22B所述的那些实施例的一个替换型实施例,该实施例包括一个额外步骤。在这个优选实施例中,每分钟的盘旋转偏差可以产生足够大的离心力,从而基于珠的不同尺寸和/或质量,使捕获珠190从双珠复合物194中破裂出来。虽然盘的旋转速度有所偏移,但是具有靶抗原204的报道珠192仍然锚接到靶区上。或者是,象所期望的那样,将报道珠192保留在靶区内。以上结合图22A-22C所述的本发明实施例可以在图3A-3C、5A和6A所示的反射盘上或者在图4A-4C、5B和6B所示的透射盘上实施。
图23A和23B是表示出正如结合基因测定所实施的、本发明生物盘110的活性层176和基底174的详细部分截面图。图23A和23B表示出以上图19A和19B所述实施例的一个替换型实施例。与图19A和19B中的实施例相反,在本实施例中,将锚剂222附着到取代报道珠192的捕获珠190上。图23B表示出来自双珠复合物194、结合到捕获区中的捕获剂220上的捕获珠190。捕获剂220包括生物素和BSA-生物素。在该实施例中,捕获珠190通过生物素/链霉亲和素的相互作用锚接靶区中的双珠复合物194。
以上参照图23A和23B所述的本发明实施例可以在图3A-3C、5A和6A所示的反射盘上或者在图4A-4C、5B和6B所示的透射盘上实施。
现在参照图24A和24B,其表示出正如结合基因测定所实施的、本发明生物盘110的活性层176和基底174的详细部分截面图。图23A和23B表示出以上图21A和21B所述实施例的一个替换型实施例。与图21A和21B中的实施例相反,在本发明中,将锚剂222附着到取代报道珠192的捕获珠190上。图23B表示出来自双珠复合物194、结合到捕获区中的捕获剂220上的捕获珠190。利用作为捕获剂220的组成部分的氨基226,使捕获剂220附着到活性层176上。如图所示,捕获剂220位于靶区内。氨基226与捕获剂220,以及氨基226与活性层176之间的键足以使捕获剂220在盘旋转时继续附着在靶区内的活性层176上。在本发明的这个实施例中,捕获剂220包括与附着到捕获珠190上的锚剂222或寡核苷酸转运探针198互补的特异性氨基酸序列。在该实施例中,捕获珠190通过捕获剂220与锚剂或转运探针198之间的杂交,锚接靶区中的双珠复合物194。
以上图24A和24B中所述的本发明实施例可以在图3A-3C、5A和6A所示的反射盘上或者在图4A-4C、5B和6B所示的透射盘上实施。
盘的处理方法现在翻到图25A-25D,其表示出盘的上下结构中的、图21A-21C和图24A-24B所列出的靶区170,这些靶区利用按照诸如图11A和12A所示那些方法制备的溶液作为输入。
图25A表示出混合/加料室164,其通过入口152进入,并引导到流动通道160中。流动通道160预先装有以簇定位的捕获剂220。使捕获剂220的每个簇在相应的靶区170内定位。每个靶区170具有一种捕获剂或多种捕获剂,而分离开的靶区在多个捕获场具有一种且相同的捕获剂或具有多种不同的捕获剂。在本发明中,捕获剂包括与报道珠192或捕获珠190上的锚剂222互补的特异性核酸序列。
在图25B中,吸移管214装有已经汇集在双珠复合物194内的DNA或RNA试样。通过入口152将双珠复合物注入流动通道160内。当流动通道160还填充有来自吸移管214的双珠复合物时,该双珠复合物194在盘旋转时就开始向下移动到流动通道160中。加料室164包括断裂截留壁228,从而复合物194一次向下移动到流动通道中。
在该实施例中,附着到报道珠192上的锚剂222通过杂交结合到捕获剂220上(如图25C所示)。以这种方式,将报道珠192截留在靶区170内。通过旋转盘以便双珠复合物194能够缓慢地向下移动或翻滚到流动通道中,能够使结合更容易实现。缓慢运动使得能够有充分的时间进行额外杂交。杂交之后,还能够以相同或更快的速度旋转盘,以便清洁任何未结合的双珠复合物194的靶区170(如图25D所示)。
然后使询问束224穿过靶区170,以便确定报道珠、捕获珠和双珠复合物的存在(如图25D所示)。在试样中无靶DNA或RNA存在的情形中,将没有双珠复合物结构、报道珠或捕获珠结合到靶区170上,但从非特异性结合中可以在靶区中检测到少量背景信号。在这种情形下,当询问束224指入靶区170时,可获得零或低的读取结果,借此指示样品中无靶DNA或RNA存在。
可以将旋转速度、方向和阶段(例如一个周期的一个速度,接着另一个周期的另一个速度)全部编码在盘上的操作信息中。结合图25A-25D所述的方法可以在图4A-4C、5B和6B所示的透射盘上、利用带有顶部检测器130的系统来实施。
图26A-26D表示出包括图19A-19C和图23A-23B所述捕获化学物的靶区170。该方法利用按照图11A和12A所示方法制备的溶液作为输入。图26A-26D表示出图25A-25D所述实施例的一个替换型实施例,表明以下更详细描述的一种不同的珠捕获方法。
图26A表示出混合/加料室164,其通过入口152进入,并引导到流动通道160。流动通道160预先装有以簇定位的捕获剂220。使捕获剂220的每个簇在相应的靶区170内定位。每个靶区170具有一种捕获剂或多种捕获剂,而分离开的靶区在多个捕获场具有一种且相同的捕获剂或具有多种不同的捕获剂。在本发明中,捕获剂包括对报道珠192或捕获珠190上的锚剂222具有亲和力的特异性生物素和BSA-生物素。锚剂可包括链霉亲和素及Neutravidin。
在图26B中,吸移管214装有已经汇集在双珠复合物194内的DNA或RNA试样。通过入口152将双珠复合物注入流动通道160内。当流动通道160还填充有来自吸移管214的双珠复合物时,该双珠复合物194在盘旋转时就开始向下移动到流动通道160中。加料室164包括断裂截留壁228,从而复合物194一次向下移动到流动通道中。
在该实施例中,附着到报道珠192上的锚剂222通过生物素-链霉亲和素的相互作用结合到捕获剂220上(如图26C所示)。以这种方式,将报道珠192截留在靶区170内。通过旋转盘以便双珠复合物194能够缓慢地向下移动或翻滚到流动通道中,能够使结合更容易实现。缓慢运动使得捕获剂220与锚剂222之间能够有充分的时间进行额外杂交。杂交之后,还能够以相同或更快的速度旋转盘,以便清洁任何未附着的双珠复合物194的靶区170(如图26D所示)。
然后使询问束224穿过靶区170,以便确定报道珠、捕获珠和双珠复合物的存在(如图26D所示)。在试样中无靶DNA存在的情形中,将没有双珠复合物结构珠结合到靶区170上。但从非特异性结合中可以在靶区中检测到少量背景信号。在这种情形下,当询问束224指入靶区170时,可获得零或低的读取结果,借此指示样品中无靶DNA或RNA存在。
可以将旋转速度、方向和阶段(例如一个周期的一个速度,接着另一个周期的另一个速度)全部编码在盘上的操作信息中。
结合图26A-26D所述的方法如图所示在例如图3A-3C、5A和6A所示的反射盘上。该方法可以利用带有顶部检测器130的系统在图4A-4C、5B和6B所示的透射盘上实施。
接下来参照图27A-27D,其表示出一系列的截面侧视图,这些图表示出按照本发明的又一替换性方法的步骤。图27A-27D表示出包括结合图22A-22C所述捕获机构的靶区170。该方法利用按照图11B和12B所示的制备方法产生的溶液作为输入。图27A-27D表示出一种免疫化学测定及另一种替换性珠捕获方法。
图27A表示出混合/加料室164,其通过入口152进入,并引导到流动通道160。流动通道160预先装有以簇定位的捕获剂220。使捕获剂220的每个簇在相应的靶区170内定位。每个靶区170具有一种捕获剂或多种捕获剂,而分离开的靶区在多个捕获场具有一种且相同的捕获剂或具有多种不同的捕获剂。在本发明中,捕获剂包括特异性结合到报道珠192或捕获珠190上的锚剂222的表位上的抗体。或者是,捕获剂能够直接结合到双珠复合物194内的靶抗原204的表位上。锚剂222包括结合到报道珠192或捕获珠190上的靶抗原、抗体转运探针196、抗体信号探针208、或任何抗原,这些物质具有能够特异性结合到捕获剂220上的表位。
在图27B中,吸移管214装有已经汇集在双珠复合物194内的靶抗原试样。通过入口152将双珠复合物注入流动通道160内。当流动通道160还填充有来自吸移管214的双珠复合物时,该双珠复合物194在盘旋转时就开始向下移动到流动通道160中。加料室164包括断裂截留壁228,从而复合物194一次向下移动到流动通道中。
在该实施例中,附着到报道珠192上的锚剂222通过抗体-抗原的相互作用结合到捕获剂220上(如图27C所示)。以这种方式,将报道珠192截留在靶区170内。通过旋转盘以便双珠复合物194能够缓慢地向下移动或翻滚到流动通道中,能够使结合更容易实现。缓慢运动使得捕获剂220与锚剂222之间能够有充分的时间进行额外杂交。杂交之后,还能够以相同或更快的速度旋转盘,以便清洁任何未附着的双珠复合物194的靶区170(如图27D所示)。
然后使询问束224穿过靶区170,以便确定报道珠、捕获珠和双珠复合物的存在(如图27D所示)。在试样中无靶抗原存在的情形中,将没有双珠复合物结构、报道珠或捕获珠结合到靶区170上,但从非特异性结合中可以在靶区中检测到少量背景信号。在这种情形下,当询问束224指入靶区170时,可获得零或低的读取结果,借此指示样品中无靶物存在。
可以将旋转速度、方向和阶段(例如一个周期的一个速度,接着另一个周期的另一个速度)全部编码在盘上的操作信息中。
图25A-25D、26A-26D和27A-27D所述的方法可以利用反射盘系统144来实施。如上所示,应该理解,这些方法以及任何其它珠或球的检测方法也可以利用透射盘实施例180来完成(如图4A-4C、5B和6B所述)。还应该理解,图11A-11B、12A-12B、25A-25D、26A-26D和27A-27D所述的方法并不局限于在光学生物盘外部产生双珠复合物,而是可以包括采用“盘内”或“盘上”形式的双珠复合物的实施例。在这些盘上实施方式申,双珠复合物在光学生物盘110的射流回路内形成。例如,可以在加料或混合室164内完成双珠的形成。在一个实施例中,将珠和样品同时或者几乎同时加到盘上。或者是,将带有探针的珠预装到盘上,以便进一步与样品一起使用,因此仅有样品需要加入。
珠通常具有较长的存放寿命,而探针的存放寿命较短。使探针干燥或冻干(冻干),以便延长探针保留在盘中的时间。采用干燥探针,样品实质上重建这些探针,然后与珠混合,从而产生能够实施的双珠复合物结构。
或者是,盘上处理的基本过程包括(1)将样品插入装有带探针的珠的盘内;(2)使样品和珠在盘上混合;(3)诸如通过施加电场进行分离,从而截留双珠复合物,而将未截留的珠移到本文称作废物室的区域中;以及(4)将双珠复合物(以及任何其它未移到废物室的材料)引到捕获场。检测过程与以上所述的那些相同,诸如利用事件检测或荧光测定法。
除了以上所述的之外,对于本领域技术人员来说显而易见的还有,用于形成图25A-25D、26A-26D和27A-27D所示双珠复合物的盘表面捕获技术和连接技术可以互换,以产生彼此的替换性变型。例如,发明人已经考虑用捕获剂220(正如包括特异性核酸序列的实施方式)来捕获双珠复合物,该复合物是通过图10A所示的DNA杂交或图10B所示的抗体-抗原相互作用形成的。同样,用捕获剂220(正如包括抗体的实施方式)来捕获双珠复合物,该复合物是通过图10A所示的DNA杂交方法或图10B所示的抗体-抗原相互作用形成的。再者,用捕获剂220(正如包括生物素或BSA-生物素的实施方式)来捕获双珠复合物,该复合物是通过图10A所示的DNA杂交技术或图10B所示的抗体-抗原相互作用形成的。包括用于完成与捕获剂的结合功能的不同锚剂的其它组合方式,从本发明的公开文本中显而易见,因此专门提供给本文。
检测和相关的信号处理方法及装置结合到捕获场或区上的报道珠、靶细胞或颗粒的数目可用定性的方式来检测,或者用光学盘读取器来定量。
上述任何测试方法的测试结果都能够容易地显示在监视器114(图1)上。按照本发明的盘优选地包括编码软件,读取该软件,以便控制控制器、处理器和分析仪(如图2所示)。执行该交互作用软件,以便使本文所述的方法和结果显示容易实现。
图28A是相对于按照本发明的光学生物盘或医用CD的磁道A、B、C、D和E而定位的、单个2.1μm报道珠192和3μm捕获珠190的柱形图。
图28B是来自磁道A、B、C、D和E、利用按照本发明光学驱动器的检测信号从图28A的珠得到的一系列信号踪迹。这些图表示例如图5A和6A所示反射盘的被检返回束124,或者图5B和6B所示透射盘的透射束128。如图所示,2.1μm报道珠190的信号与3μm捕获珠192的信号非常不同,从而足以检测和区分这两种不同的珠。该检测方法并不局限于检测珠或珠复合物,而是还可以用来检测诸如细胞或珠-细胞复合物之类的其它物体。正如本领域技术人员所显而易见的,例如,来自MO生物盘中的1μm磁珠和8μm细胞的信号踪迹非常不同,从而足以将这些颗粒彼此区分开。来自被检返回射束的踪迹信号的充分偏转在其穿过珠时,被称作事件。
图29A是相对于按照本发明的光学生物盘或医用CD的磁道A、B、C、D和E而定位的、在双珠复合物中连接到一起的2.1μm报道珠和3μm捕获珠的柱形图。
图29B是来自磁道A、B、C、D和E、利用按照本发明光学驱动器的检测信号从图29A的珠得到的一系列信号踪迹。这些图表示反射盘144的被检返回射束124,或者透射盘180的透射束128。如图所示,2.1μm报道珠190的信号与3μm捕获珠192的信号非常不同,从而足以检测和区分这两种不同的珠。来自被检返回射束或透射束的踪迹信号的充分偏转在其穿过珠时,被称作事件。来自报道珠和捕获珠的事件的相对近端指示出双珠复合物的存在或缺乏。如图所示,报道珠和捕获珠的踪迹彼此成直角,这表明珠在双珠复合物中是连接到一起的。
或者是,采用其它检测方法。例如,报道珠是荧光或磷光的。这些报道珠的检测可以在荧光或磷光型光学盘读出器中来完成。其它信号检测方法诸如在以下申请中有所描述2001年11月9日提交的题为“与生物盘一起使用的盘驱动系统和方法”(Disc Drive System andMethods for Use with Bio-Discs)的共同转让和共同待审的第10/008,156号美国专利申请,该申请作为参考并入本文;2001年2月20日提交的第60/270,095号和2001年5月18日提交的第60/292,108号美国临时申请;以及2002年1月10日提交的题为“包括生物和医用成像的相关方法的光学盘分析系统”(Optical Disc Analysis SystemIncluding Related Methods for Biological and Medical Imaging)的第10/043,688号上文参考的美国专利申请。
图30A是利用荧光计产生的数据的柱形图,表明采用荧光报道珠的依据浓度的靶物检测方法。此图表示出靶DNA相比于被检珠数目的摩尔浓度。图中所示的靶物检测的动态范围在10E-16到10E-10Molar(摩尔数/升)之间。虽然所示的具体图是用来自荧光计的数据产生的,但是这些结果也可以用荧光型光学盘驱动器来产生。
图30B表示证实荧光计的灵敏度在荧光双珠测定中为约1000个珠的标准曲线。任何测定的灵敏度都取决于测定本身和检测系统的灵敏度。参照图30A-30C,进行多种研究,以检查采用不同检测方法(例如荧光计和按照本发明的生物盘或医用CD检测)的双珠测定的灵敏度。
如上所述以及图30B所示,荧光计的灵敏度在荧光双珠测定中为约1000个珠。相反,图30A表明,甚至在10E-16Molar(摩尔数/升),能够检测出零浓度之上的足够数目的珠,以示意靶物的存在。由于具有10E-16Molar的灵敏度,双珠测定代表了非常灵敏的DNA检测方法,该方法无需DNA扩增(例如通过PCR)并且能够用来检测甚至一个珠。
与常规的检测方法相反,偶联有CD读出器或光学生物盘驱动器(图1)的医用CD或生物盘的使用,提高了检测的灵敏度。例如,虽然利用荧光计的检测并不局限于约1000个珠(图30B),但是偶联有CD读出器的生物盘的使用,能够使用户利用询问束(如图29A、29B和30C所示)检测单个珠。于是,本文提供的生物测定系统明显提高了双珠测定的灵敏度。
结合图28A和28B来详细论述利用光学生物盘或医用CD的单个珠的检测。图28B表示出每个珠的信号踪迹(正如用医用CD或光学盘读出器所检测的)。利用从双珠复合物检测中收集的独一信号踪迹,通过生物盘读出器还可鉴定双珠复合物(如图29A和29B所示)。包括(但不限于)反射和透射盘形式(分别在图3C和4C中示出)的不同的光学生物盘平台,可以与读出设备结合使用,以便对珠进行检测。
图30C是证实双珠复合物的形成的直观显示,该复合物由于基因测定中靶物的存在而连接在一起。对于用以上图1和2所示生物CD读出器定量的本发明的双珠测定来说,一个报道分子内的灵敏度是可能的。同样,双珠复合物的形成还可以在免疫化学测定形式(如上述图7B、8B、9B、10B、11B和12B所示)中来实施。
图31表示出利用荧光计产生的数据,表明两种不同靶物的依据浓度的检测方法。利用两种不同方法(单珠和双珠测定)来完成靶物检测。在单珠测定中,捕获珠含有特异于单个靶物的转运探针,并且包被有特异于相同靶物的信号探针的报道探针在溶液中与靶物混合到一起。在双珠测定中,捕获珠含有特异于两种不同靶物的两种不同的转运探针。有关采用双靶物检测方法的实验细节在例2中有进一步的详细论述。含有特异于两种靶物之一的信号探针的不同报道珠(例如,红和绿荧光珠或二氧化硅和聚苯乙烯珠)的混合,使得两种不同靶物的检测可以同时进行。
利用以下所述的磁性-光学盘系统,可以完成双珠双测定的检测。图32和37表示出多种双珠复合物形成并结合到光学盘上,这可以用光学生物盘驱动器(图2)、磁性-光学盘系统、荧光盘系统、或任何类似设备来检测。从光学盘读出器收集的双珠复合物的独一信号踪迹表示在上述的图29B中。图29B的踪迹还表明,不同的珠类型能够用光学盘读出器来检测,因为不同的珠显示出不同的信号外形。
倍增的、磁性-光学的和磁性盘系统在靶物捕获中双珠测定的使用,可用于倍增测定中。这种倍增是通过使不同尺寸的磁珠与不同尺寸和类型的报道珠结合,来实现的。于是,能够同时检测不同的靶剂。如图32所示,四个尺寸的磁性捕获珠和四个尺寸的三种报道珠产生高达48个不同种类的双珠复合物。在倍增测定中,特异于不同靶物的探针于是结合到捕获珠上。具有不同物理和/或光学特性(例如不同波长处的荧光)的报道珠使得来自同一生物样品的不同靶剂得以同时检测。如图28A、28B、29A和29B所示,通过检测反射或透射光,能够检测尺寸上的轻微差异。
用于捕获不同靶剂的多个双珠复合物结构可以在盘上或盘外完成。将双珠悬浮液装入盘上的口中。密封这个口并使盘在盘读出器中旋转。在自旋过程中,使游离的(未结合)报道珠从盘的四周自旋脱离开,而磁性捕获珠和磁性珠复合物或双珠诸如在磁场、MO盘上的磁畴中被捕获。因此使检测多种靶剂的报道珠在捕获区定位。以这种方式,可检测特异性靶剂的存在,并且可以用盘读出器来定量特异性靶剂的量。
图33A是按照本发明另一方面的光学盘的一般表示。可利用图33A所示的盘110,来实践通常对应于以上所示的图11A和11B的单步骤方法的方法或以下结合图65A-65B和66A-66B所述的相关的单步骤方法。可一次或连续但非常近地加入样品和珠。或者是,将珠预先装入一部分盘内。将这些材料提供到具有断裂壁228(参见图25A)的混合室164中,此断裂壁容纳在混合室164内的溶液中。通过以足以使壁断裂或足以产生待克服的毛细力的速率旋转,可完成样品与珠在盘上的混合。
以一个方向旋转盘,或者以相反的方向旋转盘,以搅拌混合室内的材料。混合室优选地大得足以实施循环及混合。混合可以是连续或间歇的。
图33B表示出采用阀门的可移动部件的取决于旋转和方向的阀门设置。混合室引导到具有可移动部件(例如球246)的中间室224。在未旋转状态,球246可保持在稍稍凹进的部分中,或者室244在周围方向可具有渐进V形的锥体,从而在没有旋转时将球保持在中心位置。
除了图33A和33B,还参照图33C和33D,当盘顺时针旋转时(图33C),球246就移向第一阀座248,从而阻塞检测室234的通道,并使流动流向废物室232(如图33A所示)。当盘逆时针旋转时(图33D),球246就移向第二阀座250,从而阻塞废物室232的通道,并使流动流向检测室234。
图34A-34C表示出前述实施例的一个变型,其中球被相应于盘的加速移动一个路线或另一个路线的楔块252所取代。楔块252具有与中间室244的形状相符的环形外部形状。楔块优选地是由相对于室244密度更高的材料制成,以免粘住。可利用涂料来促进楔块相对于室的滑动。
当盘最初顺时针旋转时(如图34B所示),角加速度就导致楔块252移动,从而阻塞检测室234的通道,并使流动流向废物室232。当盘最初逆时针旋转时(图34C),角加速度就导致楔块252阻塞废物室232的通道,并使流动流向检测室234。在加速之后的恒定旋转过程中,楔块252保持在阻塞适当通道的位置上。
捕获珠是磁性的本发明的另一个实施例中,将来自磁场发生器或励磁线圈230的磁场施加到混合室164上,以便将双珠复合物和未结合的磁珠截留在原位,而使无磁珠的材料流向废物室232。在洗去任何不需要的材料之前,还可以利用该技术来加速射流回路或通道内的测定溶液的混合。在此阶段,仅有未结合或作为双珠复合物的一部分的磁性捕获珠保留下来。释放磁场,并将含有磁珠的双珠复合物引到捕获和检测室234。
通过微流结构和/或射流部件,可完成将非磁性珠引到废物室232、然后将磁珠引到捕获室234的过程。利用流动控制阀236或一些其它引导设置,将样品和非磁性珠引到废物室232,然后引到捕获室234。可采用依旋转而定的流动的许多实施例。有关流动控制机构的使用的进一步细节公开在以下申请中2001年11月27日提交的题为“包括光学生物盘及其相关方法的双珠测定”(Dual Bead Assays IncludingOptical Biodiscs and Methods Relating Thereto)的共同转让和共同待审的第09/997,741号美国专利申请,该申请作为参考全部引入本文。
图35是盘的透视图,该盘包括与按照本发明的磁珠和磁场发生器230结合使用的射流回路的一个实施例。图35还表示出混合室164、废物室232和捕获室234。磁场发生器230位于盘110之上,且具有在盘110旋转时使磁场发生器230保持在混合室164之上的半径,该磁场发生器与室232和234径向间隔开。与上述的前一实施例相同,将来自磁场发生器230的磁场施加到混合室164上,以便将双珠复合物和/或未结合的磁珠截留在原位,而使其它材料进入混合室164。在混合室内所含的溶液被引到别的地方之前,还可利用旋转盘同时用磁场发生器230将磁珠截留就位的方法,来促进测定溶液在混合室164内的混合。
图36A-36C是表示采用图35所示射流回路的双珠测定的分离和检测方法的平面图。图36A表示出具有混合室164的非旋转光学盘,混合室164是作为容纳样品和双珠复合物194及多种未结合的报道珠192的环形部分而形成的。活化电磁体,并使盘逆时针旋转(图36B),或者以更低的转数(rpm)例如1X或3X来搅拌盘。含有磁性捕获珠的双珠复合物194保留在混合室164内,而液体样品和未结合的报道珠192相应于角加速度移到混合室164的旋转尾端。以图36B所示的逆时针方向旋转盘,而旋转速度足以克服毛细力,从而使样品中未结合的报道珠穿过废物射流回路238移到废物室232。在该过程的此阶段,由于射流回路的物理离心(如图所示),液体将不向下移到捕获射流回路240。
接下来如图36C所示,钝化磁体并使盘顺时针旋转。双珠复合物194响应角加速度移向混合室164的另一尾端,然后穿过捕获射流室240进入捕获室234。在该过程的此阶段,由于射流回路的物理离心(如图所示),双珠溶液将不向下移到废物射流回路238。图36A-36C所示的实施例因此表示出依方向而定的流动以及依旋转速度而定的流动。
在射流回路形成于盘的一个区域中的这个实施例以及其它实施例中,例如,以促进平衡的规则方式,多个区域围绕盘形成和分布。而且,如上所述,在盘上提供用于控制盘的指令。据此,通过读取盘,盘驱动器可具有如下的指令以特定速度旋转一段特定时间、停止一段时间、以及以相反方向旋转另一段时间。另外,编码信息可包括控制指令例如有关诸如光源的功率和波长的那些指令。当用荧光法作为检测方法时,控制这些系统参数是特别相关的。
在又一实施例中,通道具有在盘驱动器中的激光影响下,或者利用盘中预装的催化剂或试样中提供的催化剂能够密封或溶解的材料或构造。例如,在材料的存在下凝胶可以额外固化,在这种情形下,将闭合时间设置得足够长,以使未结合的捕获珠在废物室通道闭合之前,流到废物室中。或者是,在检测室通道闭合的同时,废物室通道是开启的。在将未结合珠引到废物室之后,利用从激光引入的能量打开检测室通道,以便使流动流向检测室。
现在一般参照图37,应该理解,磁性-光学记录是一种光学存储技术,其中通过在外部磁场的存在下用聚焦激光加热磁畴或磁区,而将其写入薄膜中。然后利用相同的激光,由该层中不同磁畴之间反射光的偏振差检测这些畴的存在(Kerr旋转)。通过转换磁场以获得恒定的高激光功率,或者用恒定磁场调制激光功率,可将数据图形写入该层内。也已将许多磁性-光学存储系统投放到市场中,包括计算机数据存储系统和声频系统(最著名的是MiniDisc)。有关该领域的目前状态的描述在以下文献中有所记载Bouwhuis等人的“光学盘系统的原理”(The Principles of Optical Disc Systems),1985(ISBN0-85274-785-3);“光学记录,一种技术概述”(Optical Recording,ATechnical Overview)A.B.Marchant 1990(ISBN 0-201-76247-1);以及“磁性-光学记录的物理原理”(The Physical Principles ofMagneto-Optical Recording),M.Mansuripur 1995(ISBN0521461243)。所有这些文件都作为参考全部引入本文。
现在具体移到图37,该图表示出与倍增双珠测定一起使用的光学盘110的又一实施例。在这种情况下,盘(诸如与磁性-光学盘一起使用的盘)具有能够用磁头有选择地书写和擦除的磁畴242或磁域。此后将这种盘通常称作“磁性-光学生物盘”或“MO生物盘”。磁性-光学盘驱动器诸如能够产生1μm×1μm平方那么小的磁畴242。磁畴242的特写部分表明磁场相应于邻近区域的方向。
以较高的可控方式有选择地写到小区域中以使这些区域具有磁性的能力,使得捕获区在所需的部位产生。这些磁性捕获区或畴能够形成在任何所需结构中或形成在一个射流室或多个射流室中的部位上。当将这些区域施加到盘上时,其就捕获和截留磁珠。如果需要,磁畴能够有选择地被擦除,借此使这些畴无磁性并允许珠释放出来。
在按照本发明此方面的一种磁珠阵列构造中,借助实例表示出一组三个径向取向的磁性捕获区243,其中在本文所示出的这些列中没有珠附着到磁性捕获区上。继续参照图37,该图在部分A表示出一组四个列,其中具有磁性附着到磁性捕获区的磁区上的单磁珠。而排列在部分B中的另一组四个列,是在报道珠结合以形成附着到特定磁畴或磁区上的双珠复合物之后的情形,其中不同的列具有不同种类的报道珠。如部分B中所示,所采用的一些报道珠其尺寸是不同的,借此达到本发明的倍增效果(正如在磁性-光学生物盘或MO医用盘上所实施的)。在部分C,一列多种双珠复合物是作为倍增测定的另一个实例示出的,其中该测定采用单独附着在离散的磁区上的多种珠尺寸。
在利用这种磁性-光学生物盘的一种方法中,利用MO驱动器中的写头来产生磁畴,然后将样品引到磁畴上,以便捕获样品中提供的磁珠。引入第一样品组之后,还可产生其它磁畴,且提供另一样品组,以便新近产生用于检测的磁性捕获区。这样,就可以在不同时间段于一个盘上实施多个样品组的检测。该磁性-光学驱动器还允许磁畴或捕获区消磁,借此释放和分离磁珠(如果需要的话)。因此,该系统能够对来自各种不同生化、化学或生物样品的一个或多个特定的靶分子进行可控捕获、检测、分离和释放。
如上所述,将样品提供到盘上的射流室中。或者是,将样品提供到具有多组不同珠的多个室中。此外,可产生一系列的室,以便通过从一个室到下一个室的旋转运动来移动样品,然后在每个室内进行单独测试。
利用这样的MO生物盘,非常多的测试都能够一次进行,且能够相互作用地来实施。以这种方式,当进行测试并获得结果时,可指示系统,以产生一组新的用于捕获双珠复合物的磁域。这些区域能够一次产生或分成大组,且能够在具有不同预装珠的连续室内来实施。利用具有可写磁域的MO生物盘,能获得其它的处理优点。例如,“捕获剂”实质上是由盘上的磁域产生的磁场,因此无需加入额外的生物或化学捕获剂。
用于控制MO生物盘上所写入或擦除的磁域的位置的指令,以及诸如旋转速度、旋转阶段、等候期间、光源的波长以及其它参数之类的其它信息能够编码在盘上,然后从盘本身上读取。正如本文提供的公开文本所给出的领域中的技术人员显而易见的,图37示出的MO生物盘可包括上述的反射和透射盘中所采用的任何射流回路、混合室、流动通道、检测室、入口或排气孔。下面在例5和例6中给出了按照本发明此方面的MO生物盘的用途的示例。
因此,总之,本发明磁性-光学方面的以下实施例已经被发明人考虑到,并且在本文中有详细的描述。首先,提供了一种与磁性-光学生物盘相关的进行基因双珠测定的方法。该方法包括以下步骤提供多种带有共价附着的转运探针的磁性捕获珠;提供多种带有共价附着的特异性DNA序列的报道珠;制备含有待测试的靶DNA分子的样品,以使DNA序列与特异性DNA序列互补;以及通过生物盘中所配备的入口将捕获珠装入磁性-光学生物盘内。该方法还包括以下步骤将样品和多种报道珠装入生物盘内;旋转该生物盘,以便样品中存在的任何靶DNA都容易与报道珠上的特异性DNA序列及转运探针杂交,从而形成双珠复合物;用辐射能的入射束询问许多磁性捕获珠,以确定每个磁性捕获珠是否已经形成双珠复合物;磁化磁性捕获层的特定区域,以便将多种双珠复合物结合到其上;以及定量该多种双珠复合物。
该方法还可包括以下步骤旋转盘,以便将任何未结合的珠引入废物室,然后将磁性捕获层的特定区域消磁,借此释放许多该多种双珠复合物。此后,为了进行进一步的处理,可旋转盘,以便将所释放数目的双珠复合物引到分析区,从而使所释放数目的双珠复合物汇集在分析区内。该分析区可以是具有与所汇集的双珠复合物发生反应的试剂的分析室。
按照本发明磁性-光学方面的第二实施例,提供了另一种与磁性-光学生物盘相关的进行双珠测定的方法。该方法包括以下步骤提供多种带有附着的转运探针的磁性捕获珠;提供多种带有附着的信号探针的报道珠;以及通过生物盘中所配备的入口将捕获珠装入磁性-光学生物盘内。其中该磁性-光学生物盘具有磁性捕获层。这种第二方法还包括以下步骤将含有靶物的样品和多种报道珠装入生物盘内;旋转该生物盘,以便靶物和报道珠容易与磁性捕获珠结合,从而形成双珠复合物;用辐射能的入射束询问许多磁性捕获珠,以确定每个磁性捕获珠是否已经形成双珠复合物;磁化磁性捕获层的特定区域,以便将多种双珠复合物结合到其上;以及定量该多种双珠复合物。
该方法同样还可包括以下步骤旋转盘,以便将任何未结合的珠引入废物室,然后将磁性捕获层的特定区域消磁,借此释放许多该多种双珠复合物。此后,为了进行进一步的处理,该方法的一个方面是,旋转盘,以便将所释放数目的双珠复合物引到分析区,从而使所释放数目的双珠复合物汇集在分析区内。该分析区可以是具有与所汇集的双珠复合物发生反应的试剂的分析室。
按照本发明磁性-光学方面的第三实施例,提供了一种与磁性-光学生物盘相关的进行倍增双珠测定的方法。这种倍增方法包括以下步骤(1)提供至少两组不同尺寸的磁性捕获珠,其中每一组具有相同尺寸的磁性捕获珠,且具有不同特定种类的与每一组相联的转运探针;(2)提供多种带有附着的至少两种不同信号探针的报道珠;以及(3)通过生物盘中所配备的入口将捕获珠装入磁性-光学生物盘内。与在上述MO生物盘方法中一样,该磁性-光学生物盘具有磁性捕获层。这种方法还包括(4)将含有至少一种靶物的样品和多种报道珠装入生物盘内;(5)旋转该生物盘,以便靶物和报道珠容易与磁性捕获珠结合,从而形成双珠复合物;(6)用辐射能的入射束询问许多磁性捕获珠,以确定每个磁性捕获珠是否已经形成双珠复合物;以及(7)确定双珠复合物中的磁珠的尺寸。该具体方法用以下步骤得出结论(8)磁化磁性捕获层的特定区域,以便将多种双珠复合物结合到其上;以及(9)定量该多种双珠复合物。
按照这种特定方法的一个方面,定量步骤有益地包括按照磁性捕获珠的尺寸来定量该多种双珠复合物。该方法还包括以下步骤旋转盘,以便将任何未结合的珠引入废物室,然后将磁性捕获层的特定区域消磁,借此释放许多含有尺寸相同的磁性捕获珠的该多种双珠复合物。此后,为了进行进一步的处理,该方法还包括旋转盘,以便将所释放数目的双珠复合物引到分析区,从而使所释放数目的双珠复合物汇集在分析区内。该分析区可以是具有与所汇集的尺寸相同的双珠复合物发生反应的试剂的分析室。在该方法的一个具体实施例中,信号探针是特异性DNA序列。
按照本发明磁性-光学方面的第四实施例,提供了另一种与磁性-光学生物盘相关的进行倍增双珠测定的主要方法。这种额外的双珠倍增方法包括以下步骤(1)提供至少两组不同种类的报道珠,其中每一组具有相同种类的报道珠,且具有不同特定种类的与每一组相联的信号探针;(2)提供多种带有附着到其上的不同种类的转运探针的磁性捕获珠;以及(3)通过生物盘中所配备的入口将捕获珠装入磁性-光学生物盘内。与在上述MO生物盘方法中一样,该特定的磁性-光学生物盘具有磁性捕获层。这种方法还包括以下步骤(4)将含有至少一种靶物的待测试样品和多种报道珠装入生物盘内;(5)旋转该生物盘,以便样品中存在的任何靶物容易与报道珠及磁性捕获珠结合,从而形成双珠复合物;以及(6)用辐射能的入射束询问许多磁性捕获珠,以确定每个磁性捕获珠是否已经形成双珠复合物。本方法的这个具体实施例用以下步骤得出结论(7)确定双珠复合物中的报道珠的类型;(8)磁化磁性捕获层的特定区域,以便将多种双珠复合物结合到其上;以及(9)定量该多种双珠复合物。
在这种方法的一个特定实施例中,定量步骤包括按照报道珠的类型来定量该多种双珠复合物。该方法还包括以下步骤旋转盘,以便将任何未结合的珠引入废物室,然后如果需要的话,将磁性捕获层的特定区域消磁,借此释放许多含有相同种类的报道珠的该多种双珠复合物。此后,为了进行进一步的处理,还可实施以下步骤旋转盘,以便将所释放数目的相同种类的双珠复合物引到分析区,从而使所释放数目的相同种类的双珠复合物汇集在分析区内。
与上述方法一样,该分析区可包括具有与所汇集的相同种类的双珠复合物发生反应的试剂的分析室。本发明还考虑到利用光学生物盘来实施上述任何方法,以及利用光学生物盘来分析任何双珠复合物,这些复合物是按照以上结合图11A、11B、12A、12B所述的方法或以下结合图65A和65B、66A和66B、67A和67B以及68A和68B所详细论述的方法制备的。而且,MO生物盘可以在包括免疫磁性和分子磁性测定(例如采用MO生物盘的细胞捕获和分析方法,如下所述)的其它生物磁性测定中来实施。
利用连接反应来增加测定灵敏度的基因测定参照图38,该图表示出通过分别共价结合在捕获珠190和报道珠192上的转运探针198和信号探针206,而被靶DNA202滞留在一起的双珠复合物194。如该图所示,信号探针206的5’端刚好紧邻转运探针198的3’端。该结构允许探针的3’和5’端在加入连接酶之后连接在一起。这两个探针的连接仅发生于靶物存在的情况下,并且通过增大报道珠与捕获珠之间的键强度、从而避免双珠复合物的解离,而提高了测定的灵敏度。
现在参照图39,这是表明用酶测定所检测的基因测试结果的柱形图。利用结合到转运探针上的3μm捕获珠来捕获该测试中的靶物。一旦靶物被捕获,就将生物素化的报道珠引入并结合到靶物上。然后清洗捕获珠,以除去未结合的报道珠。随后将连接酶加入到该溶液中,以便连接报道和转运探针的端点(如图38所示)。在一系列洗涤步骤之后,将链霉亲和素化-碱性磷酸酶加入到珠溶液中,并使之与报道探针上的生物素结合。再次清洗这些珠,并将有色的碱性磷酸酶底物加入到珠溶液中。然后利用分光光度计来定量由碱性磷酸酶和底物反应所形成的颜色强度。该定量结果如图39所示。该图中所表示出的数据表明,当连接探针时信号大约增强了50%。因此,通过该实验的连接步骤,显著增大了测定的灵敏度。例3和例4详细讨论在完成类似实验中所遵循的规程。
图40是利用在取代酶测定的双珠测定中所实施的连接步骤、有基因测试所得到的柱形图。这种酶测定如图39所述,用来验证非双珠形式中连接酶的活性,该非双珠形式用作双珠测定中的对照物。与酶测定一样,在双珠测定中采用结合到转运探针上的相同的3μm捕获珠。双珠测定中所用的报道珠为2.1μm的荧光珠。这些双珠的形成如图11A或12A所述。在图11A中的步骤V或图12A中的步骤VI来实施连接步骤,在该步骤中,将连接酶加入到双珠复合物溶液中,并使转运探针连接到信号探针上。图40示出的数据表明,连接反应在Set1中而非Set2中相对于非连接对照处理,明显增大了信号和测定的灵敏度。
同样,图41是采用与图40所述相同的连接步骤、利用39mer桥接结合在双珠复合物中的报道珠数目的柱形图。与图40一样,图41中的数据表明,连接反应在Set1和2中显著增大了双珠测定的灵敏度。该数据证实,采用39mer桥接有助于连接反应过程,因此增强了来自Sets的信号(正如在双珠测定中所实施的)。
利用可裂解的间隔基或取代探针的双珠测定在双珠测定中使用可裂解的间隔基可增大测定的特异性。的确,除了靶DNA的互补序列之外,捕获探针和报道探针还含有彼此互补的序列。该额外要求增强了靶物捕获的特异性。而且,捕获珠与报道珠之间通过捕获和报道探针之间的氢键形成的额外键合,使双珠之间的相互作用加强。
在本发明的这个实施例中,在靶物缺乏的情况下,捕获探针与报道探针杂交,从而导致双珠复合物的形成(如图42B和43A所示)。如图42B和42C所示,使双珠复合物在靶物捕获之后经受选择性限制酶酶切消化。该序列特异性酶切消化将使捕获探针与报道探针之间的氢键有选择地裂解(如图42D所示)。在靶物缺乏的情况下,通过滞留捕获和报道探针的氢键的中断,双珠彼此解离。在靶物存在的情况下,捕获和报道珠通过靶物介导的氢键(图42D)仍然保持结合。所捕获的靶物的量因此与酶切消化之后保留的双珠数目相关。
或者是,无需限制酶酶切消化,而通过利用可取代的接头,能够使滞留捕获探针和报道探针的键解开。利用取代探针来解吸连接剂。在这种情况下,报道探针含有与捕获探针部分互补的序列,从而导致错配的突出端(如图43A所示)。为了使捕获和报道探针彼此解离,对复合物进行热处理,该热处理引发报道探针从捕获探针中熔融出来,随后加入远远过量的取代探针。取代探针的浓度越高,取代探针与错配的突出端之间的相互作用就越紧密,从而导致报道探针与捕获探针解离(如图43B和43C所示)。在靶DNA缺乏的情况下这将导致报道珠与捕获珠解离开。
更具体地说,按照本发明的双珠测定可以利用3μm的磁性捕获珠和2.1μm的荧光报道珠来实施。这些珠分别包被有转运探针和信号探针。转运探针和信号探针除了与靶序列(例如pUC19)互补之外,还含有彼此互补的序列(如图42A、42B、42C和43D所示)。将转运探针和信号探针结合在一起的序列可被设计成使其对非常稀少的限制酶(包括Not1)的裂解是敏感的。使用稀少的限制酶和限制位点可避免靶DNA的偶然裂解。使捕获珠和报道珠与不同量的靶DNA混合。靶物捕获之后,利用包括Not1的稀少限制酶,对DNA复合物进行限制酶切消化。由这种酶进行的限制酶切消化将使连接报道珠和捕获珠的DNA序列裂解。在靶DNA缺乏的情况下,报道珠将与捕获珠解离,并被磁珠的磁选所除去。因此,仅仅在靶序列存在的情况下,磁性捕获珠才与荧光报道珠结合,从而导致双珠测定的实现。将可裂解的间隔物引入捕获和报道探针内可显著提高双珠的特异性和灵敏度。
在本发明的一个替换型实施例中,导致可取代连接剂形成的、报道珠与捕获珠上的互补探针序列(探针1和探针2B)之间的较短突出端和错配突出端,与取代探针结合使用(如图43A和43B所示)。探针2B上的错配突出端是取代探针初始结合的位点(如图42B所示)。一旦取代探针结合到突出端上,取代探针就着手取代探针1与探针2B之间的重叠序列(如图43C所示)。在靶DNA缺乏的情况下,通过取代探针的作用,报道珠将与捕获珠解离,并因此用磁珠的磁选所除去。这样,仅仅在靶序列存在的情况下,磁性捕获珠才结合到荧光报道珠上,从而导致双珠复合物的非解离。
通过参照图44、45、46A-46C、47、48A、48B和49A-49C(这些图示意性表示出本发明的两个实施例),能够更具体地理解按照本发明的可裂解间隔物的一般操作。参照图44,捕获珠配有附着有多种可裂解间隔物分子256的衍生化表面。每种间隔物256包括裂解位点258、信号探针206和转运探针198。如图44所示,转运探针包括可反应形成具有金属部分的共价键的硫羟基(正如结合图45所述的)。捕获珠(可以是多孔的或固态的)可选自各种材料例如塑料、玻璃、云母、硅、和类似材料。
捕获珠190或报道珠192的表面便于衍生化,从而使包括可裂解间隔物分子256的每种探针共价键合。现在参照图45,该图表示出提供用于检测靶物存在的便利的反射信号生成装置的金属报道珠。用于制备金属珠的一般材料有金、银、镍、铬、铂、铜、和类似金属,其中金由于其诸如通过配价结合能够容易和紧密地结合到可裂解间隔物的相应信号端的游离SH基上,因此在目前是优选的。金属珠可以是固态金属或由塑料形成,或者是玻璃珠或类似物质,在金属珠上沉积有金属涂层。还有,可用其它反射性材料来代替金属。目前优选的金球直接结合到信号探针206的硫羟基上。
如图44和45所示,通过酰氨键合将转运探针共价附着在氨基端。可裂解的间隔物分子包括裂解位点258,该位点在测定过程中,基于裂解位点的性质,通过化学或酶的方式、热、光或类似方式易于裂解。化学方式由于诸如分别为硅氧烷裂解基和氟化钠或氟化铵之类的化学裂解位点和化学裂解剂的存在,因此目前是优选的。也可采用其它容易裂解的基团例如酯基和二硫基。如果在裂解间隔物之后加入金球,二硫基则是特别有益的。或者是,裂解位点可以是利用限制酶进行裂解的限制位点。当实施基因或免疫化学测定时,限制酶切裂解是优选的方法。间隔物可含有两个或更多的裂解位点,从而最佳地完全裂解所有的间隔物。
采用可裂解间隔基的核酸测定在本发明的一个方面,转运和信号探针适于结合可存在于试样中的核酸互补链。这些互补的寡核苷酸包括特异性结合对的成员,即,一个寡核苷酸将结合到第二个互补寡核苷酸上。
更具体地如图46A-46C所示,这些图示意性表示出本发明的一个实施例,即可裂解间隔物分子256包括位于捕获珠190和报道珠192表面上的不同位点的转运探针198和信号探针206。如图46A所示,使寡核苷酸靶剂202非常靠近转运探针198和信号探针206定位。在这些靶剂与这两种探针都互补的情况下,靶剂202、转运探针198和报道珠206之间发生杂交,从而形成双螺旋(如图46B所示)。如果靶剂202与探针之间不互补,这些基团之间就不结合(如图46B所进一步示出的,其中无双螺旋形成)。
当裂解位点258裂解但是对于双螺旋偶合的寡核苷酸结合而言的时,报道珠192将从捕获珠190中游离出来并从中解离。这在图46C更充分地示出。然后,利用入射光尤其是入射激光,可检测双珠复合物194的存在或缺乏。
利用可裂解间隔基和连接反应的核酸测定现在参照图47A,该图是采用桥接剂260的一个替换型实施例的示意图。桥接剂260可包括相当短的用于结合到一部分靶物上的寡核苷酸序列,从而当靶物结合到转运探针198和信号探针206上时,桥接剂260用作转运探针198与信号探针206之间的桥接。这导致具有两处断裂的双螺旋的形成(如图47B所示)。
继续图47C所示的下一个步骤,这是在本发明核酸检测实施例的进一步实施例中DNA连接酶与可裂解间隔物结合使用的示意图。该连接过程共价连接双螺旋中的断裂。该共价键合增大了使分析物特异性结合粘附双珠复合物的强度,因此在该实施例中增大了洗涤的严格性,从而使测定的特异性增强。
核酸检测领域的普通技术人员应该理解,本发明的可裂解反射信号部件特别适合检测规定尺寸的扩增核酸,尤其是利用多种形式的聚合酶链式反应(PCR)、连接酶链式反应(LCR)、采用T7和SP6 RNA聚合酶的扩增方案、以及类似方法扩增的核酸。
采用可裂解的间隔基的免疫测定在本发明的进一步实施例(如图48A-48C所示)中,可裂解间隔基258包括可进行免疫测定的改性抗体。改性抗体可以非共价附着到可裂解间隔物258上,其中间隔物258由共价附着到这些抗体上的寡核苷酸所介导。利用实现非共价的互补核酸分子,超级分子结构的组合装配在以下申请中有进一步详细的描述1994年10月31日提交的第08/332,514号、1995年4月19日提交的第08/424,874号和1996年3月29日提交的第08/627,695号共同拥有和共同待审的美国专利申请,这些申请作为参考并入本文。在另一个实施例中,利用常规的交联剂,抗体能够直接或通过连接剂共价附着到可裂解间隔基上。
抗体探针包括结合到捕获珠190上的抗体转运探针196以及结合到报道珠192上的抗体信号探针208。通过可裂解间隔基258将珠和探针连接在一起。抗体转运探针196和抗体信号探针208对感兴趣抗原的不同表位位点具有亲和力。
进一步参照图48A-48C中示意性示出的免疫测定法,在将含有靶抗原204或非特异性靶剂200的测试溶液加入到双珠复合物194的收集中之后(如图48A所示),靶抗原204就结合到抗体转运探针196和抗体信号探针208上(如图48B所示)。该集合避免双珠复合物194在裂解位点258诸如通过与化学裂解剂接触而发生裂解时去偶合。相反,第二可裂解信号要素使双珠复合物解离(如图48C所示),该信号要素没有被非特异性靶剂200所结合,因为抗体对靶剂200缺乏结合亲和力。
然后,双珠复合物194的存在和缺乏可作为入射光(尤其是入射激光)的反射度或反射度的缺乏来检测。
正如所显而易见的,抗体的偶合(如图所示)使得标准免疫测定化学物和免疫测定几何结构与可裂解间隔基一起适用于本发明的双珠测定。这些经典免疫测定几何结构的一些类型在1992年12月1日公布的5,168,057号美国专利中有进一步的描述,该文献作为参考并入本文。以下文献中公开了其它可有效适用于本发明的免疫测定几何结构和技术Diamandis等人(eds.),免疫测定(Immunoassay),AACCPress(1997年7月);Gosling等人(eds.),免疫测定实验室分析和临床应用(ImmunoassayLaboratory Analysis and ClinicalApplication),Butterworth-Heinemann(1994年6月);和Law(ed.),免疫测定实践指南(ImmunoassayA Practical Guide),Taylor &Francis(1996年10月),这些文献的公开内容作为参考并入本文。因此,显而易见的是,图48A-48C所示意性示出的分析物的直接检测单单是适用于本发明的可裂解间隔基型双珠测定和测定装置的免疫测定几何结构的一种类型。
本发明将证明在对人免疫缺陷病毒、甲型肝炎病毒、乙型肝炎病毒、丙型肝炎病毒和人疱疹病毒的免疫测定筛选中是特别有价值的。
进一步应该理解的是,抗体是广泛定义的特异性结合对的示例,其中可以认为抗体是特异性结合对的第一成员,而其所结合的抗原是特异性结合对的第二成员。通常,可以将特异性结合对定义为两个分子,它们的相互亲和力具有足够的抗体亲抗原性和特异性,从而使本发明能够实施。这样,本发明的可裂解间隔基可包括作为副成员的其它特异性结合对成员。在这些实施例中,可裂解信号要素的第一副成员包括第一特异性结合对的第一成员,可裂解间隔基的第二副成员包括第二特异性结合对的第一成员,其中所述第一特异性结合对的所述第二成员与所述第二特异性结合对的所述第二成员相连地彼此附着,从而形成以下通式的系留环第一特异性结合对的第一成员--第一特异性结合对的第二成员--第二特异性结合对的第二成员--第二特异性结合对的第一成员。
本领域公知的特异性结合对有生物受体及其天然兴奋剂和拮抗剂配体、蛋白质和辅因子、生物素和亲和素或链霉亲和素、α血影蛋白和β血影蛋白单体、以及抗体的Fc部分和Fc受体。
DNA结合到固相上的方法使探针成功地结合到固相(例如珠或生物盘)上,是本发明的双珠测定的一个重要步骤。在本发明的某些实施例中,使探针共价附着到珠上。共价结合的效率取决于所用的珠的种类和所采用的特异性结合方法。
如图49所示,该图表示出用于评估固相在探针结合中的使用效果的系统方法。该方法鉴定提高双珠测定特异性的共价键合。利用该方法来评估固相的处理(即,固态表面例如珠表面或生物盘上的表面的包被),以确定处理是否提高了固相结合的效率。作为第一步骤,用适合检测和测定随后所结合的探针的量的分子来标记探针。借助于非限定性实例,能够将生物素部分(B)附着在DNA探针的3’端。其次,在交联剂(例如,EDC(1-乙基3-3二甲氨丙基碳二亚胺-HCl))存在或缺乏的情况下使探针结合。在交联剂存在的情况下,将使探针共价和非共价结合。或者是,在交联剂缺乏的情况下,仅将探针非共价吸收到珠上。在进行适当的洗涤步骤之后,加入在标记到探针上之前特异性结合到生物素分子上的检测剂。例如,将链霉亲和素-碱性磷酸酶(S-AP)加入到探针结合的珠上,并且S-AP特异性结合到生物素化的探针上。其次,将碱性磷酸酶底物加入到样品中。该底物由于磷酸基的损失而显色,并且颜色强度与结合到珠上的探针量相关。在适当的温育期间之后,分离溶液并用分光光度计或微滴定板读数计来测定合适波长处溶液的光强度。
参照图50,该图表示出寡核苷酸探针结合到羧基化的珠上。可共价或非共价完成探针的结合。在双珠测定中,共价探针的结合优于非共价结合(正如结合图51A、51B、53A和53B所进一步详细论述的)。该结合过程先于双珠测定的步骤I来实施(如图11A、11B、12A和12B所示)。通过在交联剂(例如EDC)存在或缺乏的情况下,测定共价和非共价(即非特异性)结合到固相上的探针量,可评估共价结合到固态表面上的探针的量。根据公式100%*N/T来确定非共价结合的探针的百分比,而利用公式100%*(T-N)/T来确定共价结合的探针的百分比,其中“T”代表在交联剂的存在下所获得的信号总量(即,共价和非共价结合的探针的总量),而“N”代表不用交联剂时所获得的信号总量。或者是,如果在加入S-AP之前除去所有非共价结合的探针,就能够直接获得共价结合的探针的量。通过在加入S-AP步骤之前将珠加热到70℃,可便利地实现这一点。如果非共价结合的探针的百分比小于20%,被测试的珠就能够用作共价结合的固相。该方法的应用结果在图51A、51B和55中示出(参见例7的详细描述)。
如图51A和51B所示,1.8μm、2.1μm和3μm的珠是具有至少75%结合效率的共价探针结合的适当固相。然而,1-2μm的珠不适用于探针的共价结合,因为它们仅具有少于21%的低共价结合效率。
本发明的多种实施例都采用核酸分子作为探针。图52A表示出单个标准品与双链DNA之间的结构差别,从而表明单链DNA是如何更容易地非共价结合到固相上的。单链DNA具有能够容易地非共价吸收到固相上的疏水碱侧链。相反,由于采用双链DNA,因此与单链DNA分子相比,疏水碱与固相通常不发生相互作用,并且非共价或非特异性结合受到限制。于是,在本发明的多种实施例中,利用双链DNA来取代单链DNA,借此增强了DNA与固相通过共价键合的结合(图52B)。当双链DNA的一个链结合到固相上之后,通过在合适的缓冲剂中将样品加热到70℃,可除去非共价结合链。在这些条件下,分离双链DNA,而仅有共价附着到珠上的单链DNA保留下来并用来捕获靶物。有关双链DNA在共价探针结合中的应用的实验细节在以下的例8中有进一步详细的描述。
在本发明的多种实施例中,利用热处理从固相上有选择地除去非共价结合的探针。当诸如尽管相应于固相的种类全部都是最佳化的,但是固相的处理以及非共价结合到固相上的双链DNA的使用仍然有问题时,该方法是有用的。热处理的条件已经最佳化最佳缓冲剂包含2%的BSA、50mM的Tris-HCl、145mM的NaCl、1mM的MgC12、0.1mM的ZnCl2。在小于或等于70℃的温度下进行处理,因为在更高的温度下磁珠能够丧失其磁性。
在本发明的其它实施例中,本文提出的用于确定最佳条件以获得提高双珠测定特异性的共价键合的方法可应用于用作固相的盘表面上。同样,本发明在其它实施例中提供了本文以上所述那些应用的类似方案,用以评估用于蛋白结合的固态表面。例如,这样的应用在所用的探针是抗原或抗体十是有用的。
现在参照图53A,该图是从酶测定中收集的结果的柱形图,该测定用于检测结合到双珠测定中所使用的两种不同捕获珠的探针上的靶物。如以上图51A中所述,1-2μm的珠具有高达20%的共价结合效率,而其余探针进行非共价结合且3μm珠的共价结合效率为75-85%。图53A所示的数据表明,无论探针是共价结合还是非共价结合,这两种测试珠都结合相似量的靶物。这暗示共价结合在酶测定形式中不是必需的。
与图53A相反,图53B表示双珠测定的结果,该测定用于检查图53A中所用的相同捕获珠所捕获的报道珠数目。图53B所示的结果表明,为了提高测定的灵敏度,探针与捕获珠的结合是必需的。在本发明的这个具体实施例中,3μm的捕获珠比1-2μm的珠含有更多的共价结合的探针(如上所述)。这使得报道珠截留在双珠复合物中,因为捕获珠上共价系留的探针比非共价结合的探针具有更高的键合强度。
正如以上本发明概述所述的,珠或固相表面可以是不平的,因此限制探针对溶液形式的靶物的可及性。可利用探针连接剂来延伸探针的长度,以增大探针的靶物可及性(如参照图52A所述)。
现在参照图54,该图表示出从双珠测定中收集的数据,该数据表明,用PEG作为连接剂可增强靶物的结合。连接剂可将测定的灵敏度增大约50%或更多。连接剂的使用还减小了报道珠与捕获珠的非特异性结合。在本发明的这个实施例中,借助连接剂分子将探针附着到固相上。连接剂分子的使用导致探针更长、更硬。这两个特性增大了探针的可及性,并因此使靶物捕获的效率和双珠测定的灵敏度最大。正如本领域技术人员所公知的,可利用多种连接剂分子来满足本文所述的准则。借助于非限定性实例,牛血清白蛋白(BSA)或聚乙二醇(PEG)可用作连接剂分子。在本发明的某些实施例中,接头可以是共价附着到DNA探针的5’端上的一系列3-10个PEG分子。有关利用PEG作为连接剂分子的细节在下面的例9中有所描述。
现在参照图55,该图是证实3μm Spherotech珠上共价探针的百分密度的测定的柱形图。这些图表示利用生物素化探针和链霉亲和素连接的碱性磷酸酶反应、由镁测定产生的信号。正如参照图50所述,通过测定结合到非热处理珠上的探针总量,能够计算共价结合效率。然后加热单独一份珠,以便除去非共价结合的探针,随后利用酶测定来测定共价探针的量(如下面的例7中所述的)。然后由这些数据,利用以下公式可确定共价探针结合的百分比H/T*100,其中H代表来自热处理珠的信号,T代表来自非热处理珠的总信号。
图56是证实用包括去污剂的多种封闭剂对珠进行的预处理的柱形图。由于测定灵敏度与报道珠和捕获珠的非特异性结合的基线信号成反比,因此减小非特异性的珠结合是双珠测定中的准则。这样,基线越低,测定就越灵敏。如图所示,相对于该实验中所测试的其它封闭剂,鲑精DNA在减小非特异性结合中的应用是效果最好的。鲑精DNA封闭将非特异性结合减小约10倍。因此,鲑精DNA在本发明的一个方面是用于封闭非特异性珠结合的优选方法。也可以采用其它封闭剂,包括BSA、Denhardt溶液和蔗糖。优选的是,在结合及热处理(如图50所示)之后或在图11A、11B、12A和12B中的步骤I之前,应该用合适的封闭剂来封闭珠,以增大双珠测定的灵敏度。
用于减小非特异性珠结合的方法如上所述,图56是证实用包括去污剂的多种封闭剂对珠进行的预处理的柱形图。由于测定灵敏度与报道珠和捕获珠的非特异性结合的基线信号成反比,因此减小非特异性的珠结合是双珠测定中的准则。这样,基线越低,测定就越灵敏。如图所示,相对于该实验中所测试的其它封闭剂,鲑精DNA在减小非特异性结合中的应用是效果最好的。鲑精DNA封闭将非特异性结合减小约10倍。因此,鲑精DNA在本发明的一个方面是用于封闭非特异性珠结合的优选方法。也可以采用其它封闭剂,包括BSA、Denhardt溶液和蔗糖。优选的是,在图11A、11B、12A和12B中的步骤I之前,应该用合适的封闭剂来封闭珠,以增大双珠测定的灵敏度。
图57是利用荧光计产生的数据的柱形图,该数据表明,在双珠测定中利用荧光报道珠的依赖于浓度的靶物检测。该图表示出靶DNA的皮摩尔浓度与结合在双珠复合物中的珠数目的关系。该图所示出的靶物检测的动态范围在0.25pM-2500pM(皮摩尔/升)之间。虽然该特定图是利用来自荧光计的数据作出的,但是这些结果也可以用荧光型光学盘驱动器来产生。有关靶物浓度范围检测的实验的细节将在例10中详细论述。
现在参照图58、59、60、61A和61B,这些图所示出的是,用于测定杂交缓冲剂或测定缓冲剂中多种盐的最佳浓度或离子强度的实验数据。需要使测定缓冲剂中的盐浓度最佳化,以便增大杂交效率或结合效率,并减小捕获珠与报道珠之间的非特异性珠结合,从而产生能够增大测定灵敏度的更低的信号-噪声比。通常,这些图中所示出的数据表明,40mM的EDTA、300mM的NaCl、30mM的MgCl2是用于双珠测定的一个实施例中的最佳盐浓度。
具体参照图58,该图是从实验中收集的数据的柱形图,此实验采用珠缓冲剂中的多种浓度的NaCl并将相关的非特异性结合作为缓冲剂离子强度的变化结果。基于图58中所表示的结果,双珠测定中所用的氯化钠的最佳珠缓冲剂浓度是0.2M,因为非特异性结合在该NaCl浓度下是最小的。
现在参照图59,该图是表示利用不同的靶物浓度、增大EDTA浓度对双珠测定灵敏度的效果的柱形图。图59还表示出相关的非特异性结合,正如测定缓冲剂中的EDTA浓度所影响的。基于所示出的数据,用于杂交缓冲剂的最佳EDTA缓冲剂浓度是40mM,因为由双珠测定所产生的数据在该浓度下是最高的。
同样,图60是表示利用不同的靶物浓度、增大NaCl浓度对双珠测定灵敏度的效果的柱形图。图58表示出与NaCl的缓冲剂浓度的最佳化有关的非特异性结合。如图60所示,正如双珠测定中所实施的,用于杂交的最佳NaCl浓度为0.3M的NaCl。用于产生该数据的实验规程的详细描述在下面的例11中有记载。
现在转到图61A和61B,这是表示增大测定缓冲剂中的MgCl2浓度分别对双珠测定灵敏度和酶测定灵敏度的效果的柱形图。来自这些图的数据表明,杂交缓冲剂中的30mM的MgCl2浓度对于增大所产生的信号和测定灵敏度是最佳的。根据图61A和61B所示的数据,在30mM的MgCl2处理下,酶测定显示出比双珠测定更灵敏。该结论是根据来自多种靶物浓度的处理组内的信号差得到的。因此,如图所示,图61B的酶测定的30mM MgCl2组的浓度曲线斜率比图61A中的相应曲线陡。例12详细描述了完成与图61A相关的实验的规程。
接下来参照图62,该图是利用探针封闭剂来增大珠测定灵敏度的直观显示。这个具体实施例中所用的探针封闭剂是与珠上的探针互补的生物素化DNA。用于封闭珠上的过量探针的探针封闭剂的量是这样的即,使探针的预定部分被封闭剂所封闭。在双珠测定中使用探针封闭剂可增大测定的灵敏度,因为在双珠测定中其增强了靶物与单个捕获珠和报道珠结合的可能性。这可将双珠测定的灵敏度增大到每个双珠复合物中有1个靶物。生物素化探针封闭剂的使用使得能够定量探针封闭剂的封闭效率,以便使测定最佳。利用包括链霉亲和素-碱性磷酸酶(S-AP)及其适当底物的链霉亲和素化或neutravidinated酶、通过酶测定可定量结合到珠上的生物素化探针的量。利用所需的检测种类来支配用于该测试的酶和底物的选择。通常,实施比色试验,其中酶-底物反应产生用分光光度计定量的颜色。或者是,还可以使用可用荧光计或Fluorimager定量的链霉亲和素化或neutravidinated荧光标志。利用适当的光学盘读取器(如图1和2所示)还可完成比色和荧光定量。
图63是数据的柱形图,表示出在双珠测定的杂交反应过程中采用不同靶物浓度、温育时间对所产生的信号和测定灵敏度的效果。数据表明,2小时是产生最大的信号和双珠测定灵敏度所需的最少时间,而4小时或过夜杂交则是不必需的。
同样,图64是所收集的数据的柱形图,表示出在杂交反应(正如在双珠测定中所实施的)中采用不同靶物浓度、温育时间及混合对杂交效率和测定灵敏度的效果。如图63所示,图64还表明,2小时是杂交的最佳时间,而延长杂交时间并不会增大所产生的信号。此外,相对于对照物,2小时杂交之后混合明显增大了杂交的效率。例14(如下所示)解释了有关为了产生图63和64所示的数据而实施的实验的细节。
包括除去非特异性结合的复合物的双珠制备方法下面的制备方法是以上结合图11A、11B、12A和12B所述相应方法的更具体的替换性实施例。
现在参照图65A和65B,该图表示出为了按照本发明一个方面产生溶液形式的双珠复合物结构而采用“一步”杂交技术的分子测定的制备方法。此方法与以上结合图11A所述的方法类似。本发明包括连续标为步骤I、II、III、IV、V、VI、VII和VIII的八个主要步骤。
在该方法的步骤I中,将包被有寡核苷酸转运探针198的许多捕获珠190沉积在含有缓冲液210的试管212内。该方法中所用的捕获珠190的数目诸如可以在10E+07的量级上,并且每个珠在1μm或更大直径的量级上。将捕获珠190悬浮在杂交液中,并通过用吸移管214注射而装入试管212内。优选的杂交液包含0.2M的NaCl、10mM的MgCl2、1mM的EDTA、pH7.5的50mM Tris-HCl、和5X的Denhart混合物。优选的杂交温度为37摄氏度。在该实施例的预备步骤中,通过EDC结合将转运探针198结合到3μm的磁性捕获珠190上。有关结合方法的进一步细节公开在以下申请中2001年2月27日提交的题为“用于将捕获DNA和报道DNA附着到固相上的方法,包括选择珠类型作为固相”(Methods for Attaching Capture DNA and ReporterDNA to Solid Phase Including Selection of Bead Type as Solid Phase)的共同转让的第60/271,922号美国临时申请;以及2001年3月22日提交的题为“用于将捕获DNA和报道DNA附着到固相上的结合方法”(Methods of Conjugation for Attaching Capture DNA andReporter DNA to Solid Phase)的第60/277,854号美国临时申请,这两件申请作为参考全部并入本文。
如步骤II中所示,将靶DNA或RNA 202加入到溶液中。寡核苷酸转运探针198与DNA或RNA靶剂202互补。DNA或RNA 202于是结合到附着到捕获珠190上的转运探针198的互补序列上(如图8A所示)。
现在参照步骤III,将包被有寡核苷酸信号探针206的报道珠192加入到溶液210中。还是如图9A和10A所示,信号探针206与靶DNA或RNA 202互补。在一个实施例中,将与一部分靶DNA或RNA 202互补的信号探针206结合到2.1μm的荧光报道珠192上。信号探针206和转运探针198每种都具有与靶DNA 202互补但彼此不互补的序列。在加入报道珠192之后,形成双珠复合物192,从而靶DNA 202连接捕获珠190和报道珠192。通过专门、彻底的洗涤,报道珠192与捕获珠190之间的非特异性结合应该最小。优选的是,使靶剂202与信号探针206于37摄氏度下杂交3-4个小时。
在该实施例以及其它实施例中,发现,在杂交过程中间歇混合(即,定期混合,然后停止)比连续混合产生更大的双珠复合物收率。于是,当在盘上实施该步骤时,就可以有益地利用盘驱动电机140和控制器142(图2)定期旋转此盘,以便实现所需的间歇混合。这可以在编码在盘上的混合规程中来实施,以便用具有旋转和停止期间的优选工作周期的预定方式,以一个方向旋转盘,然后使盘停止,随后再以相同的方向旋转盘。或者是,所编码的混合规程可以用旋转、停止和反向旋转期间的优选工作周期以第一方向旋转盘,然后使盘停止,随后再以相反的方向旋转盘。本发明的这些性质结合图33A和35具有进一步详细的论述。
接下来如图65A的步骤IV所示,在杂交之后,使双珠复合物194与溶液中的未结合报道珠分离。该溶液可暴露到磁场中,以便利用捕获珠190的磁性质来捕获双珠复合物结构194。将磁场包裹在具有内装磁体218的磁性试管架216中,该磁体是永久性的或电磁性的,从而吸出磁球并除去悬浮液中任何未结合的报道珠。注意,还将分离不结合到报道珠上的捕获珠。或者是,可以在盘上实施该磁性去除步骤(如图33A、35和36A-36C所示)。
在步骤IV中所示的纯化过程包括含有游离浮动颗粒的上清液的除去。将洗涤缓冲剂加入到试管内并充分混合珠溶液。用于一步测定的优选洗涤缓冲剂包括145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM和10mM EDTA。搅拌大部分的未结合报道珠182、游离的浮动DNA及非特异性结合的颗粒,并将其从上清液中除去。双珠复合物能够形成捕获珠、靶序列和报道珠矩阵,其中洗涤过程还有助于提取截留在重叠双珠颗粒的晶格结构中的浮动颗粒。有关减少报道珠与捕获珠的非特异性结合的方法的其它方面的进一步细节公开在诸如以下申请中2001年2月28日提交的题为“通过珠类型的选择和珠处理来减少双珠测定中的非特异性结合”(Reduction of Non-Specific Binding in Dual Bead Assays bySelection of Bead Type and Bead Treatment)的共同转让和共同待审的第60/272,134号美国临时申请;以及2001年3月12日提交的题为“通过缓冲剂条件和洗涤条件的选择来减少双珠测定中的非特异性结合”(Reduction of Non-Specific Binding in Dual Buffer Assays bySelection of Bead Conditions and Wash Conditions)的第60/275,006号美国临时申请。这两件申请作为参考全部并入本文。
图65A中的下一步骤是步骤V。在该步骤,一旦用洗涤缓冲液将双珠复合物已经清洗大约3-5次,就可以将限制酶、尿素、酸(优选的是强酸)或碱(优选的是强碱)加入到双珠溶液中(如图所示)。于是,通过这些解离剂的作用使双珠复合物解离,借此从捕获珠190中释放出报道珠192(如图65B的步骤VI所示)。
在双珠结构解离之后,使捕获珠190与溶液中目前未结合的报道珠192分离(如步骤VII中所示)。使该溶液暴露到磁场中,以便捕获磁性捕获珠190。将磁场包裹在具有内装磁体218的磁性试管架216中,该磁体是永久性的或电磁性的,从而吸出磁球并除去悬浮液中任何未结合的报道珠。注意,还将在步骤VI中未分离的非解离双珠复合物从溶液中除去。在步骤VII的过程中,利用吸移管214来收集含有所释放的报道珠的上清液。然后,将测定混合物装入盘144或180内,并用光学生物盘或医用CD读出器进行分析(如步骤VIII中所示)。可利用透射生物盘180或反射生物盘144来分析报道珠。以上分别结合图3A-3C和4A-4C论述了有关反射和透射光学生物盘的细节。以上结合图1和2描述了可用于分析光学生物盘的光学生物盘读出器以及其它替换性盘读出器。如果报道珠是荧光的,则还可利用荧光计和包括荧光光学盘读出器的任何类似的荧光型分析仪,来定量步骤VII中分离的报道珠。
图66A和66B与图65A和65B类似,一起表示出采用“单步抗原结合”法以便产生溶液形式的双珠复合物结构的免疫测定。该方法同样包括8个主要步骤并且与以上结合图11B所述的方法相关。在图66A和66B中该方法的这8个步骤分别标为步骤I、II、III、IV、V、VI、VII和VIII。
如图66A的步骤I所示,将诸如数目在10E+07量级上而直径在1μm或更大的量级上、包被有抗体转运探针196的捕获珠190加入到缓冲液210中。该溶液可以与图65A和65B所示方法中采用的相同,或者替换性地可以是为了用于免疫化学测定而专门制备的。抗体转运探针196对靶抗原204具有特异性亲和力。转运探针196特异性结合到靶抗原204内的表位上(还是如图8B所示)。在一个实施例中,对一部分靶抗原具有亲和力的抗体转运探针196通过EDC结合可结合到3μm的磁性捕获珠上。或者是,利用被动吸附可实现转运探针196与捕获珠190的结合。
现在参照图66A中所示的步骤II,将靶抗原204加入到溶液中。靶抗原204结合到附着到捕获珠190上的抗体转运探针196上(还是如图8B所示)。
如步骤III中所示,将包被有抗体信号探针208的报道珠192加入到溶液中。抗体信号探针208特异性结合到靶抗原204的表位上(还是如图9B和10B所示)。在一个实施例中,将信号探针208结合到2.1μm的荧光报道珠192上。信号探针208和转运探针196每种都结合到靶抗原的特异性表位上,但彼此并不结合。在加入报道珠192之后,就形成双珠复合物194,从而靶抗原204连接捕获珠190和报道珠192。通过专门、彻底的洗涤,报道珠192与捕获珠190之间的非特异性结合应该最小。
在步骤IV,在步骤III中结合之后,使双珠复合物194与溶液中的未结合报道珠分离。该溶液可暴露到磁场中,以便利用捕获珠190的磁性质来捕获双珠复合物结构194。将磁场包裹在具有内装磁体218的磁性试管架216中,该磁体是永久性的或电磁性的,从而吸出磁球并除去悬浮液中任何未结合的报道珠。注意,还将分离不结合到报道珠上的捕获珠。或者是,如上所示,还可以在盘上实施该磁性去除步骤(如图33A、35和36A-36C所示)。
在步骤IV中所示的纯化过程包括含有游离浮动颗粒的上清液的除去。将洗涤缓冲剂加入到试管内并充分混合珠溶液。搅拌大部分的未结合报道珠182、游离的浮动蛋白质样品及非特异性结合的颗粒,并将其从上清液中除去。双珠复合物能够形成捕获珠、靶序列和报道珠矩阵,其中洗涤过程还有助于提取截留在重叠双珠颗粒的晶格结构中的浮动颗粒。
图66A中的下一步骤是步骤V。在该步骤,一旦用洗涤缓冲液将双珠复合物已经清洗大约3-5次,就可以用吸移管214将尿素、酸或碱加入到双珠溶液中作为解离剂(如图所示)。本文所用的酸或碱优选地分别是强酸活强碱。于是,通过这些解离剂的作用使双珠复合物解离,借此从捕获珠190中释放出报道珠192(如图66B的步骤VI所示)。
在双珠结构解离之后,使捕获珠190与溶液中目前未结合的报道珠192分离(如步骤VII中所示)。使该溶液暴露到盘上或盘外的磁场中,以便捕获磁性捕获珠190。在本文所示的盘外制备方法中,将磁场包裹在具有内装磁体218的磁性试管架216中,该磁体是永久性的或电磁性的,从而吸出磁球并除去悬浮液中任何未结合的报道珠。注意,还将在步骤VI中未分离的非解离双珠复合物从溶液中除去。在步骤VII程中,利用吸移管214来收集含有所释放的报道珠的上清液。然后,将测定混合物装入盘内,并用光学生物盘读出器进行分析(如步骤VIII中所示)。可利用透射生物盘180或反射生物盘144来分析报道珠。以上分别结合图3A-3C和4A-4C论述了有关反射和透射光学生物盘的细节。以上结合图1和2描述了可用于分析光学生物盘的光学生物盘读出器以及其它替换性盘读出器。如果报道珠是荧光的,则还可利用荧光计和包括荧光光学盘读出器的任何类似的荧光型分析仪,来定量步骤VII中分离的报道珠。
图67A和67B一起表示出本文称作“二步杂交”的一种替换性基因测定法。该方法是以上结合图12A所述的方法的改进实施例。本方法具有9个用于产生双珠复合物的主要步骤、通常,捕获珠包被有与DNA或RNA靶剂互补的寡核苷酸转运探针198,并将捕获珠置于缓冲液中。在该实施例中,通过EDC结合,使与一部分靶剂互补的转运探针结合到3μm的磁性捕获珠上。可以采用寡核苷酸转运探针与固相的其它结合类型。这些包括诸如被动吸附或利用链霉亲和素-生物素的相互作用。将按照本发明该方法的这9个主要步骤连续标为图67A中的步骤I、II、III、IV、V和VI以及图67B中的步骤VII、VIII和IX。
现在更具体地参照图67A所示的步骤I,从吸移管214中将悬浮在杂交液中的捕获珠190装入试管212中。优选的杂交液包含0.2MNaCl、10mM MgCl2、1mM EDTA、50mM的pH7.5的Tris-HCl和5X Denhart混合物。所需的杂交温度是37摄氏度。
在步骤II中,将靶DNA或RNA202加入到溶液中,并结合到附着到捕获珠190上的转运探针198的互补序列上。在该方法的一个具体实施例中,使靶剂202与转运探针198于37摄氏度杂交2-3小时。然而,于室温下在30分钟内可获得充分杂交。在更高的温度下,杂交可瞬时充分地完成。
接下来如步骤III所示,通过将溶液暴露到磁场中以便利用捕获珠190的磁性质来分离所结合的靶序列,而将结合到捕获珠上的靶剂202与溶液中未结合的品种分开。将磁场包裹在具有内装永久磁体218或电磁体的磁性试管架216中,从而吸出磁珠并通过溶液的吸移管提取除去游离浮动在悬浮液中的任何未结合的靶DNA 202。与上述方法相同,可以在对应的盘上实施该磁性去除步骤(如图33A、35和36A-36C所示)。加入洗涤缓冲剂并重复分离过程。转运探针198与靶DNA202杂交之后的优选洗涤缓冲剂包含145mM NaCl、50mM的pH7.5的Tris和0.05%的Tween。用于减少靶剂与珠的非特异性结合的杂交方法和技术进一步公开在以下文献中2001年3月26日提交的题为“利用封闭剂减少双珠测定的非特异性结合”(Reduction ofNon-Specific Binding of Dual Bead Assays by Use of BlockongAgents)的共同转让和共同待审的第60/278,691号美国临时申请。该申请作为参考并入本文。
现在参照图67A所示的步骤IV,将报道珠192加入到溶液中(如结合图65A所示的方法所述)。报道珠192包被有与靶剂202互补的信号探针206。在该方法的一个具体实施例中,使与靶剂202的一部分互补的信号探针206结合到2.1μm的荧光报道珠192上。信号探针206和转运探针198每一种都具有与靶剂202互补但彼此不互补的序列。在加入报道珠192之后,就形成双珠复合物结构190。正如本领域技术人员容易理解的,仅有感兴趣的靶剂存在时才形成双珠复合物。在该形成中,靶剂202连接磁性捕获珠190和报道珠192。利用优选的缓冲液,通过专门彻底的洗涤,报道珠与捕获珠之间的非特异性结合将最小。优选地使靶剂202与信号探针206于37摄氏度下杂交2-3小时。如以上的步骤II所述,于室温下在30分钟内可获得充分杂交。在更高的温度下,该步骤所发生的杂交还可瞬时充分地实现。
现在参照图67A中的步骤V,在步骤IV中的杂交之后,使双珠复合物194与溶液中的未结合品种分离。,将溶液再次暴露到磁场中以便利用捕获珠190的磁性质来分离双珠复合物194。再次注意,分离将包括捕获未结合到报道珠上的捕获珠。与上述的步骤III相同,可以在对应的盘上实施该磁性分离步骤(如图33A、35和36A-36C所示)。
用于除去含有游离浮动客颗粒的上清液的纯化过程包括将洗涤缓冲剂加入试管内,并充分混合珠溶液。用于二步测定的优选洗涤缓冲剂包含145mM NaCl、50mM的pH7.5的Tris、0.1%SDS、0.05%的Tween、0.25%NFDM和10mM EDTA。搅拌大部分未结合的报道珠、游离浮动的DNA和非特异性结合的颗粒,并将其从上清液中除去。双珠复合物能够形成捕获珠、靶剂和报道珠矩阵,其中洗涤过程还有助于提取截留在重叠双珠颗粒的晶格结构中的浮动颗粒。用于减少报道珠、靶剂以及捕获珠之间的非特异性结合的其它相关方面公开在诸如以下申请中2001年2月28日提交的题为“用于减少双珠测定中非特异性结合的混合方法”(Mixing Methods to Reduce Non-specificBinding in Dual Bead Assays)的共同转让和共同待审的第60/272,234号美国临时申请;以及2001年3月1日提交的题为“包括用于减小非特异性结合的连接剂的双珠测定”(Dual Bead Assays IncludingLinkers to Reduce Non-Specific Binding)的第60/272,485号美国临时申请。这两件申请作为参考全部并入本文。
图67A所示的下一步骤是步骤VI。在该步骤中,一旦双珠复合物194已经用洗涤缓冲液冲洗约3-5次,就将测定混合物装入盘内并进行分析。或者是,在该步骤中,可以连接寡核苷酸信号和转运探针,以避免双珠复合物在盘分析和信号检测过程断裂。有关探针连接方法的进一步细节公开在以下申请中2001年3月26日提交的题为“利用连接反应改善的双珠测定”(Improved Dual Bead Assays UsingLigation)的共同转让和共同待审的第60/278,694号美国临时申请,该申请作为参考全部并入本文。在本发明的又一实施例中,利用吸移管214可以将限制酶、尿素、酸和碱加入到双珠溶液中(如图67A的步骤VI所示)。通过这些解离剂的作用,将双珠复合物解离,由此使报道珠192从捕获珠190中释放出来(如图67B的步骤VII所示)。本文所用的酸和碱优选地分别是强酸或强碱。
在双珠结构解离之后,使捕获珠190与溶液中目前未结合的报道珠192分离(如步骤VIII中所示)。使该溶液暴露到磁场中,以便捕获磁性捕获珠190。将磁场包裹在具有内装磁体218的磁性试管架216中,该磁体是永久性的或电磁性的,从而吸出磁球并除去悬浮液中任何未结合的报道珠。注意,还将在步骤VIII中未分离的非解离双珠复合物从溶液中除去。在步骤VIII中,利用吸移管214来收集含有所释放的报道珠的上清液。然后,将测定混合物装入盘内,并用光学生物盘读出器进行分析(如步骤IX中所示)。可利用透射生物盘180或反射生物盘144来分析报道珠。以上分别结合图3A-3C和4A-4C论述了有关反射和透射光学生物盘的细节。以上参照图1和2描述了可用于分析光学生物盘的光学生物盘读出器以及其它替换性盘读出器。如果报道珠是荧光的,则还可利用荧光计和包括荧光光学盘读出器的任何类似的荧光型分析仪,来定量步骤VIII中分离的报道珠。为了将报道珠从双珠复合物中释放出来而用解离剂实施的实验在下面的例15和16中有详细的描述。
按照本发明的另一个方面,图68A和68B一起表示出一种免疫测定法,该方法与结合图66A和66B所述的那些方法类似,并遵循图67A和67B中的基因测定技术。该方法也被称作用以在免疫化学测定中产生双珠复合物的“二步结合”。该方法是以上结合图12B所示方法的相关和更具体的实施例。与图67A和67B中所示的方法一样,本方法具有9个主要步骤、通常,捕获珠包被有特异性结合到靶抗原表位上的抗体转运探针,并将捕获珠置于缓冲液中。在一个特定实施例中,使抗体转运探针结合到3μm的磁性捕获珠上。根据为了实施测定所采用的盘驱动器和盘组件的种类,可以采用不同尺寸的磁性捕获珠。将按照本发明这种替换性方法的这9个主要步骤连续标为图68A中的步骤I、II、III、IV、V和VI以及图68B中的步骤VII、VIII和IX。
现在更具体地参照图68A所示的步骤I,从吸移管214中通过注射将悬浮在缓冲液210中的捕获珠190装入试管212中。
在步骤II中,将靶抗原204加入到溶液中,并结合到附着到捕获珠190上的抗体转运探针196上。优选地使靶抗原204与转运探针196于37摄氏度下杂交2-3小时。更短的杂交时间也是可能的。
如步骤III所示,通过将溶液暴露到磁场中以便利用捕获珠190的磁性质来分离所结合的靶蛋白质,而将结合到捕获珠190上的靶抗原204与溶液中未结合的品种分开。将磁场包裹在具有内装永久磁体218或电磁体的磁性试管架216中,从而吸出磁珠并通过溶液的吸移管提取除去游离浮动在悬浮液中的任何未结合的靶抗原204。加入洗涤缓冲剂并重复分离过程。
接下来如步骤IV所示,将报道珠192加入到溶液中(如结合图66A所示的方法所述)。报道珠192包被有对靶抗原204具有亲和力的信号探针208。在该二步免疫化学测定的一个具体实施例中,使特异性结合到靶抗原204的一部分上的信号探针208结合到2.1μm的荧光报道珠192上。信号探针208和转运探针196每一种都结合到靶剂204的表位上但彼此不互相结合。在加入报道珠192之后,就形成双珠复合物结构190。正如本领域技术人员容易理解的,仅有感兴趣的靶剂存在时才形成双珠复合物结构。在该形成中,靶剂204连接磁性捕获珠190和报道珠192。利用优选的缓冲液,通过专门彻底的洗涤,报道珠与捕获珠之间的非特异性结合将最小。使靶抗原204与信号探针208于37摄氏度下杂交2-3小时。如以上的步骤II所述,于室温下在30分钟内可获得充分杂交。在免疫测定中,高于37摄氏度的温度不是优选的,因为蛋白质将变性。
接下来翻到图68A所示的步骤V,在步骤IV中所示的结合之后,使双珠复合物194与溶液中的未结合品种分离。通过将溶液暴露到磁场中以便利用捕获珠190的磁性质来分离双珠复合物194,可实现这一点(如图所示)。再次注意,分离将包括捕获未结合到报道珠上的珠。
用于除去含有游离浮动颗粒的上清液的纯化过程包括将洗涤缓冲剂加入试管内,并充分混合珠溶液。搅拌大部分未结合的报道珠、游离浮动的蛋白质和非特异性结合的颗粒,并将其从上清液中除去。双珠复合物能够形成捕获珠、靶剂和报道珠矩阵,其中洗涤过程还有助于提取截留在重叠双珠颗粒的晶格结构中的游离浮动颗粒。
图68A所示的最后一个步骤是步骤VI。在该步骤中,一旦双珠复合物194已经用洗涤缓冲液冲洗约3-5次,就可利用吸移管214将尿素、酸(优选的是强酸)和碱(优选的是强碱)加入到双珠溶液中(如图68A的步骤VI所示)。通过这些解离剂的作用,将双珠复合物解离,由此使报道珠192从捕获珠190中释放出来(接下来如图68B的步骤VII所示)。
在双珠结构解离之后,使捕获珠190与溶液中目前未结合的报道珠192分离(如图68B的步骤VIII所示)。使该溶液暴露到磁场中,以便捕获磁性捕获珠190。将磁场包裹在具有内装磁体218的磁性试管架216中,该磁体是永久性的或电磁性的,从而吸出磁球并除去悬浮液中任何未结合的报道珠。注意,还将在步骤VII中未分离的非解离双珠复合物从溶液中除去。在该方法的步骤VIII中,利用吸移管214来收集含有所释放的报道珠192的上清液。然后,将测定混合物装入盘内,并用光学生物盘读出器进行分析(如步骤IX中所示)。可利用透射生物盘180或反射生物盘144来分析报道珠。以上分别结合图3A-3C和4A-4C论述了有关反射和透射光学生物盘的细节。以上结合图1和2描述了可用于分析光学生物盘或医用CD的光学生物盘读出器以及其它替换性盘读出器。还可利用荧光计和包括荧光光学盘读出器的任何类似的荧光型分析仪,来定量步骤VIII中分离的报道珠。
与以上所述的任何其它方法一样,图68A和68B所示方法中的磁性去除或分离步骤还可利用盘、射流回路和装置(如图33A-33D、34A-34C、35、36A-36C和37所示)在盘上来实施。
利用解离剂来增大测定的灵敏度和减小非特异性珠结合现在移到图69,这是证实报道珠缺乏时的DNAseI的消化效率的柱形图。在该实验中,使生物素化靶DNA202杂交到磁性捕获珠190上的转运探针198上(如以上的图8A所示)。杂交之后,将链霉亲和素化碱性磷酸酶(S-AP)加入到测定混合物中,并使其与靶DNA上的生物素结合。一系列洗涤步骤之后,将S-AP的生色底物加入到一份测定溶液中,并利用分光光度计比色定量所结合的靶物的量。同时,将以上提取的一等量份在含有DNAseI的缓冲剂中温育。温育之后,洗涤测定混合物,将S-AP加入到溶液中并使其结合到没有被DNAseI消化的残余靶物上。观察显示出高DNAse消化活性,这正如在对照物与DNAseI消化处理之间的信号差中所表现的。对于与此处所述的方案类似的实验细节在下面的例15中有详细的描述。
现在参照图70,该图是从与图69所述类似的实验中收集的数据的柱形图。在该实验中,用双珠复合物单独取代磁性捕获珠(如图69所示)。在这种情况下,靶物202位于捕获珠190与报道珠192之间(如以上的图10A所示)。双珠复合物形成之后,如图65A中的步骤I-V所述,利用荧光计来定量步骤IV(图65A)中收集的上清液中的报道珠及结合到步骤V(图65A)所示的测定混合物中的捕获珠上的报道珠的量。然后,将DNAseI加入到测定混合物中,并使其裂解结合到双珠复合物中的探针上的靶物(如图65B中的步骤VI所示),借此将报道珠从磁性捕获珠中释放出来。下一步骤涉及捕获珠的分离和含有新近释放的荧光报道珠的上清液的收集(如图65B中的步骤VII所示)。利用荧光计来定量上清液中的报道珠的信号。未解离的报道珠也可以用荧光计来定量。从该实验收集的数据表明,DNAseI酶消化在双珠复合物中没有在单珠方案(如图69所述)中那么有效。DNAse消化活性的减小是由于双珠复合物中的珠的空间位阻封闭了DNAse对靶物的可及性。有关限制酶消化(正如在双珠测定中所实施的)的应用细节将在下面的例15中有进一步详细的描述。通过荧光型光学盘读出器和任何类似设备(如上所述),还可以利用光学生物盘和医用CD来定量该测定中收集的荧光报道珠。
任何测定的灵敏度都取决于信号-噪声比。双珠测定的灵敏度依赖于捕获珠与报道珠之间的最小非特异性结合。靶物缺乏时双珠之间的非特异性相互作用稳定得足以使严格洗涤不能消除这些作用。然而,靶物介导的双珠的排阻检测和定量能够使非特异性双珠的分布无效。如图71所示,通过酶消化(DNAse、限制酶)或通过化学和物理处理(热、尿素、碱和酸处理),来分离双珠复合物。而且,远远过量的未结合捕获珠存在时的报道珠的量可减小检验测定的灵敏度。因此,报道珠与捕获珠的分离将使通过生物盘读出器进行的报道珠定量容易实施,并因此增大测定的灵敏度。
现在更具体地参照图71,这是利用酶消化和物理及化学处理,使双珠复合物中的报道珠和捕获珠分离的直观显示。图71表示出利用多种解离剂的双珠形成和解离的概述(如结合图65A、65B、67A和67B)。在收集所释放的报道珠之后,利用包括荧光计、氟量计、荧光型光学盘读出系统、CD-R型光学盘系统或能够检测微球或荧光度的任何设备的几种方法的任何一种,来定量这些珠。目前的优选检测方法是,采用光学生物盘或医用CD系统(如结合图1、2、3A、3B、3C、4A、4B和4C所详细论述的)。
接下来参照图72,这是表明在与图70类似的多种靶物浓度下利用高pH洗涤使报道珠与捕获珠分离的柱形图。如图67A中的步骤I-VI所述,来形成双珠复合物。一旦双珠形成并分离,就将强碱加入到双珠溶液中(如图67A的步骤VI所示)。简略温育之后,利用能够破坏靶物与探针之间的氢键合的碱的作用来解离双珠,借此将荧光报道珠和磁性捕获珠从双珠复合物中释放出来(如图67B的步骤VII所示)。下一步骤是,分离捕获珠(如图67B的步骤VIII所述)。所分离的报道珠还将含有未解离的双珠复合物。在这个具体实施例中利用荧光计来定量该解离。图72所示的数据表明,靶物浓度为1×10-16M至1×10-14M时双珠复合物100%解离。利用碱作为解离剂所实施的实验的细节在下面的例16中有详细的描述。还会利用包括荧光计、氟量计、荧光型光学盘读出系统、CD-R型光学盘系统或能够检测微球或荧光度的任何设备的几种方法的任何一种,来定量这些珠。目前的优选检测方法是,采用光学生物盘或医用CD系统(如结合图1、2、3A、3B、3C、4A、4B和4C所详细论述的)。
现在参照图73A,这是从利用尿素作为变性剂和解离剂的实验中收集的数据的柱形图。该实验的细节与结合图69所述的类似。如图69所述,使生物素化靶DNA202与磁性捕获珠190上的转运探针198杂交(如以上的图8A所示)。杂交之后,将链霉亲和素化碱性磷酸酶(S-AP)加入到测定混合物中,并使其与靶DNA202上的生物素结合。一系列洗涤步骤之后,将S-AP的生色底物加入到一份测定溶液中,并利用分光光度计比色定量所结合的靶物的量。同时,将以上提取的一等量份在含有7M尿素的缓冲剂中温育。温育之后,洗涤测定混合物,将S-AP加入到溶液中并使其结合到没有被7M尿素变性、仍然结合到捕获珠上的转运探针上的残余靶物上。其结果显示,相当有效的变性活性,这正如对照物与7M尿素处理之间的信号差所揭示的。关于与此处所述的方案类似的实验细节在下面的例16中有详细的描述。
接下来参照图73B,该图是从利用尿素作为双珠测定中的解离剂的实验中收集的数据的柱形图。该实验的细节与结合图70所述的类似。如图70所述,用双珠复合物单独取代磁性捕获珠(如图73A所述)。在这种情况下,靶物位于捕获珠与报道珠之间(如以上的图10A所示)。双珠复合物形成之后,如图67A中的步骤I-VI所述,利用荧光计来定量步骤V(图67A)中收集的上清液中的报道珠192及结合到步骤VI(图67A)所示的测定混合物中的捕获珠190上的报道珠192的量。然后,加入预定量的尿素,以使测定溶液中的最终尿素浓度为7M。这导致结合到双珠复合物中的探针上的靶物的变性(如图67B中的步骤VII所示),由此将报道珠从磁性捕获珠中释放出来。下一步骤涉及捕获珠190的分离和含有新近释放的荧光报道珠192的上清液的收集(如图67B中的步骤VIII所示)。利用荧光计来定量上清液中的报道珠的信号。未解离的报道珠也可以用荧光计来定量。从该实验收集的数据表明,7M尿素变性在双珠复合物测定比利用DNAseI作为解离剂(如图70所述)更有效。解离的增大是由于双珠复合物中珠的空间位阻的缺乏所导致的,因为尿素是比DNAse小得多的分子。有关7M尿素变性(正如在双珠测定中所实施的)的应用的实验细节将在下面的例16中有进一步详细的描述。通过荧光型光学盘读出器和任何类似设备(如上所述),还可以利用光学生物盘和医用CD来定量该测定中收集的荧光报道珠。
利用DNA变性剂来改善DNA靶物的检测本法门的一个主要方面是,进一步改进双珠测定,以便检测医用靶物。在真实样品中,DNA靶物是双链的,而且非常长。双珠测定以及用于检测整个基因组内临床上感兴趣的序列的任何其它DNA诊断测定的能力首先依赖于,探针对感兴趣序列的特异性,其次依赖于为了保持变性、单链形式的DNA靶物以便进行捕获而使用非常强的变性剂。
双珠测定在检测临床感兴趣的序列上的成功主要依赖于探针的设计。通过给出人类基因组的复杂性和简并性,为了检测临床上感兴趣的序列而设计的探针对诊断序列来说是独一的,并且还同一得足以识别序列的突变体。利用计算机软件设计探针允许将序列与数据库(例如Blast搜索)中的现存序列进行比较。一旦这对感兴趣序列的探针已经设计出来,引入双珠测定的主要变型包括,在杂交缓冲剂中采用变性剂,以避免靶DNA的互补序列的重退火。这允许靶物与探针之间进行杂交。
本发明还涉及在分析盘、改型的光学盘、医用CD或生物盘上实施以上提出的方法。可采用生物盘或医用CD驱动组件(诸如以上参照图1和2所述的那些)来旋转盘,读取和处理盘上存储的任何编码信息,以及分析生物盘和医用CD的流动通道内的DNA样品。生物盘驱动器于是配有用于旋转生物盘的电机、用于控制盘的旋转速率的控制器、用于处理来自盘的返回信号的处理器、以及用于分析被处理的信号的分析仪。控制电机的速率,以便获得所需的盘旋转。还会利用生物盘驱动组件,以便在流动通道和靶区中的医用测试材料被驱动器的读取束所询问以及被分析仪医用诊断之前、之中或之后,将信息写到生物盘上。在本发明的这个实施例中,分析仪有益地包括专门的诊断软件,借此提供医用专家系统。生物盘可同样包括相应的医用专家软件和编码信息,以便控制盘的旋转速率、提供针对待进行的DNA测试种类的处理信息、以及用于将结果显示在与生物盘相联的监视器上。
在本发明的一个优选实施例中,利用异硫氰酸胍作为典型的变性剂。从用1.5M异硫氰酸胍作为变性剂的实验中收集的数据在图74中示出。该实验所遵循的实验规程在下面的例17中有详细的描述。图74还显示,如果在杂交实验中采用适量的变性剂,则测定灵敏度就明显增大。在这个具体测定中,在1.5M异硫氰酸胍存在下,使生物素化靶DNA202与磁性捕获珠190(如图8A所示)上的转运探针198杂交。杂交之后,将链霉亲和素化碱性磷酸酶(S-AP)加入到测定混合物中,并使其与靶DNA202上的生物素结合。一系列洗涤步骤之后,将S-AP的生色底物加入到测定溶液中,并利用分光光度计比色定量所结合的靶物的量。
为了在允许靶物与探针之间进行杂交的同时避免靶DNA的互补序列的重退火,适量的异硫氰酸胍是必需的。然而,在高浓度时,异硫氰酸胍避免任何杂交。为了测定双珠测定中所用的异硫氰酸胍的合适缓冲剂浓度,而实施异硫氰酸胍滴定。从该滴定实验获得的数据在图75中示出。如图75所示,异硫氰酸胍的最佳缓冲剂浓度为1.5M,因为1.5M异硫氰酸胍的加入显示出0.0M-1.0×10-10M靶物浓度之间的最高信号差。
利用MO生物盘系统(MOBDS)选择、检测和操纵特异性细胞群的MO生物磁性测定(MOBMA)本发明的另一方面涉及一种利用如上所述并被称作MOBMA的磁性颗粒和珠,来检测细胞群和细胞群溶液中的特异性靶细胞的磁性方法。在本发明MOBMA方面的一个实施例中,磁珠包被有一种和更多种结合剂和捕获探针,借此形成生物磁性颗粒或珠。有关将结合剂附着到包括磁性颗粒的固相载体上的进一步细节在以下申请中有所描述2002年7月12日提交的题为“用于实施测定的多用途光学分析盘以及与之一起使用的多种报道剂”(Multi-Purpose Optical AnalysisDisc for Conducting Assays and Various Reporting Agents for useTherewith)的共同转让和共同待审的美国专利申请,该申请作为参考全部并入本文。结合剂可包括诸如,与针对细胞膜上的特异性抗原决定簇的抗体相关的靶细胞的抗体识别Fc部分。利用本发明的MOBDS来完成靶细胞的捕获、检测、操纵和定量。还可以将所捕获的细胞磁性操纵或从MO生物盘上的一个分析、分离或测试室移动到另一个中,以使细胞测试容易进行。例如,可以将所捕获的靶癌症细胞以相等的细胞数目磁性等分到含有癌症治疗剂的不同分析室内,以确定这些治疗剂对细胞水平的效果。该方法应用的具体实例在下面有所描述。
具有温和去污剂和/或第二组抗体或抗体片断、预装有或无允许目视的荧光剂、金属胶体、生物磁性颗粒、放射性同位素、生物素复合物或某些酶的细胞悬浮液的温育,会显著增大所述方法的特异性和灵敏度。该方法还可用来大大分离、纯化、操纵和定量磁性捕获在MO生物盘上的磁性捕获区中的靶细胞。有关检测特化和混合细胞群和含有混合细胞群的溶液中的特异性靶细胞的方法的进一步细节诸如公开在Fodstad和Kvalheim的第6,184,043号美国专利中,该文献作为参考全部并入本文。
结合剂通过亲和力可将一个和多个化学/生化本体结合在一起。在亲和结合中,诸如附着到待连接的物质上的一对结合对在相互接触时彼此结合。细胞表面上的分子在这样的键合中会代表结合对之一。几种这样的结合对系统是公知的,诸如抗原-抗体、酶-受体、细胞上的配体-受体相互作用、生物素-亲和素结合、半抗原-抗-半抗原结合对、以及寡核苷酸互补序列结合,其中抗原-抗体结合是最频繁使用的。
公知的方法是,将结合对之一附着到不溶载体(例如磁性颗粒和珠)上,以及通过这些方法将混合细胞群中的靶细胞的分离作为负分离和正分离来实施。在负分离规程中,通过将细胞与针对不需要细胞的抗体包被的磁珠(生物磁性珠和颗粒)进行温育,能够将不需要的细胞从细胞制备中除去。温育之后,磁性除去或分离所获得的细胞-珠复合物,从而将需要的靶细胞留下。另一方面,在正分离规程中,利用包被有针对感兴趣细胞的抗体(生物磁性颗粒)的磁珠,将所需的靶细胞从混合细胞群中除去。
本发明MOBMA方面的一个目的是,检测和研究用于诊断目的的特异性靶细胞。试样可包括血液、骨髓、腹水液和来自多种组织和肿瘤的细胞。本发明表示出用于检测各种细胞种类的灵敏检测系统和方法,从而利用MOBDS能够容易地筛选非常非常多的细胞,并且该过程快速简便。而且,本MOBDS可用于分离细胞,以便进行生化、生物和免疫检查,以及对核苷酸和蛋白质水平的特异性基因进行研究。此外,通过破坏和去除MO生物盘上磁性捕获区内的磁场,可释放出所分离和捕获的细胞-珠复合物,其中利用相关的MO驱动器和为无需裂解细胞-珠复合物的体外细胞毒性研究培养和使用的细胞,来定位感兴趣的细胞。
本发明的MOBMA方面的另一实施例包括混合细胞群和生理溶液中靶细胞(正常的和致病的)的免疫磁性正分离。在本发明的这个实施例中,特异性靶细胞与不溶载体(例如磁珠和颗粒)之间发生连接。颗粒包被有针对靶细胞膜上的特异性抗原决定簇的抗-细胞抗体,或者颗粒包被有多克隆抗-鼠和抗-人抗体,该抗体能够结合到针对靶细胞膜上的抗原决定簇的特异性抗-细胞抗体(原发抗体)的Fc部分上。可以用单克隆兔抗-鼠/抗-人抗体代替多克隆抗-鼠/抗-人抗体来包被颗粒。单克隆抗体的使用可减小与溶液中非靶细胞可能发生交联反应的危险性。而且,具有温和去污剂和/或在混合细胞捕获中结合到捕获细胞中的一种或多种细胞类型的抗原决定簇上的第二组抗体或抗体片断、预装有允许目视的荧光剂、磁性颗粒、金属胶体、生物磁性颗粒、放射性同位素、生物素-复合物或某些酶的细胞悬浮液的温育,会显著增大该实施例的方法的特异性。
以下通过利用癌细胞作为靶细胞用于检测和分离,来表达上述免疫磁性正分离实施例的详细应用。然而,该实施例并不局限于癌细胞,本公开内容不将该方法局限于这个具体的应用领域,因为该方法适用于包括针对以下细胞的测定的细胞学应用例如,免疫系统的细胞诸如天然杀伤细胞、单核细胞、T-细胞、B-细胞、和它们的亚类(包括CD4+和CD8+细胞);细菌细胞(Chandler等人,Int.J.of Food Micr.,70143-154,2001以及Yu,J,of Immuno.Mthds.,2181-8,1998);和过氧化物酶体(Luers等人,电泳,191205-1210,1998)。
在癌症病人的管理中,就疾病释放定位或者释放转移到其它组织而言,将疾病分期,对于为个体病人选择治疗方案是极为重要的。通过淋巴管或通过血液中的肿瘤细胞分布到远处器官(包括骨髓、中枢神经系统和脑脊髓液)内,恶性细胞经过之间侵袭而扩散到周围的组织内。转移瘤细胞的检测直到最近业已依赖于在活组织检查的肿瘤样本上、在骨髓和四周血涂片上、以及在多种体液的细胞离心之后制备的载玻片上采用光电显微镜的形态学方法。由于主要表达在不同类型恶性细胞表面上的单克隆抗体识别抗原的出现,转移细胞的鉴定很大程度上还涉及免疫细胞化学和免疫荧光学。因此,由活组织检查的肿瘤和细胞离心物制备的载玻片用单克隆抗体来处理,而这些物质与肿瘤细胞的结合会通过比色和荧光目视观察。后一种方法要求使用荧光显微镜,或者制备细胞悬浮液和使用流式细胞计数器。
以前的方法具有以下缺陷灵敏度和/或特异性有限,并且费力、耗时,还要求高程度的专业技术。流式细胞计数检查还涉及到昂贵的设备。
用于检测血液和骨髓中的肿瘤细胞的形态学方法远远没有涉及免疫细胞化学和免疫荧光的方法灵敏(Beiske等人,Am.J.Pathology141(3),1992年9月)。而且,后一种方法然而对肿瘤细胞少于试样中细胞总数的1%的情况不适用。流式细胞计数可比涉及使用显微镜的方法更灵敏,但要求采用大量的细胞,而且还涉及若干技术难题。而且,细胞聚集体会导致流式细胞计数的问题,并且该方法不可能区分标记肿瘤细胞与非特异地发荧光的正常细胞。
本发明能够非常灵敏地检测诸如转运肿瘤细胞,因为利用MOBDS,能够容易地筛选非常多的细胞以及容易地检测和定量细胞-珠复合物。在本发明中用于检测靶细胞的抗体是这样选择的即,这些抗体对混合细胞悬浮液或试样中存在的诸如肿瘤细胞具有足够特异的结合性,而对非靶细胞却没有。试样可包括诸如血液、骨髓和含有肿瘤表现形式的其它溶液,从而具有附着珠的所有细胞都代表靶细胞。然后,将靶细胞捕获在磁性光学(MO)生物盘的特异性磁化区和磁畴上,并利用磁性光学驱动器和软件进行定量。此外,该过程快速而简便,且能够由任何调查者来实施,而无需昂贵精密的设备例如流式细胞计数器。有关MOBDS的进一步细节公开在诸如以下申请中2002年3月14日提交的题为“利用会裂解间隔物和/或连接反应来提高特异性和灵敏度的双珠测定,包括相关的方法和设备”(Dual BeadAssays Using Cleavable Spacers and/or Ligation to ImproveSpecificity and Sensitivity Including Related Methods and Apparatus)的共同转让和通过待审的第10/099,256号美国专利申请;以及2002年3月14日提交的题为“限制酶和其它化学方法在减小双珠测定中非特异性结合方面的应用,以及用于检测医用靶物的相关生物盘、方法和系统装置”(Use of Restriction Enzymes and Other ChemicalMethods to Decrease Non-Specific Binding in Dual Bead Assays andRelated Bio-Discs,Methods,and System Apparatus for DetectingMedical Targets)的以上参考的第10/099,266号美国专利申请。有关磁性光学记录、磁性光学盘上磁域的精确产生以及磁性光学检测方法的细节,以上结合图37以及在例如以下文献中有所描述Tsunashima,磁性光学记录,J.Phys.DAppl.Phys.34,R87-R102,2001,和Coombs,Differential Phase Contrast and Magneto-optic EdgeDtection,Applied Optics,34(29),6723-6729,1995,这些文献作为参考全部并入本文,就如同完全重复在本文中一样。
如上所述,本发明MOBMA方面的免疫磁性实施例涉及包括单克隆抗体(诸如鼠和人源的)的捕获抗体与磁性颗粒或珠的结合,借此形成生物磁性颗粒,这些单克隆抗体特异性识别肿瘤细胞上存在的抗原,但不识别正常细胞上的抗原,或者是为了正常细胞的特定亚群这些其它目的。捕获抗体可直接结合到靶细胞的抗原上,或者直接结合到原发抗体或与肿瘤细胞结合的细胞结合抗体的Fc部分上。细胞结合抗体可以是IgG或IgM型的,或者是IgG或IgM抗体的片断。捕获或原发抗体可以是针对抗原决定簇组的抗体,这些抗原决定簇包括例如肿瘤相关的糖蛋白72(TAG72)抗原(CC49抗体)(Barjer等人,Gynec.Onco.8257-63,2001);CD56/NCAM抗原(MOC-1抗体)(Speirs等人,J.Histochem.Cytochem.,41(9)1303-10,1993);上皮细胞表明抗原(BER-EP4抗体)(Borgen等人,J.,Hematother.,6(2)103-114,1997,以及Ziggeuner等人,J.Urol.,1641834-1837,2000);Cluster 2上皮抗原(MOC-31抗体)(Rye等人,Am J.Patho.,150(1)99-106,1997以及Ree等人,Int.J.Cancer,9728-33,2002);Cluster 2(MW 40kD)抗原(NrLu10抗体)(Myklebust等人,Br.J.Cancer Suppl.1449-53,1991);HMW-黑素瘤相关抗原(225.28S抗体)(Dell’Erba等人,Anticancer Res.,21(2A)925-930,2001);80kD,肉瘤相关抗原(TP-1 & TP-3抗体)(Bruland等人,Caner Res.,485302-5309,1988);细胞角蛋白抗原(pan-抗-CK抗体)(Bilkenroth等人,Int.J.Cancer,92577-582,2001);鼠抗原TAG 12(2E11)(Diel等人,J.Natl.Cancer Inst.,88(22)1652-8,1996);以及EGF-受体抗原(425.3抗体)(Merck)。425.3抗体是针对正常细胞和肿瘤细胞中的抗原的。捕获抗体还针对生长因子受体,例如EGF-受体、PDGF(A和B)受体、胰岛素受体、胰岛素样受体、运铁蛋白受体、NGF和FGF受体、整联蛋白组、正常细胞和异常细胞上的其它粘着膜分子和MDR蛋白质、以及正常细胞亚群上存在的抗原(除了致癌产物之外,还表达在正常和肿瘤细胞膜上,以及单独表达在肿瘤细胞膜上,诸如Neu/erb B2/HER2)。对于肿瘤细胞,可具有乳腺、卵巢和肺癌细胞、黑素瘤、肉瘤、恶性胶质瘤、胃肠道和网状内皮系统的癌细胞,或者靶细胞与非肿瘤疾病相关,诸如心血管的、神经上的、肺部的、自体免疫的、胃肠的、泌尿生殖器的、网状内皮系统的、以及其它紊乱症。而且,肿瘤细胞群会位于骨髓、外周血内、来自于胸膜和腹膜流出物以及其它体液成分诸如尿液、脑脊髓液、精液、淋巴,或来自正常组织和器官(例如肝、淋巴结、脾、肺、胰腺、骨组织、中枢神经系统、前列腺、皮肤和粘膜)中的固态肿瘤。可与本发明结合使用的抗原决定簇和相应的抗体或抗体片断的部分列表在下面的表1中示出。
在靶细胞密度较低的情况下,诸如,肿瘤细胞或靶细胞表现出在细胞总数中所占比例非常低(≤1%),就能够在MOBDS中分析之前利用磁体将靶细胞从非靶细胞中分离出来并预先浓缩。然后,利用MOBDS对所分离的靶细胞进行计数,并计算在最初的细胞悬浮液中靶细胞相对于细胞总数的分数。
MOBDS上的药物灵敏度测定如上所述,可利用MOBDS对靶细胞进行体外分离、操纵和研究。能够对靶细胞实施的一种测定是用于测定药物暴露之后药物诱导的细胞死亡的细胞毒性、化学灵敏度、药物灵敏度或抗药性测定。在该方法中,可以从诸如肿瘤细胞活组织、细菌、植物、病毒和非细胞有机体中收集靶细胞。在MO生物盘的一个和多个室内免疫磁性分离靶细胞(如上所述),借此构成分离物。一旦分离出靶细胞,就将预定数目的细胞从分离物中磁性移动和操纵到包括检验室的MO生物盘的多个室中。这些室可含有药物(包括但不限于,单独和组合形式的预定剂量的化学治疗剂、抗生素和抗病毒剂)。化学治疗剂会包括诸如乳腺癌、肺癌、脑癌、肝癌和卵巢癌药物,例如Cisplatin、Topotecan、Taxol、Gemcitabine(1)、Mitomycin-C、Navelbine、Nitrogen Mustard、5-Fluorouracil、Doxorubicin、Etoposide、Trimetrexate以及这些药物的多种组合形式(包括但不限于,Cisplatin和Topotecan、Cisplatin和Taxol、Cisplatin和Gemcitabine(1)、Cisplatin和Nitrogen Mustard以及Cisplatin和5-Fluorouracil)。然后,在多种浓度和组合形式的药物中于预定条件下温育被分离的细胞。温育之后,利用MOBDS对活细胞的数目进行计数,并计算所有药物中的IC50(当药物或药物组合体暴露的结果为50%的细胞死亡时的药物浓度)以便为病人确定最佳的治疗方案。该测试是非常重要的,因为体外发现的药物活性与体外发现的药物失活相比,可能是临床效果的大约10倍。体内药物灵敏度测定在本领域内是公知的(Bosanquet等人,Leukemia 16(6)1035-44,2002;Nagourney等人,J.Clin.Onco.1811,2245-49,2000;Bosanquet等人,Br.J.Haem.,10671-77,1999;和Cortazar等人,J.Clin.Onco.,175,1625-31,1999)。已有技术的测定经常是利用微滴定板来实施的,并且通过对活或死细胞的优先染色,而利用显微镜进行细胞计数和分析或利用微滴定板读数器进行比色计数和分析,以便测定活细胞的数目。本发明使这个过程自动化,在该过程中,利用MOBDS进行细胞的筛选、操纵、温育、分析和IC50测定,而无需单独的分析设备例如显微镜和微滴定板读数器。该自动化过程增大了这些药物灵敏度测定的效率和准确度。
样品制备用于实施本发明的上述免疫磁性实施例的步骤可根据待检查的组织种类的不同而变化,这些组织肿瘤包括例如a)来自固态组织和针状肿瘤活组织检查切片的细胞通过机械或温和的酶处理进行分离,从而产生单细胞悬浮液,将原发的特异性抗体或抗体片断直接加入到细胞悬浮液中,或者在细胞悬浮液于磷酸缓冲盐水或培养介质(有或无血清,例如胎牛血清、牛、马、猪、羊或人血清)中洗涤之后将其加入;b)胸膜或腹水流出物、脑脊髓液、尿液、淋巴或体液(诸如多种形式的关节炎病人的关节流出物)中的细胞,将特异性捕获抗体或抗体片断直接加入到样品中,或者在样品中的细胞自旋并回到悬浮液中之前或之后,在洗涤或不洗涤的条件下进行离心之后将其加入;c)利用梯度离心来分离血液或骨髓吸气中的单核细胞,并在洗涤和再悬浮过程中或之前,将捕获抗体加入到所分离的单核细胞中。
表1相关抗原和相关抗原结合的抗体实例抗原 单克隆抗体粘附分子纤连蛋白受体(α5β1整联蛋白) Pierce 36114,BTC 21/22Calbiochem 341 649整联蛋白α3β1M-Kiol2玻连蛋白受体(αγβ3整联蛋白) TP36.1,BTC 41/42整联蛋白α2 Calbiochem 407277整联蛋白α3 Calbiochem 407278整联蛋白α4 Calbiochem 407279整联蛋白α5 Calbiochem 407280整联蛋白αV Calbiochem 407281整联蛋白β2 Calbiochem 407283整联蛋白β4 Calbiochem 407284Gpllβlllα8221ICAM-I(CD54) C57-60,CL203.4,RR 1/1VCAM-1Genzyme 2137-01ELAM-1Genzyme 2138-01E-选择蛋白BBA 8P-选择蛋白/GMP-140BTC 71/72LFA-3(CD58) TS 2/9CD44 BM 1441 272,25.32CD44-变种 11.24,11.31,11.10N-CAM(CD56) MOC-1H-CAM BCA9L-CAM BM 1441 892N-CAM TURA-27MACAM-1 NRI-M9E-钙粘着蛋白 BTC 111,HECD-1,6F9P-钙粘着蛋白 NCC-CAD-299腱生蛋白 BM 1452 193,Calbiochem 580664血小板反应蛋白受体(CD36) BM 1441 264VLA-2 A1.43
表1-续相关抗原和相关抗原结合的抗体实例抗原 单克隆抗体层粘连蛋白受体HNK-1表位 HNK-1糖抗原T-抗原 HH8,HT-8Tn-抗原TKH6,BaGs2Sialyl Tn TKH-2胃肠癌相关的抗原(MW 200kD) CA 19-9癌症相关的抗原 C-50LeyMLuC1,BR96,BR64di-Lez,tri-Le1B3二聚Le1epitope NCC-ST-421H-type 2 B1CA 15-3 epitopeCA15-3CEAI-9,I-1 4,I-27,II-10,I-46,Calbiochem 250729Galb 1-4 GlcNac(nL4,6,8) 1B2H-II BE2A type 3 HH8乳-N-糖脂(fucopentanose)III(CD15) PM-81糖脂GD3ME 36.1,R24GD2ME 36.1,3F8,14.18Gb338-13GM3M2590GM2MKI-8,MKI-16,FucGM11D7,F12生长因子受体EGF受体425.3,2.E9,225c-erbB-2(HER2) BM 1378 988,800 E6PDGFα受体 Genzyme 1264-00PDGFβ受体 Sigma P 7679运铁蛋白受体 OKT 9,D65.30
表1-续相关抗原和相关抗原结合的抗体实例抗原单克隆抗体NGF受体 BM 1198 637IL-2受体BM 1295 802,BM 1361 937c-试剂盒BM 428 616,14 A3,ID9.3D6TNF-受体GEnzyme 1995-01,PAL-M1NGF受体黑素瘤抗原高分子量抗原(HMW 250.000) 9.2.27,NrML5,225.28,763.74,TP41.2,IND1MW 105黑素瘤相关的糖蛋白ME20100kDa抗原(黑素瘤/癌) 376.96gp 113 MUC 18p95-100 PAL-M2Sp7515.75gr 100-107 NKI-berebMAA K9.2MW 125kD(gp125) Mab 436肉瘤抗原TP-1和TP-3表位 TP-1,TP-3MW 200kD29-13,29.2MW 160kD35-16,30-40癌标志物MOC-31表位(簇2上皮抗原) MOC-31,NrLu10MUC-1抗原(例如DF3-表位(gp290 kD)) MUC-1,DF3,BCP-7到-10MUC-2和MUC-3PMH1LUBCRU-G7表位(gp 230kD) LUBCRU-G7前列腺特异性抗原BM 1276 972前列腺癌抗原E4-SF前列腺高分子抗原MW>400kD PD41多态上皮粘蛋白 BM-2,BM-7,12-H-12前列腺特异性膜抗原(Cyt-356) 7E11-C5人奶脂肪球蛋白 Immunotech HMFG-1,27.142kD乳腺癌表位 B/9189
表1-续相关抗原和相关抗原结合的抗体实例抗原 单克隆抗体MW>106粘蛋白 TAG-72,CC-49,CC-83卵巢癌OC125表位(MW 750kD) OC125胰腺HMW糖蛋白 DU-PAN-2结肠Co17-1A(MW 37000) 17-1AG9-表位(结肠癌)G9人结肠硫粘蛋白 91.9HMW 300kD胰腺抗原 MUSE11GA 733.2 GA733,KS1.4TAG 72 B72.3,CC49,CC83未定义的 Oat1,SM1胰腺癌相关的 MUSE 11胰腺癌 CC49前列腺腺癌抗原 PD 41肺的腺癌 AF-10gp 160肺癌抗原(癌Res.48,2979,1988) anti gp160MW 92kD膀胱癌抗原 3G2-C6MW 600kD膀胱癌抗原 C3膀胱癌抗原(癌Res.49,6720,1989) AN43,BB369CAR-3表位MW>400kD AR-3MAM-6表位(C15.3) 115D8高分子量卵巢癌抗原 OVX1,OVX2粘蛋白表位la3 Ia3肝细胞癌抗原MW 900kD KM-2Hepernal表位(gp43)肝细胞癌抗原 Hepema-1含有N-乙醇神经氨酸的O-连接糖蛋白 3E1.2MW 48kD结肠直肠癌抗原 D612MW 71kD乳腺癌抗原 BCA 22716.88表位(结肠直肠癌抗原) 16.88CAK1(卵巢癌) K1结肠特异性抗原 Mu-1,Mu-2肺癌抗原 DF-L1,DF-L2膀胱癌抗原 T16
表1-续相关抗原和相关抗原结合的抗体实例抗原 单克隆抗体gp85膀胱癌抗原 T43gp25膀胱癌抗原 T138成神经细胞瘤抗原成神经细胞瘤相关的,例如UJ13A表位 UJ13A神经胶质瘤抗原Mel-14表位 Mel-14头颈癌抗原MW 18-22kD抗原 E48HLA-抗原HLA Class 1TP25.99HLA-A VF19LL67HLA-B H2-149.1HLA-A2 KS1HLA-ABCW6.32HLA-DR,DQ,DP Q5/13,B8.11.2β2-微球蛋白 NAMB-细胞程序死亡受体Apo-1表位 Apo-1多种血纤维蛋白溶酶原激活剂抗原和受体 兔多克隆糖蛋白 C219,MRK16,JSB-1,265/F4组织蛋白酶DCIS-Diagnostici,Italy胆汁上皮细胞 HEA 125神经腺抗原(CD63) ME491,NKI-C3,LS62CD9TAPA-1,R2,SM23全-人细胞抗原 pan-H
在本发明MOBDS方面的另一实施例中,利用二维或双参数免疫磁性细胞分离法(诸如以下文献中所描述的方法Partington等人,ANovel Method of Cell Separation Based on Dual ParameterImmunomagnetic Cell Selection,J.Of Immuno.Mthds.,223195-205,1999,该文献作为参考全部并入本文),可分离靶细胞。在该实施例中,在生物盘的射流回路内用生物磁性颗粒对靶细胞进行标记和分离。该方法的优点是,商业上购得的免疫磁性珠和/或颗粒之间的尺寸差异导致它们在多种强度磁场的吸引特性上的不同。例如,分离的第一步骤是,利用50nm珠对细胞进行正选择。然后,利用更大的珠(诸如M280或M450 Dynabeads)而无需以前的珠去除步骤,对第一步骤中分离的仍然用50nm珠形成花结的细胞进行进一步的正或负分离。调整第二分离步骤中的磁场强度,以使MO盘磁畴上产生的磁力足以仅仅吸引更大的Dynabeads,而不吸引50nm珠。该双参数实施例因此提供了用于分离和纯化感兴趣细胞的更佳方法。
在本发明MOBDS方面的又一实施例中,靶细胞可以用磁性颗粒、通过冲击转移来进行标记和标志。弹道转移技术利用冷气冲击波来加速通过机械力将物质载入细胞的微粒。本发明的这个实施例涉及一种能够使所提供的靶细胞容易磁性分离并因此通过将细胞保留在强磁场中而对它们进行分离的方法。然后,利用MOBDS对标志细胞进行捕获、分析、操纵和定量。有关用磁性颗粒冲击标志细胞的进一步细节诸如公开在Wittig的第6,348,338号美国专利中,该专利作为参考全部并入本文。
本发明的再一实施例是,利用MOBDS,通过免疫磁性细胞筛选来进行细胞分析、操纵和定量(如上所述),并在MO生物盘上的多种预定结构中排列靶细胞,例如将细胞排列在MO生物盘的轨道上。在该实施例中,将细胞磁性分类和排列在MO生物盘上,并利用MO盘驱动器和相关软件进行分析。用于免疫磁性细胞分析的相关方法和系统诸如公开在以下文献中Tibbe等人,Cytometry,4331-37,2001,以及Tibbe等人,Cytometry,47163-172,2002,这些文献作为参考全部并入本文。已有技术的这些方法要求包括荧光检测的专门设备和系统。本发明避免来这些专门设备的需要,而利用标准的MO生物盘驱动器来实施免疫磁性细胞选择、操纵、检测、定量和分析(如上所述)。
MOBDS生物磁性测定的分子应用被分离的细胞可表征为特定生化和生物特性的存在。尤其重要的是,在分子生物学研究中使用这样的细胞。与上述已有技术的方法相反,本方法在不进行磁性颗粒-靶细胞键合裂解的情况下允许靶细胞研究和生长。为了若干目的,有趣的是,检查DNA、mRNA和蛋白质水平上的靶细胞纯亚群中的、肿瘤活组织检查切片中以及血液、骨髓和其它体液(例如尿液、脑脊髓液、精液、淋巴)内存在的肿瘤细胞中的、或来自正常组织和器官(例如肝、淋巴结、脾、肺、胰腺、骨组织、中枢神经系统、前列腺、皮肤和粘膜)的、以及细胞毒性测定的其它领域中的特异性基因。
利用已有技术的方法,在Southern、Northern和Western条带上获得的信号表示活组织检查切片中的正常细胞和肿瘤细胞。如果用肿瘤材料首先制备单细胞悬浮液,然后用本发明的MOBDS正免疫磁性检测和分离肿瘤细胞,那么对该材料进行的任何基因研究都仅仅表示靶细胞。这还涉及诸如肿瘤组织(包括骨髓、外周血、胸膜和腹膜流出物以及其它体液例如尿液、脑脊髓液、精液和淋巴))内存在的肿瘤细胞。当涉及聚合酶链式反应(PCR)和微阵列方法的研究针对用本发明的方法和装置获得的纯靶细胞群实施时,还将获得增大的灵敏度和可靠性。
MO生物盘系统(MOBDS)上的神经生物测定在本发明MOBDS方面的又一实施例中,在MO生物盘的生物基质和溶液中分离并刺激神经元。可以用为细胞提供固态支持同时又允许基本的营养物和气体通过以使细胞生存的胶体和任何生物相容性材料来形成生物基质。生物基质还允许细胞及其组成例如轴突和树突在基质内生长和移动。可利用由MO驱动器产生的MO生物盘上的磁场,来控制轴突、树突和细胞的生长方向和速率。在该实施例中,营养物诸如可配有被吸入或活性并入神经元及其轴突的磁性纳米颗粒或珠。然后使这些神经元阵列在MO生物盘的生物基质内的预定部位对齐。然后使排列好的神经元或轴突暴露到所取代的磁场中,由此沿桥接阵列中神经元之间的缝隙的所需轴,物理移动磁性颗粒承载的神经元及其轴突。由于MO盘上产生的磁域相当小并且能够精确地控制,因此采用本发明的磁性引导的神经突生长实施例,相比于已有技术的方法能够更精确地控制神经突的生长。磁性引导的体外神经突生长和体内神经生长在本领域内是公知的(Moorman等人,Brain Res.Bulletin,35(5-6)419-422,1994;Dubey等人,Exp.Neuro.,158338-350,1999;Macias等人,Bioelectromagnetics,21272-286,2000;Shah等人,Bioelectromagnetics,22267-271,2001;以及Halpern的U.S.6,132,360,这些文献作为参考全部并入本文)。本发明的这个实施例旨在利用MOBDS来研究体外神经突生长以及在产生体外神经网络时的精确磁性控制。
现在参照图76,该图是具有射流回路的一部分磁性光学生物盘的顶视图,其中射流回路包括入口152、混合室164、分离和分析室300和测试室302。该磁性光学生物盘可包括以上结合图3A-3C、4A-4C、33A-33C、35、36A-36C和37所述的生物盘的一个和多个部件。
接下来参照图77A-77E,这是表示在图76中所示的射流回路内分离和测试细胞的方法的平面图。在本发明的这个具体方法中,利用吸移管214、通过入口152将测试细胞306装入混合室164(图77A)。然后,利用吸移管214将生物磁性颗粒308装入混合室164。生物磁性颗粒包被有特异于样品中感兴趣细胞上的表面标志物的结合剂。结合剂可包括诸如以上表1中所概括的抗体。随后,使细胞306与生物磁性颗粒温育足够的时间,以便通过结合剂与细胞表面标志物的结合,而使生物磁性颗粒308结合到感兴趣的细胞上。温育之后,感兴趣的细胞和靶细胞于是用生物磁性颗粒来标记,由此生成标记细胞310。这使得标记细胞310易被磁性操纵。在利用磁性光学驱动器温育之前和之后,还可以在分离室300内形成磁畴和磁域246。以上结合图37描述来有关在磁性光学生物盘上形成磁畴246的细节。一旦温育完成,就利用磁性光学驱动器,以预定的速度和期间旋转盘,从而将含有未标记细胞306、生物磁性颗粒308和标记细胞310的悬浮液移入分离室300(图77B)。当悬浮液通过分离室时,标记细胞310和游离和未附着的生物磁性颗粒308就磁性结合到分离室300内的磁畴243上。然后以另一预定的速度和期间旋转盘,以便将悬浮液中未结合及未标记的细胞移到分离室300的底部(图77C)。随后顺序擦除和形成磁畴246,以便有选择地释放磁性结合的标记细胞310(图77D)。然后通过顺序擦除和形成磁畴246,而将标记细胞310磁性引导到一个和多个测试室302内(图77E)。测试室302可以预装有含有试剂的试液,该试剂包括但不限于,化学治疗剂、抗生素和抗-病毒药物。然后使标记细胞310与试剂一起温育。随后使电磁辐射束扫过测试室302,以便定量活细胞和凋亡(apototic)细胞,借此确定细胞暴露给试剂时的灵敏度。利用膜生泡、细胞收缩、蛋白质碎片、染色质浓缩和DNA降解来表征过敏细胞,所有这些方法都改变了细胞的光学特性,从而能够利用光学盘读数器将其与非过敏细胞区分开。
本发明的其它实施方式本发明或其不同方面可容易地实施和适用于以下共同转让和共同待审的美国专利申请公开的许多盘、测定和系统中1999年8月23日提交的题为“用于分析从光学盘中获得的操作和非操作数据的方法和装置”(Methods and Apparatus for Analyzing Operational andNon-poerational Data Acquired from Optical Discs)的第09/378,878号美国专利申请;1999年8月23日提交的题为“利用物理同步标志物的光学盘数据获取方法和装置”(Methods and Apparatus for OpticalDisc Data Acquisition Using Physical Synchronization Markers)的第60/150,288号美国临时申请;1999年10月26日提交的题为“具有可同时记录的分析材料的可跟踪光学盘”(Trackable Optical Disca withCincurrently Readable Analyte Material)的第09/421,870号美国专利申请;2000年8月21日提交的题为“利用物理同步标志物的光学盘数据获取方法和装置“(Methods and Apparatus for Optical Disc DataAcquisition Using Physical Synchronization Markers)的第09/643,106号美国专利申请;2001年11月15日提交的题为“具有反射层的光学生物盘”(Optical Bio-discs with Reflective Layers)的第09/999,274号美国专利申请;2001年11月20日提交的题为“用光学生物盘检测和定量淋巴细胞的方法和装置”(Methods And Apparatus forDetecting and Quantifying Lymphocytes With Optical Biodiscs)的第09/988,728号美国专利申请;2001年11月19日提交的题为“利用光学生物盘的血液分型方法和装置”(Methods and Apparatus for BloodTyping with Optical Bio-discs)的第09/988,850号美国专利申请;2001年11月20日提交的题为“用于分离凝集物和分散颗粒的装置和方法”(Apparatus and Methods for Separating Agglutinants and DisperseParticles)的第09/989,684号美国专利申请;2001年11月27日提交的题为“包括光学生物盘及其相关方法的双珠测定”(Dual BeadAssays Including Optical Biodiscs and Methods Relating Thereto)的第09/997,741号美国专利申请;2001年11月30日提交的题为“用于分离颗粒悬浮液中的组分的装置和方法”(Apparatus and Methods forSeparating Components of Particulate Suspension)的第09/997,895号美国专利申请;2001年12月7日提交的题为“用于测定分析物的光学盘”(Optical Discs for Measuring Analytes)的第10/005,313号美国专利申请;2001年12月10日提交的题为“利用光学盘和光学盘读数器检测分析物的方法”(Methods for Detecting Analytes Using OpticalDiscs and Optical Disc Readers)的第10/006,371号美国专利申请;2001年12月10日提交的题为“用于检测分析物的多个数据层光学盘”(Multiple Data Layer Optical Discs for Detecting Analytes)的第10/006,620号美国专利申请;2001年12月10日提交的题为“用于实施测定的光学盘组件”(Optical Disc Assemblies for Performing Assays)的第10/006,619号美国专利申请;2001年12月14日提交的题为“用于基于盘的实验室的检测系统以及包括该系统的改进的光学生物盘”(Dtection System for Disc-based Laboratory and Improved OpticalBio-Disc Including Same)的第10/020,140号美国专利申请;2001年12月21日提交的题为“用于固定DNA捕获探针的表面组件以及包括光学生物盘和相关方法的基于珠的测定”(Surface Assembly forImmobilizing DNACapture Probes and Bead-Based Assay IncludingOptical Bio-Discs and Methods Relating Thereto)的第10/035,836号美国专利申请;2002年1月4日提交的题为“包括用于提高特异性的共价键和相关光学生物盘的双珠测定”(Dual Bead Assays IncludingCovalent Linkanges for Improved Specificity and Related OpticalAnalysis Discs)的第10/038,297号美国专利申请;2002年1月10日提交的题为“包括生物和医用成像的相关方法的光学盘分析系统”(Optical Disc Analysis System Including Related Methods forBiologicai and Medical Imaging)的第10/043,688号美国专利申请;2002年1月14日提交的题为“包括相关的信号处理方法和软件的光学盘分析系统”(Optical Disc Analysis System including Related SignalProcessing Mehtods and Software)的第60/348,767号美国临时申请;2002年2月26日提交的题为“包括相关的光学生物盘和盘驱动系统的用于将DNA结合到固相上的方法”(Methods for DNA Conjugationonto Solid Phase Including Related Optical Biodiscs and Disc DriveSystems)的第10/086,941号美国专利申请;2002年3月12日提交的题为“包括白细胞的分类细胞计数的方法以及光学生物盘在实施该方法中的用途”(Methods for Differential Cell Counts IncludingLeukocytes and Use of Optical Bio-Disc for Performing Same)的第60/363,949号美国临时申请;2002年5月24日提交的题为“用于检测和定量细胞群的方法和装置以及光学生物盘在实施该方法中的用途”(Mehtods and Apparatus for Use in Detection and Quantitation ofCello Populations and Use of Optical Bio-Disc for Performing Same)的第60/382,944号美国临时申请;以及2002年5月30日提交的题为“用于测定样品中的细胞和颗粒浓度的光学盘系统及其相关方法”(Optical Disc Systems for Determining the Concentration of Cells orParticles in A Sample and Methods Relating Thereto)的第60/384,205号美国临时申请。所有这些申请都作为参考全部并入本文。因此它们就如同完全在本文中重复一样,提供背景技术和公开内容作为本文的支持。
实验细节虽然已经参照附图详细描述了本发明,但是以下示出了本发明的某些实例和进一步的描述。
例1在实施该例的双珠测定中采用图12A中证实的二步杂交法。
A.双珠测定在该例中,完成双珠测定,以检测存在于男性而不是女性中的基因序列DYS。该测定包括包被有共价附着捕获探针的3μm磁性捕获珠;包被有针对DYS基因和含有DYS序列的靶DNA分子的共价附着序列的2.1μm荧光报道珠。靶DNA是合成的80个寡核苷酸序列。捕获探针和报道探针的长度为40个核苷酸,并与DYS序列互补但彼此不互补。
用于制备测定的特定方法涉及在室温下将1×107个捕获珠和2×107个报道珠在100μg/ml鲑精DNA中处理1小时。该预处理在靶DNA缺乏时将减小捕获珠与报道珠之间的非特异性结合(如图38所示)。通过除去上清液而磁性浓缩捕获珠。将100μl的杂交缓冲剂(0.2MNaCl、1mM EDTA、10mM MgCl2、pH7.5的50mM Tris HCl和5XDenhart混合物、10μg/ml的变性鲑精DNA)加入到捕获珠中并使珠再悬浮。加入浓度在1、10、100、1000毫微微摩尔范围内的不同浓度的靶DNA,同时在37摄氏度下混合2小时。将珠磁性浓缩并除去含有靶DNA的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris HCl、0.1%SDS、0.05%Tween、0.25%NFDM、10mMEDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
然后,将100μl杂交缓冲剂(0.2M NaCl、1mM EDTA、10mMMgCl2、pH7.5的50mM Tris-HCl和5X Denhart混合物、10μg/ml的变性鲑精DNA)中的2×107个报道珠加入到清洗过的捕获珠中。使珠再悬浮,并且于37摄氏度下再温育2小时,同时进行混合。温育之后,将捕获珠磁性浓缩,并除去含有未结合的报道珠的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris-HCl、0.1%SDS、0.05%Tween、0.25%NFDM、10mM EDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
最终的洗涤之后,将珠再悬浮到20μl的结合缓冲剂(50mM Tris-HCl、200mM NaCl、10mM MgCl2、0.05%Tween 20、1%BSA)中。然后,将其中10μl装到在本例以下所述的部分B中制备的盘上。
B.盘的制备用马来酐聚苯乙烯包被金盘。将与报道探针(或捕获剂)互补的胺DNA序列固定到盘的离散反应区上。在注射样品之前,用封闭缓冲剂(50mM Tris、200mM NaCl、10mM MgCl2、0.05%Tween 20、1%BSA、1%蔗糖)封闭通道,以避免双珠复合物与盘表面的非共价结合。表示出本发明所用的捕获剂220、捕获区170和射流回路的盘组件的透视图在图25A-25D中详细示出。或者是,如果报道珠包被有链霉亲和素,则捕获区就用通过被动吸收而固定到盘(用聚苯乙烯预处理)上的捕获剂(例如BSA)来制备。表明生物素捕获剂的使用的盘组件的透视图在图26A-26D中示出。用于将珠如此锚接到盘上的多种方法还在图15A-15B、17、19A-19C和23A-23B中示出。
C.盘上的双珠复合物结构的捕获将10μl如以上部分A中所述那样制备的双珠混合物装入到盘室内,并将注射口密封。为了使报道珠上的报道探针与捕获剂之间容易杂交,使盘低速(小于800rpm)离心高达15分钟。以4X(约1600rpm)的速度将盘在CD读数器中读取5分钟。在这些条件下,将未结合的磁性捕获珠从捕获区上离心掉。而双珠复合物中的磁性捕获珠仍然与捕获区中的报道珠保持结合。利用盘对双珠复合物进行的捕获和分析中所涉及的步骤在图25A-25D、26A-26D和27A-27D中详细地示出。
D.双珠复合物结构的定量由于每种珠都具有与众不同的信号特征,因此通过对捕获磁性珠的数目和报道珠的数目进行定量,可计数靶DNA的量。
例2以下实例涉及双珠倍增以及相关的测定(正如以上参照例如图32所述的)。
A.双珠测定的倍增在该例中,完成双珠的测定,以便同时检测两种DNA靶物。该测定包括3μm的磁性捕获珠。用与DNA靶物1互补的捕获探针1来包被一群磁性捕获珠,而用与DNA靶物2互补的捕获探针2来包被另一群磁性捕获珠。或者是,可采用两种不同的磁性捕获珠。在测定中有两种明显不同的报道珠。这两种报道珠的化学组成(例如硅石和聚苯乙烯)和/和尺寸不同。图32中描绘出可用于倍增双珠测定形式中的不同组合形式的珠。一种报道珠包被有与DNA靶物1互补的报道探针1。另一种报道珠包被有与DNA靶物2互补的报道探针2。而捕获探针和报道探针又与相应的靶物互补但彼此不互补。
用于制备双珠测定倍增的特定方法涉及在室温下将1×107个捕获珠和2×107个报道珠在100μg/ml鲑精DNA中处理1小时。该预处理在靶DNA缺乏时将减小捕获珠与报道珠之间的非共价结合。通过除去上清液而磁性浓缩捕获珠。加入100μl的杂交缓冲剂(0.2M NaCl、1mM EDTA、10mM MgCl2、pH7.5的50mM Tris-HCl和5X Denhart混合物、10μg/ml的变性鲑精DNA)并使珠再悬浮。将浓度在1、10、100、1000毫微微摩尔范围内的不同浓度的靶DNA加入到捕获珠悬浮液中。将悬浮液在37摄氏度下温育2小时,同时进行混合。将珠磁性浓缩并除去含有靶DNA的上清液。加入100μl的洗涤缓冲剂(145mMNaCl、pH7.5的50mM Tris-HCl、0.1%SDS、0.05%Tween、0.25%NFDM、10mM EDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
然后,将100μl杂交缓冲剂(0.2M NaCl、1mM EDTA、10mMMgCl2、pH7.5的50mM Tris-HCl和5X Denhart混合物、10μm/ml的变性鲑精DNA)中的2×107个报道珠加入到清洗过的捕获珠中。使珠再悬浮并于37摄氏度下再温育2小时,同时。温育之后,将捕获珠磁性浓缩,并除去含有未结合的报道珠的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris-HCl、0.1%SDS、0.05%Tween、0.25%NFDM、10mM EDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
最终的洗涤之后,将珠再悬浮到20μl的结合缓冲剂(50mM Tris-HCl、200mM NaCl、10mM MgCl2、0.05%Tween 20、1%BSA)中。然后,将其中10μl该溶液装到如本例以下部分B中所述那样制备的盘上。
B.盘的制备用马来酐聚苯乙烯包被金盘(如上所述)。将针对两种报道珠产生不同的反应区。每个反应区含有与相应的报道探针(或捕获剂)互补的胺DNA序列。在注射样品之前,用封闭缓冲剂(50mM Tris、200mM NaCl、10mM MgCl2、0.05%Tween 20、1%BSA、1%蔗糖)封闭通道,以避免双珠复合物与盘表面的非共价结合。或者是,利用磁性光学盘及驱动器,可检测倍增双珠测定形式中所用的磁珠。用明显分隔的磁性捕获区来替换磁盘形式中的化学反应区(如结合图37所述,参见下面的例5和6)。
C.双珠复合物结构在盘上的捕获将10μl如以上部分A中所述那样制备的双珠混合物装入到盘室内,并将注射口密封。为了使报道珠上的报道探针与捕获剂之间容易杂交,使盘低速(小于800rpm)离心高达15分钟。以4X(约1600rpm)的速度将盘在CD读数器中读取5分钟。在这些条件下,将未结合的磁性捕获珠离心到通道的底部。报道珠通过报道探针与其互补剂之间的杂交,结合到捕获区上。
D.双珠复合物结构的定量通过对相应反应区上的相应报道珠的数目进行定量,可计数所捕获的靶DNA1和2的量。
例3双珠测定灵敏度取决于将双珠连接在一起的靶物介导的键的强度。通过氢键将双珠连接在一起。如果连接双珠的键是共价的,键的强度就明显增大。为了此目的,在靶物捕获之后,完成连接反应,以便在捕获探针与报道探针之间产生共价键(如以上的图38所示)。报道探针的5’端携带连接反应中所需的磷酸基团。
连接实验该测定包括包被有共价附着的捕获探针的3μm磁性捕获珠(Spherotech,Libertyville,IL);包被有共价附着的、特异于DYS基因和含有DYS序列的靶DNA的序列的2.1μm荧光报道珠(Molecular probes,Eugene,OR)。靶DNA具有合成的80个寡核苷酸的长度。捕获探针和报道探针具有40个核苷酸的长度,并且与DYS互补但彼此不互补。
用于制备测定的特定方法涉及在室温下将1×107个捕获珠和2×107个报道珠在100μg/ml鲑精DNA中处理1小时。该预处理在靶DNA缺乏时将减小捕获珠与报道珠之间的非特异性结合。通过除去上清液而磁性浓缩捕获珠。然后加入100μl的杂交缓冲剂(0.2M NaCl、1mM EDTA、10mM MgCl2、pH7.5的50mM Tris-HCl和5XDenhart混合物、10μg/ml的变性鲑精DNA)并使珠再悬浮。将浓度在1、10、100和1000毫微微摩尔范围内的不同浓度的靶DNA加入到捕获珠悬浮液中。将珠悬浮液在37摄氏度下温育2小时,同时进行。将珠磁性浓缩并除去含有未结合的靶DNA的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris-HCl、0.1%SDS、0.05%Tween、0.25%NFDM、10mM EDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
然后,将100μl杂交缓冲剂(0.2M NaCl、1mM EDTA、10mMMgCl2、pH7.5的50mM Tris-HCl和5X Denhart混合物、10μg/ml的变性鲑精DNA)中的2×107个报道珠加入到清洗过的捕获珠中。使珠再悬浮并于37摄氏度下再温育2小时,同时进行混合。温育之后,将捕获珠磁性浓缩,并除去含有未结合的报道珠的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris-HCl、0.1%SDS、0.05%Tween、0.25%NFDM、10mM EDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
最终的洗涤之后,将珠再悬浮到20μl的结合缓冲剂(50mM Tris-HCl、200mM NaCl、10mM MgCl2、0.05%T-20、1%BSA)中。然后,将其中10μl装到如以上例2的部分B中所述那样制备的盘上。
A.捕获珠的制备用于制备上述测定的特定方法涉及在室温下将1×107个捕获珠和2×107个报道珠在100μg/ml鲑精DNA中处理1小时。该预处理在靶DNA缺乏时将减小捕获珠与报道珠之间的非特异性结合。通过除去上清液而磁性浓缩捕获珠。然后加入100μl的杂交缓冲剂(0.2M NaCl、1mM EDTA、10mM MgCl2、pH7.5的50mM Tris-HCl和5XDenhart混合物、10μg/ml的变性鲑精DNA)并使珠再悬浮。将浓度在1、10、100和1000毫微微摩尔范围内的不同浓度的靶DNA加入到捕获珠悬浮液中。将珠悬浮液在37摄氏度下温育2小时,同时进行混合。将珠磁性浓缩并除去含有未结合的靶DNA的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris-HCl、0.1%SDS、0.05%Tween、0.25%NFDM、10mM EDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
B.杂交到靶DNA和桥接序列上将浓度为0摩尔、1E-14、1E-13、1E-12和1E-11摩尔的不同浓度的靶DNA加入到捕获珠悬浮液中。使珠悬浮液在37摄氏度下温育2小时,同时进行混合。将珠磁性浓缩并除去含有未结合的靶DNA的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM、10mM EDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。将捕获珠再悬浮到50μl的40mM NaCl溶液中。
C.杂交到报道探针和报道珠上然后,将100μl杂交缓冲剂(0.2M NaCl、1mM EDTA、10mMMgCl2、pH7.5的50mM Tris-HCl和5X Denhart混合物、10μg/ml的变性鲑精DNA)中的2×107个报道珠和100皮摩尔的报道探针加入到清洗过的捕获珠中。使珠再悬浮并于37摄氏度下再温育2小时,同时进行混合。温育之后,将捕获珠磁性浓缩,并除去含有未结合的报道珠和未结合的报道探针的上清液。加入100μl的洗涤缓冲剂(145mMNaCl、pH7.5的50mM Tris-HCl、0.1%SDS、0.05%Tween、0.25%NFDM、10mM EDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
D.连接反应将10μL的10X连接缓冲剂(最终浓度为pH7.6的66mM Tris、6.6mM MgCl2、100mM DTT、66μM ATP)和4个单位的连接酶(浓度为10个单位/μL)加入到珠悬浮液中。在室温下使连接反应进行2个小时。用洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.2%SDS、0.05%Tween20、0.25%NFDM)将珠悬浮液洗涤3次。在对照管内,不加入连接酶。
E.酶测定报道探针的量与所捕获的靶DNA的量直接相关。因此,定量所捕获的靶物的一种途径是,定量报道探针的量。该测定的基本原理是,使报道探针生物素化。因此,利用酶测定可测定报道探针的浓度,其中酶链霉亲和素-碱性磷酸酶结合到生物素部分上。利用碱性磷酸酶的发色底物即p-硝基苯磷酸盐作为报道剂。该无色底物被碱性磷酸酶水解成在405nm具有吸收度的黄色产物。用100μl的CBD(2%BSA、pH7.5的50mM Tris-HCl、145mM NaCl、1.0mM MgCl2、0.1mMZnCl2、0.05%NaN3)洗涤珠,并使珠与100μl的250ng/ml链霉亲和素-磷酸酶于37摄氏度下温育1小时。用洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris-HCl、0.05%Tween)将珠清洗3次,以除去未结合的S-AP。使珠与100μl的3.7mg/ml(pH10的0.1M Tris、2mMMgCl2)S-AP底物即p-硝基苯磷酸盐于室温下温育5-15分钟。在405nm处监测上清液的颜色变化。颜色的强度与生物素化报道探针的量直接相关,并因此与所捕获的靶物的量直接相关。
F.双珠测定报道珠的量与所捕获的靶物的量直接相关。因此,定量所捕获的靶物的一种途径是,定量报道珠的量。杂交和连接反应之后,将珠再悬浮到200μL的PBS中,并在Ex=500nm,Slit=2.0;Em=530nm,Slit=2.0时利用荧光计Fluoromax-2来定量报道珠的量。或者是,利用生物CD读数器(如上所述)来定量荧光报道珠的数目。
例4在双珠测定中使用可裂解的间隔基能够增大测定的特异性。以下实例涉及采用可裂解间隔基的双珠测定。
A.捕获探针和报道探针的设计捕获探针和报道探针的设计对于采用可裂解间隔基的双珠测定的成功是严格的。捕获探针和报道探针含有3个分支(如以上附图中所示)。报道和捕获探针的一个分支参与靶物的捕获。将几个接头(PEG基团)引入捕获和报道探针中,以使探针的卷曲最小和增大靶物捕获的效率。捕获和报道探针的第二个分支含有由端部的生物素跟随的3个接头。还可采用其它官能团例如羰基或胺。生物素参与捕获或报道探针与固相的结合。捕获探针的第三个分支杂交到报道探针上。
当限制酶消化是裂解捕获和报道探针的选择方法时,将限制位点引入探针序列中。限制位点的选择是重要的,因为其是独一的(不是共同的),从而仅有连接捕获和报道探针(无靶DNA)的序列被裂解。在靶物存在时捕获和报道探针的形成在以上的图42C中示出。
当报道探针的取代是裂解捕获和报道探针的选择方法时,参与和捕获探针的杂交的报道探针上的序列相当短(约10个核苷酸)。其余的序列不与捕获探针互补,因此对于取代探针进行杂交是有用的。这通常在以上的图43A和43B中示出,以表明捕获探针(探针1)与报道探针(探针2B)的杂交。在该例中,利用Biosource of Camarillo,CA来合成所用的探针。
B.捕获探针固定到链霉亲和素珠上1、捕获珠的制备该测定的第一步骤是,将捕获探针结合到固相上。在该例中,利用包被有来自Dynal的链霉亲和素的2.8μm磁珠作为固相。通常,每个结合中使用6.7×107个Dynal珠。将珠再悬浮到200μl的结合与洗涤缓冲剂(pH7.5的10mM Tris-HCl、1mM EDTA、2M NaCl)中。使珠磁性浓缩并除去上清液。将该洗涤过程重复两次。
2、将捕获探针结合到捕获珠上将磁珠再悬浮到400μl的结合与洗涤缓冲剂(pH7.5的10mM Tris-HCl、1mM EDTA、2M NaCl)中,以使最终浓度为5μg珠/μl。然后,将600皮摩尔的捕获探针水溶液加入到珠悬浮液中。混合物中的最终盐浓度为1M NaCl。应该注意,高浓度盐是有效结合所需的。在间歇混合下使混合物于37摄氏度下温育2-4小时。然后,将珠磁性浓缩并除去上清液。用结合与洗涤缓冲剂(pH7.5的10mM Tris-HCl、1mM EDTA、2M NaCl)将珠洗涤3次。
3、结合效率的测定在结合结合之前和之后,于260nm测定上清液的光密度,以定量所结合的捕获探针的量。通常,将超过50%的捕获探针结合到链霉亲和素珠上。探针的密度为0.5×106-1×106个探针/珠。下面的表2表示出用于测定生物素化探针与链霉亲和素包被的磁珠的结合效率的实例列表。
4、封闭珠上的剩余链霉亲和素位点使珠于旋转混合器内在400μl的含有2mg/ml生物素的PBS中温育1小时,以封闭Dynal磁珠上的所有剩余链霉亲和素位点。将磁珠用结合与洗涤缓冲剂(pH7.5的10mM Tris-HCl、1mM EDTA、2M NaCl)洗涤3次,并再悬浮到1000μl杂交缓冲剂(0.2M NaCl、10mM MgCl2、1mM EDTA、pH7.5的50mM Tris HCl)中。
表2生物素化捕获探针结合到链霉亲和素包被的磁珠上

C.捕获探针与报道探针的杂交1、杂交从1000μl的珠悬浮液中,取出400μl与含有1纳摩尔报道探针2A的400μlTE缓冲剂混合,取出400μl与含有1纳摩尔报道探针2B的400μl TE缓冲剂混合,取出200μl与作为阴性对照的200μl TE(Tris-EDTA)混合。杂交在37摄氏度下进行2小时。
2、洗涤杂交之后,用洗涤缓冲剂(pH7.5的50mM Tris、0.05%Tween、145mM NaCl)洗涤3次。
3、杂交效率的测定从800μl中取出50μl进行杂交效率的测定。该测定的基本原理是,使报道探针2A和2B生物素化。因此,利用酶测定可测定这些报道探针的浓度,其中酶链霉亲和素-碱性磷酸酶结合到生物素部分上。利用碱性磷酸酶的发色底物即p-硝基苯磷酸盐作为报道剂。该无色底物被碱性磷酸酶水解成在405nm具有吸收度的黄色产物。用100μl的CDB(2%BSA、pH7.5的50mM Tris-HCl、145mMNaCl、1.0mM MgCl2、0.1mM ZnCl2、0.05%NaN3)洗涤珠,并使珠与100μl的250ng/ml链霉亲和素-磷酸酶于37摄氏度下温育1小时。用洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.05%Tween)将珠清洗3次,以除去未结合的S-AP。使珠与100μl的3.7mg/ml(pH10的0.1M Tris、2mM MgCl2)S-AP底物即p-硝基苯磷酸盐于37摄氏度下温育5-15分钟。在405nm处监测上清液的颜色变化。颜色的强度与所杂交的生物素化报道探针2A或2B的量直接相关。
在这一点上,使报道探针通过其生物素部分附着到另一固相上。对于这种替换型双珠测定,将不同种类的链霉亲和素包被的珠(即聚苯乙烯或荧光的)加入到珠悬浮液中,从而导致双珠复合物的形成。如果固相是生物盘的表面,那么就在链霉亲和素包被的盘表面上温育捕获和报道探针的混合物。
D.探针与靶DNA的杂交1、杂交在该例中,靶DNA是单链的80mer寡核苷酸。将浓度在0、1和1000皮摩尔范围的不同浓度的靶加入到珠悬浮液中。使珠在37摄氏度下温育2小时同时进行混合。
2、洗涤将珠磁性浓缩并除去含有未结合的靶DNA的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM(Non Fat Dried Milk)、10mMEDTA),并将珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
E.通过限制酶消化和通过探针取代的靶物介导的捕获的区分1、限制酶消化被引入捕获和报道探针内的限制酶位点是NOT1。此限制酶位点是稀少的,并且在该模型系统中于任何其它位点都找不到此位点。将珠再悬浮到400μl的CDB(2%BSA、pH7.5的50mM Tris-HCl、145mM NaCl、1.0mM MgCl2、0.1mM ZnCl2、0.05%NaN3)中。将珠悬浮液等分到7个管内,其中1个是对照管,6个是消化管。按照制造者的说明来制备酶NOT1。然后,将5个单位的酶加入到总体积为100μl的每个消化管内。而将水加入到对照管内。使消化在37摄氏度下进行3-4小时。
2、利用取代探针来取代报道探针将珠再悬浮到400μl的CDB(2%BSA、pH7.5的50mM Tris-HCl、145mM NaCl、1.0mM MgCl2、0.1mM ZnCl2、0.05%NaN3)中。将珠悬浮液等分到2个管内,其中1个是对照管,1个是取代管。使珠在200μl的6CSSX、1mM EDTA中于55摄氏度下加热5分钟。然后,利用热处理使报道探针2B从捕获探针中熔融出来。在这一点上,将10倍过量的取代探针加入到珠悬浮液中,并使混合物于37摄氏度下温育几个小时。将水加入到对照管内。
F.由酶测定捕获的靶物的定量限制酶消化和探针取代之后剩余的报道探针的量于被捕获的靶DNA的量直接相关。因此,定量被捕获的靶物的一个途径是,定量剩余报道探针的量。该测定的基本原理是,使报道探针2A和2B生物素化。因此,利用酶测定可测定这些报道探针的浓度,其中酶链霉亲和素-碱性磷酸酶结合到生物素部分上。
利用碱性磷酸酶的发色底物即p-硝基苯磷酸盐作为报道剂。该无色底物被碱性磷酸酶水解成在405nm具有吸收度的黄色产物。用100μl的CDB(2%BSA、pH7.5的50mM Tris-HCl、145mM NaCl、1.0mM MgCl2、0.1mM ZnCl2、0.05%NaN3)洗涤珠,并使珠与100μl的250ng/ml链霉亲和素-磷酸酶于37摄氏度下温育1小时。用洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.05%Tween)将珠清洗3次,以除去未结合的S-AP。使珠与100μl的3.7mg/ml(pH10的0.1M Tris、2mM MgCl2)S-AP底物即p-硝基苯磷酸盐于室温下温育5-15分钟。在405nm处监测上清液的颜色变化。颜色的强度与所杂交的生物素化报道探针2A或2B的量直接相关。
G.由双珠测定捕获的靶物的定量在将报道探针固定在另一固相(例如荧光和聚苯乙烯的链霉亲和素包被的珠)的情况中,利用双珠测定来定量被捕获的靶物的量。由于每种珠具有与众不同的信号特征,因此可利用荧光计(对于荧光珠而言)和利用生物CD读数器来计数限制酶消化或探针取代之后剩余的报道珠的数目。
例5下例表示出在磁性可写入和会擦除分析盘(例如结合图37所述的磁性光学生物盘110)上进行的双珠测定。
在该例中,完成双珠测定,以检测存在于男性而不是女性中的基因序列DYS。该测定包括包被有共价附着的转运探针的3μm磁性捕获珠(Spherotech,Libertyville,IL);包被有针对DYS基因的共价附着序列的2.1μm荧光报道珠(Molecular Probes,Eugene,OR);和含有DYS序列的靶DNA分子。靶DNA具有合成的80个寡核苷酸的长度。捕获探针和报道探针的长度为40个寡核苷酸,并与DYS序列互补但彼此不互补。
用于制备测定的特定方法涉及在室温下将1×107个捕获珠和2×107个报道珠在100μg/ml鲑精DNA中室温下处理1小时。该预处理在靶DNA缺乏时将减小捕获珠与报道珠之间的非特异性结合。
用鲑精DNA预处理之后,通过注射口将捕获珠装到MO生物盘内。MO生物盘包含用磁性光学驱动器产生的磁域。捕获珠于是被滞留在MO生物盘上的特定磁域内。
然后,通过注射口,将200μl杂交缓冲剂(0.2M NaCl、1mMEDTA、10mM MgCl2、pH7.5的50mM Tris-HCl和5X Denhart混合物、10μg/ml的变性鲑精DNA)内的含有靶DNA和报道珠的样品加入到MO生物盘上。随后将注射口密封。释放磁场。在驱动器内以非常低的速度(小于800rpm)旋转盘,以便使靶DNA和报道珠容易杂交到捕获珠上。于33摄氏度恒定保持驱动器的温度。2小时的杂交之后,利用磁性光学驱动器产生磁场。在该阶段,仅有未结合或作为双珠复合物的一部分的磁性捕获珠残留在MO生物盘上。利用以上的任何机构,将未结合的靶物和报道珠引到废物室内。然后加入200μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM(Non Fat Dried Milk)、10mM EDTA)。释放磁场,并使盘低速(小于800rpm)旋转5分钟,以便消除捕获珠与报道珠之间的任何非特异性结合。然后重新施加磁场。利用以上的任何机构,将洗涤缓冲剂引到废物室内。将该洗涤过程重复两次。
在该阶段,仅有未结合或作为双珠复合物的一部分的磁性捕获珠残留下来。释放磁场,并将双珠复合物引到检测室内。然后,由于每种珠具有明显不同的信号特征(如以上的图28A、28B、29A和29B所示),因此通过定量捕获磁珠的数目和报道珠的数目,可计数所捕获的靶DNA的量。
例6在该例中,在磁性可写入和会擦除分析盘(例如结合图37所述的磁性光学生物盘110)上进行采用以上结合图32和37所述的倍增技术的双珠测定。
完成双珠的测定,以便同时检测两种或更多种DNA靶物。该测定包括3μm的磁性捕获珠(Spherotech,Libertyville,IL)。用与DNA靶物1互补的转运探针1来包被一群磁性捕获珠,而用与DNA靶物2互补的转运探针2来包被另一群磁性捕获珠。或者是,可采用两种或更多种不同的磁性捕获珠。在测定中有两种或更多种明显不同的报道珠。这些报道珠的化学组成(例如硅石和聚苯乙烯)和/和尺寸不同。一种报道珠包被有与DNA靶物1互补的报道探针1。另一种报道珠包被有与DNA靶物2互补的报道探针2。再者,转运探针和报道探针与相应的靶物互补但彼此不互补。
用于制备双珠测定倍增的特定方法涉及在室温下将1×107个捕获珠和2×107个报道珠在100μg/ml鲑精DNA中室温下处理1小时。该预处理在靶DNA缺乏时将减小捕获珠与报道珠之间的非特异性结合。
用鲑精DNA预处理之后,将捕获珠装到MO生物盘内。施加磁场,以产生用于特定捕获珠的明显不同的磁域。可以1个捕获/10μm2的密度将捕获珠滞留在MO生物盘上。可用于将珠沉积在MO生物盘上的表面积为大约3×109μm2。在给定密度下,MO生物盘对3μm珠的容量为约3×108个珠。
使含有感兴趣的靶DNA的样品与不同种类的报道珠在200μl杂交缓冲剂(0.2M NaCl、1mM EDTA、10mM MgCl2、pH7.5的50mMTris-HCl和5X Denhart混合物、10μg/ml的变性鲑精DNA)内混合,并通过注射口将其加入到MO生物盘上。随后将注射口密封。释放磁场。在驱动器内以非常低的速度(小于800rpm)旋转盘,以便使靶DNA和报道珠容易杂交到不同种类的捕获珠上。于33摄氏度下恒定保持驱动器的温度。2-3小时的杂交之后,利用磁性光学驱动器重新产生磁场。在该阶段,仅有未结合或作为双珠复合物的一部分的磁性捕获珠残留在MO生物盘上。利用上述任何机构,将未结合的靶物和报道珠引到废物室内。然后加入200μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM(Non FatDried Milk)、10mM EDTA)。释放磁场,并使盘低速(小于800rpm)旋转5分钟,以便消除捕获珠与报道珠之间的任何非特异性结合。然后重新施加磁场。利用上述任何机构,将洗涤缓冲剂引到废物室内。将该洗涤过程重复两次。
在该阶段,释放磁场,并将双珠复合物引到检测室内。然后,由于每种珠具有明显不同的信号特征(如以上的图28A、28B、29A和29B所示),因此通过定量相应的捕获磁珠和报道珠的数目,可计数不同种类的靶DNA的量。
例7实施该实验,以测定不同珠上共价结合的探针的量,从而确定哪种珠对于共价探针连接是最佳的。
A.结合在该例中评估来自Polysciences的磁珠(1-2μm)、来自Spherotech的磁珠(3μm)、来自Polysciences的荧光珠(1.8μm)和来自MolecularProbes的荧光珠(2.1μm)。每个结合反应中使用大约5×108个珠。在pH6.0的0.05M MES缓冲剂(2-N-吗啡酚醇-乙基磺酸)中将珠洗涤并再悬浮,然后通过加入0.1M的EDC(1-乙基3-3二甲基氨丙基碳二亚胺-HCl)将其活化15分钟。活化之后,用NaOH将珠溶液的pH调整到大约7.5。然后将5纳摩尔的生物素化探针加入到溶液中。使探针在旋转混合器上于室温下结合2-3小时。然后将珠磁性浓缩并收集上清液。为了估算结合到珠上的生物素化探针的量,在结合之前和之后,测定上清液的光密度(在260nm处)。
B.共价结合效率的测定在探针的共价结合效率的测定中一般使用结合有生物素化探针(如上所述)的1-5×107个珠。将这些珠在洗涤缓冲剂中洗涤3次,并再悬浮到200μl的CDB(2%BSA、50mM Tris-HCl、145mM NaCl、1mg/ml MgCl2、0.1mM ZnCl2、0.05%NaN3)中。然后将珠磁性浓缩并除去上清液。将珠再悬浮到100μl、含有550ng/ml链霉亲和素-碱性磷酸酶(S-AP)的CDB中,并于37摄氏度下温育1小时,以便有足够的时间使链霉亲和素结合到探针的生物素上。珠在与S-AP温育之后,被磁性浓缩,然后除去含有未结合的S-AP的上清液。在洗涤缓冲剂中将珠洗涤3次。其次,将100μl的对-硝基苯磷酸盐(pNPP),即浓度为3.7mg/ml(在pH10的0.1M Tris-HCl中)的碱性磷酸酶底物,以固定的时间间隔加入到珠中,以便使由于温育时间的不同而造成的变差最小。由于颜色变化的时间随探针浓度的不同而不同,因此与底物的温育时间可按需要来改变(2分钟-3分钟),以便在405nm处获得可靠的OD。在405nm波长处由分光光度计获得的光密度与结合到珠上的探针的量成正比。
该实验的结果在图51A和51B中示出。如图所示,与3μmSpherotech珠上的15%非共价结合探针相比,87%的结合到来自Polysciences的1-2μm磁珠上的探针是非共价结合的。
参照图53A和53B,这些图示出来表明共价结合效率与双珠测定灵敏度之间的相关关系的数据。这些结果显示,共价结合效率越高,双珠测定的灵敏度和特异性就越大。通过在实施以下部分C中的步骤之后重复部分B中的步骤,可计算共价结合的探针的量。图55中表示出共价结合的量的计算。
C.去除非共价结合的探针时的热处理在确定哪种珠具有所需的共价结合效率之后,利用双珠测定中所用的非生物素化探针和适当种类的珠,可重复部分A和B中的步骤。
结合之后,通过珠的热处理,有选择地去除非共价结合的珠。为了此目的,将高达3×107个珠再悬浮到于70摄氏度下加热10分钟的100μl CDB中。然后将珠立即磁性浓缩,并除去上清液。将珠在洗涤缓冲剂中洗涤2次,在CDB中洗涤1次,然后再悬浮到100μl CDB中。此时,珠准备好用于双珠测试。
例8
为了评估双链DNA在探针结合过程中的使用效果以增大国相上DNA探针的共价结合效率,还进行若干实验。
A.双链DNA的形成所用的捕获探针具有40个核苷酸的长度,并含有5’端氨基(NH2)和PEG(聚乙二醇)连接剂的几个链。与该实验中所用的氨基化探针互补的链具有具有40个核苷酸的长度并在5’端含有生物素基团。于37摄氏度在严格条件下用过量的互补探针进行杂交反应。
B.双链DNA结合到珠上在该例中评估来自Polysciences的磁珠(1-2μm)、来自Spherotech的磁珠(3μm)、来自Polysciences的荧光珠(1.8μm)和来自MolecularProbes的荧光珠(2.1μm)。每个结合反应中使用大约5×108个珠。在pH6.0的0.05M MES缓冲剂(2-N-吗啡酚醇-乙基磺酸)中将珠洗涤并再悬浮,然后通过加入0.1M的EDC(1-乙基3-3二甲基氨丙基碳二亚胺-HCl)将其活化15分钟。活化之后,用NaOH将珠溶液的pH调整到大约7.5。然后将0.5纳摩尔的探针加入到溶液中。使探针在旋转混合器上于室温下结合2-3小时。然后将珠磁性浓缩并除去上清液。为了估算结合到珠上的探针的量,在结合之前和之后,测定上清液在260nm处的光密度。
结合之后,在混合器上于室温下用1ml pH7.5的0.1M Tris-HCl将珠上所有未反应的羰基封闭1小时。然后在混合器上于室温下使珠在1ml的10mg/ml(在PBS中)BSA中室温下封闭30分钟,以封闭任何的非特异性蛋白结合位点。封闭之后,将珠用PBS洗涤3次并再悬浮到贮存缓冲剂(含有10mg/mlBSA、5%甘油、0.1%叠氮化钠的PBS)内。
C.共价结合效率的测定从以上的结合珠中取出1份2×108个磁珠,并在室温下用0.1mg/ml鲑精DNA预处理1小时。然后将珠在洗涤缓冲剂中洗涤3次并再悬浮到200μl CDB内。随后,将200皮摩尔的封闭探针和100μl杂交缓冲剂加入到珠溶液中。使封闭探针在37摄氏度下杂交2小时。杂交之后,将珠磁性磁性浓缩并去除上清液。然后通过磁性浓缩将珠在洗涤缓冲剂中洗涤3次。用100μl含有550ng/ml链霉亲和素-碱性磷酸酶(S-AP)的缓冲剂再悬浮珠,并在37摄氏度在使珠温育1小时。珠在于S-AP温育之后,被磁性浓缩,然后除去含有未结合的S-AP的上清液。在洗涤缓冲剂中将珠洗涤3次。其次,将100μl的对-硝基苯磷酸盐(pNPP),即浓度为3.7mg/ml的碱性磷酸酶底物,以固定的时间间隔加入到珠中,以便使由于温育时间的不同而造成的偏差最小。颜色变化的时间随探针浓度的不同而不同。与底物的温育时间可按需要来改变(2分钟-30分钟),以便在405nm处获得可靠的OD。405nm处的光密度与结合到珠上的探针的量成正比。以上的图52A和52B中示出来自这些双链结合实验之一的结果。
D.利用热处理将互补链与捕获探针分离开在37摄氏度将一份100μl的珠加热10分钟。磁性浓缩这些珠并快速提取上清液。将珠在热洗涤缓冲剂中洗涤一次,在CDB中洗涤一次。然后将珠再悬浮到CDB中。
例9为了测试更长的间隔物在增大结合效率和附着到固相上的探针的可及性和刚性中的使用效果,还进行若干实验。在这些实验中,捕获和报道探针具有40个核苷酸的长度。这些合成的核苷酸序列特异于感兴趣的分析物。在该例中,捕获探针的5’端和报道探针的3’端含有所结合的3个聚乙二醇部分。在探针合成过程中,将这些共价结合的连接剂引入探针。以上的图54表示出从这些实验之一收集的数据。如图54所示,连接剂的使用明显增大了双珠测定的灵敏度。
该具体测定中所用的珠是来自Spherotech的3μm磁珠和来自Molecular Probes的2.1μm报道珠。如上所述,使探针共价结合到珠上。用PBS将每个测定中的一份2×107个探针结合的捕获珠和6×107个报道珠洗涤3次。洗涤之后,在室温下用100μg/ml的鲑精DNA水溶液将珠预处理1小时。然后将珠在洗涤缓冲剂(0.145M NaCl、pH7.5的50mM Tris HCl、0.5%Tween 20)内洗涤3次,用杂交缓冲剂(0.1MNaCl、1mM EDTA、10mM MgCl2、pH7.5的50mM Tris HCl、pH7.5的1mM EDTA)洗涤1次,然后再悬浮到含有100μg/ml DNA和5XDenhart混合物的杂交缓冲剂内。
在实施该例的双珠测定时采用如图12A所示的二步杂交法。采用不同浓度的单个靶物,包括在含有100μg/ml鲑精DNA和5X Denhart溶液的杂交缓冲剂内稀释的对照物(0皮摩尔)、10皮摩尔、1皮摩尔、0.1皮摩尔、0.01皮摩尔、0.001皮摩尔、0.0001皮摩尔。然后,使不同的靶物溶液与捕获珠混合,并在37摄氏度下温育2小时,以便有充分的时间使靶物杂交到珠的捕获探针上。杂交之后,将所杂交的捕获珠用洗涤缓冲剂中洗涤3次,用杂交缓冲剂洗涤1次,然后再悬浮到含有100μg/ml DNA和5X Denhart混合物的100μl杂交缓冲剂内。然后,使含有杂交靶物的捕获珠溶液与100μl的报道珠混合,并在37摄氏度下温育2小时,同时不断混合。随后,将溶液用新洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris HCl、0.5%Tween 20、0.1%SDS、0.25%NFDM)洗涤6次,用PBS洗涤一次。然后,将洗过的含有双珠复合物的溶液再悬浮到250μl的PBS内。随后,利用荧光计来定量从报道珠获得的荧光信号。
结果表明,当将3个PEG连接剂引入到捕获探针内时,与没有连接剂的探针相比,其降低了双珠测定中的背景,并明显提高了测定的灵敏度。
例10为了阐明测定的灵敏度和基因双珠测定的检测范围,进行该研究;结果在图57中示出。
A.捕获和报道珠的制备该实验中所用的珠是磁性捕获珠(3μm Spherotech)和黄色荧光报道珠(1μm Polysciences),每种珠分别共价结合有DNA转运探针和DNA信号探针。大约1×107个捕获珠和2×107个报道珠用于该实验。将这些珠用PBS洗涤3次,并再悬浮到含有100μg/ml消化鲑精DNA的1ml水中。然后,在室温下使鲑精DNA混合物中的珠溶液温育1小时。温育之后,将珠用洗涤缓冲剂(145mM NaCl、pH7.5的50mMTris、0.05%Tween)洗涤3次,用杂交缓冲剂(0.1M NaCl、1mMEDTA、10mM MgCl2、pH7.5的50mM Tris)洗涤1次。然后,将珠再悬浮到杂交缓冲剂(含有100μg/ml DNA)中。
B.双珠测定制备以下浓度的一系列DNA靶剂稀释液100毫微微摩尔、10毫微微摩尔、1毫微微摩尔、0.1毫微微摩尔、0.01毫微微摩尔和0毫微微摩尔(阴性对照)。然后,使等量的捕获珠与多种靶物溶液混合,并在37摄氏度下温育2小时,以便使靶物杂交到珠的5’捕获探针上。温育之后,将珠用洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.05%Tween)洗涤3次,用杂交缓冲剂(0.1M NaCl、1mM EDTA、10mM MgCl2、pH7.5的50mM Tris)洗涤1次。然后,将珠再悬浮到杂交缓冲剂(含有100μg/ml鲑精DNA)中。
在旋转混合器内使报道珠与捕获珠溶液混合并在37摄氏度下温育2小时。温育之后,将珠用0.5ml的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.05%Tween、0.1%SDS、0.25%NFDM)洗涤6次,并再悬浮到250μl的水中。然后在Excitation=500nm,Emission=530nm,Slit=Ex-2,Em-2以及积分时间为0.1秒的条件下,用荧光计定量所结合的报道珠的数目。
例11为了测定基因双珠型测定中所用的杂交缓冲剂中最佳的盐浓度,实施该项研究。
A.捕获和报道珠的制备该实验中所用的珠是磁性捕获珠(3μm Spherotech)和黄色荧光报道珠(来自Molecular Probe的2.1μm),每种珠分别共价结合有DNA转运探针和DNA信号探针。将这些珠用杂交缓冲剂(0.1M NaCl、10mM MgCl2、1mM EDTA、pH7.5的50mM Tris)洗涤1次。然后,在室温下用0.1%CHAPS和鲑精DNA将珠预处理1小时。随后,将珠用洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM)洗涤3次,用相应的杂交缓冲剂(145mMNaCl、10mM MgCl2、1mM EDTA、pH7.5的50mM Tris、100μg/ml鲑精DNA)洗涤1次。洗涤之后,将珠再悬浮到杂交缓冲剂中。
B.双珠测定将部分A中制备的磁性捕获珠分成24等份,每份10ul。在含有多种浓度(0mM、145mM、300mM和400mM)的NaCl的杂交溶液中稀释6个等份组(每组4个等份)。在以下不同盐浓度的杂交缓冲剂中制备靶DNA混合物100fmole、10fmole、1fmole、0.1fmole、0.01fmole、0femtomole(阴性对照)。然后,根据杂交缓冲剂的盐浓度,使多种靶物溶液与相应的珠溶液混合,并在37摄氏度下温育2小时,以便使靶物杂交到捕获珠的5’转运探针上。杂交之后,将测定溶液用含有每个处理组(0mM、0.145mM、0.3mM、0.4mM)所需的适量NaCl的洗涤缓冲剂洗涤3次,用合适的杂交缓冲剂洗涤1次。然后将珠再悬浮到含有适量NaCl的相应杂交缓冲剂中。
将100μl含有多种NaCl浓度(0mM、0.145mM、0.3mM、0.4mMNaCl)的杂交缓冲剂中的报道珠加入到适当的测定溶液中,从而将相同浓度的NaCl维持在不同的处理组内。然后,在旋转混合器内使这些测定溶液于37摄氏度下温育2小时。温育之后,将多种溶液用0.5ml含有适量NaCl的洗涤缓冲剂洗涤6次,用也含有与相应杂交缓冲剂(0mM、0.145mM、0.3mM、0.4mM NaCl)中相等浓度的NaCl的水洗涤1次。然后,将该多种双珠溶液再悬浮到250μl的水中。随后,在Excitation=500nm,Emission=530nm,Slit=Ex-2,Em-2以及积分时间为0.1秒的条件下,用荧光计定量所结合的报道珠的数目。该测定的结果在以上的图60中示出。利用所述的光学盘(如结合图2所述)可完成双珠复合物的检测。以上的图29B中示出了从光学盘读数器收集的双珠复合物的独一信号特征踪迹。
例12在该情况中,评估来自Spherotech的磁性捕获珠(3μm)和来自Molecular Probe的黄色荧光报道珠(2.1μm)。为了测定基因双珠型测定中所用的杂交缓冲剂中最佳的MgCl2浓度,实施该项研究。
A.捕获和报道珠的制备磁性捕获珠和黄色荧光报道珠每种分别共价结合有DNA转运探针和DNA信号探针。结合之后,将这些珠用杂交缓冲剂(0.1M NaCl、1mM EDTA、10mM MgCl2、pH7.5的50mM Tris)洗涤1次。然后,在室温下用100μg/ml鲑精DNA将珠预处理1小时。随后,将珠用洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.05%Tween、0.1%SDS、0.25%NFDM)洗涤3次,用杂交缓冲剂(145mM NaCl、10mM MgCl2、1mM EDTA、100μg/ml鲑精DNA、pH7.5的50mMTris)洗涤1次。洗涤之后,将珠再悬浮到杂交缓冲剂中。
B.双珠测定将部分A中制备的磁性捕获珠分成24等份,每份10ul。在含有多种浓度(0mM、10mM、20mM和30mM)的MgCl2的杂交溶液中稀释6个等份组(每组4个等份)。在含有以下不同浓度MgCl2的杂交缓冲剂中制备靶DNA混合物100fmole、10fmole、1fmole、0.1fmole、0.01fmole、0fmole(阴性对照)。然后,根据杂交缓冲剂的盐浓度,使多种靶物溶液与相应的珠溶液混合,并在37摄氏度下温育2小时,以便使靶物杂交到捕获珠的5’转运探针上。杂交之后,将测定溶液用含有每个处理组(0mM、10mM、20mM、30mM MgCl2)所需的适量MgCl2的洗涤缓冲剂洗涤3次,用合适的杂交缓冲剂洗涤1次。然后将珠再悬浮到含有适量MgCl2的相应杂交缓冲剂中。
将100μl含有多种MgCl2浓度(0mM、10mM、20mM、30mMMgCl2)的杂交缓冲剂中的报道珠加入到适当的测定溶液中,从而将相同浓度的MgCl2维持在不同的处理组内。然后,在旋转混合器内使这些测定溶液于37摄氏度下温育2小时。温育之后,将多种溶液用0.5ml含有适量NaCl的洗涤缓冲剂洗涤6次,用也含有与相应杂交缓冲剂中相等浓度的MgCl2的水洗涤1次。然后,将该多种双珠溶液再悬浮到250μl的水中。随后,在Excitation=500nm,Emission=530nm,Slit=Ex-2,Em-2以及积分时间为0.1秒的条件下,用荧光计定量所结合的报道珠的数目。该测定的结果在以上的图61A中示出。利用光学盘读数器(如图1和2所示)也可定量检测双珠复合物。
例13为了确定利用探针封闭剂减小珠上的探针密度(与双珠中测定的灵敏度相关)的效果,实施以下实验。
A.捕获和报道珠的制备磁性捕获珠(3μm Spherotech)和黄色荧光报道珠(2.1μmPolysciences)每种分别共价结合有DNA转运探针和DNA信号探针。结合之后,将这些珠用杂交缓冲剂(0.1M NaCl、1mM EDTA、10mMMgCl2、pH7.5的50mM Tris)洗涤1次。然后,在室温下用100μg/ml鲑精DNA将珠预处理1小时。随后,将珠用洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.05%Tween、0.1%SDS、0.25%NFDM)洗涤3次,用杂交缓冲剂(100mM NaCl、1mM EDTA、10mM MgCl2、pH7.5的50mM Tris、100μg/ml鲑精DNA)洗涤1次。洗涤之后,将珠再悬浮到杂交缓冲剂中。
B.探针封闭将生物素化转运封闭探针稀释成以下的最终浓度500皮摩尔、50皮摩尔、35皮摩尔、30皮摩尔。每个管(总共有5个管)使用13μl(2×107)的磁珠。将5μl如上制备的封闭探针和32μl的杂交缓冲剂加入到每个管内。然后,使封闭探针和转运探针在37摄氏度下杂交2小时。杂交之后,将珠用洗涤缓冲剂(145nM NaCl、pH7.5的50nMTris、0.05%Tween)洗涤3次,并再悬浮到100μl的CDB(2%BSA、pH7.5的50mM Tris-HCl、145mM NaCl、1.0mM MgCl2、0.1mMZnCl2、0.05%NaN3)中。利用生物素化报道封闭探针以类似的方式来制备报道珠。
C.封闭剂处理之后的珠上探针密度的测定使一等份在部分B中制备的每组珠溶液与100μl的S-AP(1420ng/ml)在37摄氏度下温育1小时,然后用洗涤缓冲剂洗涤3次。洗涤之后,将100μl、3.7mg/ml(在0.1M Tris、pH10的2mM MgCl2中)的S-AP底物对-硝基苯磷酸盐加入到珠溶液中。在使颜色变化足够的时间之后,利用分光光度计(OD@405nm)来分析该溶液。用405nm处的吸收度来计算珠上的封闭探针的量。
D.双珠测定使如部分B中所制备的珠在含有100μg/ml鲑精DNA和5XDenhart溶液的杂交缓冲剂中洗涤和再悬浮。在具有以下浓度的杂交缓冲剂中制备溶液靶DNA混合物0fmole-对照、10fmole、1fmole、0.1fmole、0.01fmole、0.001fmole、0.0001fmole。然后,使靶物溶液与等量的捕获和报道珠混合,并在37摄氏度下温育2小时。对于每组测定混合物,已经用相同量的探针封闭剂封闭捕获和报道珠,即,将10μl的10fmole靶物加入到100μl的报道和捕获珠溶液中(每种珠已经用50皮摩尔的封闭剂封闭)。杂交之后,将测定溶液用洗涤缓冲剂洗涤3次,用杂交缓冲剂洗涤1次,然后再悬浮到杂交缓冲剂(含有100μg/ml鲑精DNA和5X Denhart混合物)中。将测定溶液浓缩并再悬浮到250μl的水中。然后,在Excitation=500nm,Emission=530nm,Slit=Ex-2,Em-2以及积分时间为0.1秒的条件下,用荧光计定量测定所结合的报道珠的数目。
例14为了测定基因双中测定的最佳杂交温育时间,实施以下实验。该实验的结果在以上图63和64中示出。
A.捕获和报道珠的制备该实验中所用的珠是25μl的具有通过共价结合而附着的5’转运探针的捕获珠(浓度为1.5×107个珠/μl的3μm羧化磁性颗粒)和400μl的报道珠(浓度为6.6×106个珠/μl的2μm YF珠)。这些珠用PBS洗涤3次,并在室温下用100μg/ml鲑精DNA和0.1%CHAPS预处理1小时。然后,将珠用洗涤缓冲剂(145mM NaCl、pH7.5的50nM Tris、0.05%Tween)洗涤3次,用杂交缓冲剂(0.1M NaCl、1mM EDTA、10mM MgCl2、pH7.5的50mM Tris-HCl)洗涤1次。随后,将捕获珠再悬浮到250μl的杂交缓冲剂中,而将报道珠再悬浮到400μl的杂交缓冲剂中。
B.双珠测定在具有以下浓度的杂交溶液中制备一组靶DNA溶液0皮摩尔、1皮摩尔、10皮摩尔、100皮摩尔。在杂交缓冲剂中所制备的试样总计含有10μl的捕获珠、15μl的报道珠、1μl的鲑精DNA和74μl的靶物溶液。在多种温育时间(30分钟、1小时、2小时、3小时、4小时和过夜)分析多个等份的该试样。使一组在37摄氏度下温育而无需混合,而使另一组在旋转混合器上混合。
将多个等份样品用0.5ml的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.05%Tween、0.1%SDS、0.25%NFDM)洗涤6次,然后再悬浮到202μl的PBS中。然后,在Excitation=450nm,Emission=480nm,Slit=Ex-1.365,Em-1.05以及积分时间为0.1秒的条件下,用荧光计定量测定所结合的报道珠的数目。
例15在双珠复合物形成之后,如结合图67A所述,在依赖于DNA的过程中,使报道珠与捕获珠分离。使双珠复合物承受DNAases(特异性切断DNA的酶)。该处理通过切断将报道珠和捕获珠连接在一起的DNA,而将这两种珠分开。因此,非靶物介导的双珠不受影响。DNAse处理之后释放出来的报道珠是样品中存在的靶DNA的量的指征。在该实验中,评估DNAseI在双珠测定中的作用。该实验的结果在图69和70中示出。
A.双珠测定象前面例1的部分A所述的那样来完成双珠测定。简言之,该测定包括包被有共价附着转运探针的3μm磁性捕获珠(Spherotech,Libertyville,IL);包被有共价附着报道探针的2.1μm荧光报道珠(Molecular Probes,Eugene,OR);和感兴趣的靶DNA。在该例中,靶DNA具有合成的80个寡核苷酸的长度。转运探针和报道探针的长度为40个核苷酸,并与靶DNA互补但彼此不互补。
用于制备测定的特定方法涉及在室温下将1×107个捕获珠和2×107个报道珠在100μg/ml鲑精DNA中处理1小时。该预处理在靶DNA缺乏时将减小捕获珠与报道珠之间的非特异性结合。通过除去上清液而磁性浓缩捕获珠。加入100μl的杂交缓冲剂(0.2M NaCl、1mMEDTA、10mM MgCl2、pH7.5的50mM Tris HCl和5X Denhart混合物、10μg/ml的变性鲑精DNA)并使珠再悬浮。将浓度在1、10、100、1000毫微微摩尔范围内的不同浓度的靶DNA加入到捕获珠悬浮液中。使珠悬浮液在37摄氏度下温育2小时,同时进行混合。将珠磁性浓缩并除去含有未结合的靶DNA的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM(Non Fat Dried Milk)、10mM EDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
然后,将100μl杂交缓冲剂(0.2M NaCl、1mM EDTA、10mMMgCl2、pH7.5的50mM Tris HCl和5X Denhart混合物、10μg/ml的变性鲑精DNA)中的2×107个报道珠加入到清洗过的捕获珠中。使珠再悬浮并且于37摄氏度下再温育2小时,同时进行混合。温育之后,将捕获珠磁性浓缩,并除去含有未结合的报道珠的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM(Non Fat Dried Milk)、10mM EDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
B.DNAseI测定为此目的选择DNAseI,因为它对序列不具有特异性。洗涤之后,将双珠复合物再悬浮到87.5μL的水中。将10个单位的DNAseI(2.5μL)和10μL的DNAseI反应缓冲剂(40Mm Tris-HCl、10mM MgSO4、1mMCaCl2)加入到再悬浮的珠中。在37摄氏度下使消化反应进行1小时。消化之后,将珠磁性浓缩并除去含有报道珠的上清液。用100μl的水将磁性捕获珠洗涤2次。将洗过的水与上清液合并。在500nm的激发波长、530nm的发射波长和2.0的缝隙下,利用荧光计(Fluoromax-2)来定量报道珠的数目。该实验的结果参加图69和70。或者是,利用生物盘读数器(如上所述)来定量荧光报道珠的数目。
例16在该例中,利用物理和化学处理来分离双珠复合物。如以上例15中所述的那样来完成双珠测定。洗涤之后,将珠产物用洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM(Non Fat Dried Milk)、10mM EDTA)洗涤5次,并分成4组。
1、对照将珠用200μL的洗涤缓冲剂洗涤2次。
2、酸洗将珠用200μL、含有0.1M醋酸(pH 4)的洗涤缓冲剂洗涤2次。
3、碱洗将珠用200μL、含有0.1M碳酸氢钠(pH 9)的洗涤缓冲剂洗涤2次。
4、尿素将珠用200μL、含有7M尿素的洗涤缓冲剂洗涤2次。
物理或化学处理之后,将捕获珠磁性浓缩,并剩下含有所释放的报道珠的上清液。将珠用洗涤缓冲剂洗涤3次。洗涤液液剩下。将磁性捕获珠再悬浮到400μl的洗涤缓冲剂中。在Ex=500nm,Slit=2.0;Em=530nm,Slit=2.0的条件下,用荧光计(Fluoromax-2)定量测定上清液和捕获珠溶液中的报道珠的量。或者是,利用生物盘读数器(如上所述)来定量荧光报道珠的数目。
正如该实验所证实的,高pH的洗涤在低靶物浓度时能够将报道珠与捕获珠解离开。正如图72的实验结果所示,碱性洗涤在低靶物浓度时将报道珠与捕获珠完全解离开。
该实验结果还表明,7M的尿素处理在不明显损害灵敏度情况下有效地将报道珠和捕获珠解离。正如图73A和73B的柱形图中表示的实验结果所示的那样,尿素处理有效地将报道珠和捕获珠解离开。
例17在上述的例15和16中,靶DNA是单链的。当采用临床样品时,DNA是双链的,因此杂交缓冲剂需要变性剂例如异硫氢酸胍。该测定中所用的变性剂浓度对于双珠测定的特异性和灵敏度是主要的影响因素。在该例中,在1.5M异硫氢酸胍的存在下进行用于检测HSV的双珠测定。
A.捕获珠的制备双珠测定包括包被有共价附着5’HSV转运探针的3μm磁性捕获珠(Spherotech,Libertyville,IL);和来自Molecular Probes(Eugene,OR)、结合到3’HSV报道探针和感兴趣的靶DNA分子上的2.1μm荧光报道珠。在该例中,靶物是双链PCR产物,其含有HSV基因序列,被扩增30个循环,并且用Qiagen柱纯化。转运探针和报道探针的长度为40个核苷酸,并与靶DNA互补但彼此不互补。
用于制备测定的特定方法涉及在室温下将1×107个捕获珠和2×107个报道珠在100μg/ml鲑精DNA中处理1小时。该预处理在靶DNA缺乏时将减小捕获珠与报道珠之间的非特异性结合。通过除去上清液而磁性浓缩捕获珠。将捕获珠再悬浮到600μl、含有5X Denhart混合物和10μg/ml鲑精DNA的杂交缓冲剂(1.5 GuSCN、8mM EDTA、pH7.5的40mM Tris)中。
B.靶DNA的制备靶物是双链PCR产物,被扩增30个循环,并且用Qiagen柱纯化。将靶物稀释到合适的浓度,并在95摄氏度下加热5分钟,以使双链变性,然后在冰上迅速预冷。
C.预靶DNA的杂交将总计12.5μL的预冷靶物加入到100μl的预处理捕获珠中。将范围在0、10-16、10-15、10-14、10-13和10-12摩尔的多种浓度的靶DNA加入到捕获珠悬浮液中。将珠悬浮液在37摄氏度下温育2小时,同时进行混合。然后将珠磁性浓缩,并除去含有未结合的靶DNA的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM(Non Fat Dried Milk)、10mMEDTA),并将珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
D.双珠测定然后,将100μl含有5X Denhart混合物和10μg/ml变性鲑精DNA的杂交缓冲剂(1.5 GuSCN、8mM EDTA、pH7.4的40mM Tris)中的2×107个报道珠加入到清洗过的捕获珠中。使珠再悬浮,并于37摄氏度下再温育3小时,同时进行混合。温育之后,将捕获珠磁性浓缩,并除去含有未结合的报道珠的上清液。加入100μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris HCl、0.1%SDS、0.05%Tween、0.25%NFDM(无脂肪奶粉)、10mM EDTA)并使珠再悬浮。将珠磁性浓缩并再次除去上清液。将该洗涤过程重复两次。
E.靶DNA的定量将双珠复合物再悬浮到250μl的PBS中,并且在Ex=500nm,Slit=2.0;Em=530nm,Slit=2.0的条件下,通过用荧光计(Fluoromax-2)荧光测定报道珠,来定量测定靶物的量。或者是,利用生物盘读数器(如上所述)来定量荧光报道珠的数目。
例18下例表示出在磁性可写入和可擦除分析盘(例如结合图37所述的磁性光学生物盘110)上进行的双珠测定。
在该例中,完成双珠测定,以检测存在于男性而不是女性中的基因序列DYS。该测定包括包被有共价附着的转运探针的3μm磁性捕获珠(Spherotech,Libertyville,IL);包被有针对DYS基因和含有DYS序列的靶DNA分子的共价附着序列的2.1μm荧光报道珠(Molecular Probes,Eugene,OR)。靶DNA具有合成的80个寡核苷酸的长度。捕获探针和报道探针的长度为40个寡核苷酸,并与DYS序列互补但彼此不互补。
用于制备测定的特定方法涉及在室温下将1×107个捕获珠和2×107个报道珠在100μg/ml鲑精DNA中处理1小时。该预处理在靶DNA缺乏时将减小捕获珠与报道珠之间的非特异性结合。
用鲑精DNA预处理之后,通过注射口将捕获珠装到MO生物盘内。MO生物盘包含用磁性光学驱动器产生的磁域。捕获珠于是被滞留在MO生物盘上的特定磁域内。
然后,通过注射口,将200μl杂交缓冲剂(0.2M NaCl、1mMEDTA、10mM MgCl2、pH7.5的50mM Tris HCl和5X Denhart混合物、10μg/ml的变性鲑精DNA)内的含有靶DNA和报道珠的样品加入到MO生物盘上。随后将注射口密封。释放磁场。在驱动器内以非常低的速度(小于800rpm)旋转盘,以便使靶DNA和报道珠容易杂交到捕获珠上。于33℃恒定保持驱动器的温度。2小时的杂交之后,利用磁性光学驱动器产生磁场。在该阶段,仅有未结合或作为双珠复合物的一部分的磁性捕获珠残留在MO生物盘上。利用上述任何机构,将未结合的靶物和报道珠引到废物室内。然后加入200μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM(Non Fat Dried Milk)、10mM EDTA)。释放磁场,并使盘低速(小于800rpm)旋转5分钟,以便消除捕获珠与报道珠之间的任何非特异性结合。然后重新施加磁场。利用上述任何机构,将洗涤缓冲剂引到废物室内。将该洗涤过程重复两次。
在该阶段,仅有未结合或作为双珠复合物的一部分的磁性捕获珠残留下来。释放磁场,并将双珠复合物引到检测室内。然后,由于每种珠具有明显不同的信号特征(如以上的图28A、28B、29A和29B所示),因此通过定量捕获磁珠的数目和报道珠的数目,可计数所捕获的靶DNA的量。
例19在该例中,在磁性可写入和会擦除分析盘(例如结合图37所述的磁性光学生物盘110)上进行采用以上结合图32和37所述的倍增技术的双珠测定。
完成双珠的测定,以便同时检测两种或更多种DNA靶物。该测定包括3μm的磁性捕获珠(Spherotech,Libertyville,IL)。用与DNA靶物1互补的转运探针1来包被一群磁性捕获珠,而用与DNA靶物2互补的转运探针2来包被另一群磁性捕获珠。或者是,可采用两种或更多种不同的磁性捕获珠。在测定中有两种或更多种明显不同的报道珠。这些报道珠的化学组成(例如硅石和聚苯乙烯)和/和尺寸不同。一种报道珠包被有与DNA靶物1互补的报道探针1。另一种报道珠包被有与DNA靶物2互补的报道探针2。再者,转运探针和报道探针与相应的靶物互补但彼此不互补。
用于制备双珠测定倍增的特定方法涉及在室温下将1×107个捕获珠和2×107个报道珠在100μg/ml鲑精DNA中处理1小时。该预处理在靶DNA缺乏时将减小捕获珠与报道珠之间的非特异性结合。
用鲑精DNA预处理之后,将捕获珠装到MO生物盘内。施加磁场,以产生用于特定捕获珠的明显不同的磁域。可以1个捕获/10μm2的密度将捕获珠滞留在MO生物盘上。可用于将珠沉积在MO生物盘上的表面积为大约3×9μm2。在给定密度下,MO生物盘对3μm珠的容量为约3×108个珠。
使含有感兴趣的靶DNA的样品与不同种类的报道珠在200μl杂交缓冲剂(0.2M NaCl、1mM EDTA、10mM MgCl2、pH7.5的50mMTris HCl和5X Denhart混合物、10μg/ml的变性鲑精DNA)内混合,并通过注射口将其加入到MO生物盘上。随后将注射口密封。释放磁场。在驱动器内以非常低的速度(小于800rpm)旋转盘,以便使靶DNA和报道珠容易杂交到不同种类的捕获珠上。于33℃恒定保持驱动器的温度。2-3小时的杂交之后,利用磁性光学驱动器重新产生磁场。在该阶段,仅有未结合或作为双珠复合物的一部分的磁性捕获珠残留在MO生物盘上。利用上述任何机构,将未结合的靶物和报道珠引到废物室内。然后加入200μl的洗涤缓冲剂(145mM NaCl、pH7.5的50mM Tris、0.1%SDS、0.05%Tween、0.25%NFDM(Non Fat DriedMilk)、10mM EDTA)。释放磁场,并使盘低速(小于800rpm)旋转5分钟,以便消除捕获珠与报道珠之间的任何非特异性结合。然后重新施加磁场。利用上述任何机构,将洗涤缓冲剂引到废物室内。将该洗涤过程重复两次。
在该阶段,释放磁场,并将双珠复合物引到检测室内。然后,由于每种珠具有明显不同的信号特征(如以上的图28A、28B、29A和29B所示),因此通过定量相应的捕获磁珠和报道珠的数目,可计数不同种类的靶DNA的量。
例20A.用附着到顺磁珠上的单克隆CD4抗体分离AIDS病人体内的T-辅助细胞将样品(全血和单核细胞)注入到混合/加料室内,在该室样品与抗-CD4包被的顺磁珠(生物磁性颗粒)混合。为了使顺磁珠与CD4+细胞结合而进行15分钟的温育之后,利用MO驱动器内的激光在流动通道和分析室内产生磁域。然后,使标记CD4+细胞结合到这些磁域上,从而当以预定的速度和时间旋转盘时,未标记的细胞和细胞组分将向下移到朝向废物室的流动通道内。然后,利用MO读数器定量结合到磁域上的CD4+细胞的数目。如此测定的CD4+细胞的数目将是病人健康状态的表征。
B.所选择的T-辅助细胞的操纵在将CD4+细胞已经与其它细胞组分分离开之后,擦除磁域。然后,以预定的速度和方向旋转盘,以产生移向不同测试室内的流动通道的新近释放的CD4+细胞,在室内,对细胞进行不同的能够减小其对HIV破坏的敏感性的药物处理。仅仅具有常规经验的本领域技术人员就能够确定射流回路的设计以及盘旋转的速度和方向。
例21利用附着到顺磁珠上的癌症标志物抗体(例如MOC-31和NrLu10)检测癌细胞将样品(诸如由活组织检查切片制备的单细胞悬浮液)装入MO生物盘或MO分析盘的混合室内。然后,用MOC-31捕获抗体包被顺磁珠,借此形成生物磁性珠。随后,将这些生物磁性珠装到含有样品的混合室内。15分钟的温育之后,在MO盘的混合室内产生磁域,以便结合磁性标志或标记的细胞。其次,以预定的速度和期间旋转盘,以除去未标记的细胞。结合到顺磁场中的标记和标志癌细胞将被固定在磁场内,而其它细胞向下移到朝向废物室的流动通道内。用读数器定量癌细胞的数目。有关在射流回路内定量颗粒和细胞的进一步细节诸如公开在以下申请中2002年9月11日提交的题为“分类细胞计数方法,包括实施该方法的相关装置和软件”(Methods for DifferentialCell Counts Including Related Apparatus and Software PerformingSame)的共同转让和共同待审的第10/241,512号美国专利申请;以及2002年10月24日提交的题为“用于生物驱动器的分段式区域检测器及其相关方法”(Segmented Area Detector for Biodrive and MethodsRelating Thereto)的第10/279,677号美国专利申请,这两件申请作为参考全部并入本文。
将磁场关掉,而盘的旋转将导致被鉴定的癌细胞移到MO盘上的多个测试室中,在室内将癌细胞暴露给不同的抗癌药物。由于apopotic细胞与活细胞相比,具有不同的信号特征,因此通过定量活细胞或死细胞的数目,能够测定药物的效果。
例22利用包被有特异性TB探针的磁珠检测结核病(TB)将含有DNA片断的样品注入混合/加料室,在该室,样品与包被有针对一种或多种TB物种的DNA探针的顺磁珠或生物磁性颗粒混合。然后,使样品与探针在盘内杂交约1小时,同时通过在读数器中顺时针旋转盘、然后逆时针旋转盘,而进行间歇混合。随后,在混合室内产生磁畴,在该室捕获磁珠。然后,洗涤混合室,以除去未结合的DNA片断。随后,擦除磁畴并旋转盘,以使磁性颗粒被释放和移到分析室中,在该室,扩增所捕获的特异性TB DNA序列,以备其后的应用。
例23用于产生特定动作电位的脑内不同神经元的相互作用还不清楚。在MO盘上能够研究脑内特定神经元的相互作用。在多种温育室内,利用包被有针对特定细胞表面标志物的抗体的顺磁珠,可分离携带不同细胞标志物的神经元。
然后,在一个室内分离的神经元被操纵、移动并与利用盘上的磁场在不同室内分离的神经元混合。为了确定两种神经元之间是否“通讯”,可监测动作电位(K+或Ca2+)的生成。
结论概述本说明书中提到的所有专利和其它出版物都作为参考全部并入本文。
虽然已经参照某些优选实施例和技术实例对本发明进行来详细描述,但是应该理解,本发明并局限于这些具体的实施例或实例。相反,鉴于本发明的公开本文中描述来用于实施本发明的目前的最佳方式,因此在不脱离本发明的范围和精髓的情况下,许多修改和变型对于本领域的技术人员来说都是显而易见的。
例如,通过利用采用本文所述方法的适当射流回路,任何盘外的制备过程都可容易地在盘上实施。而且,结合反射和透射盘所述的任何射流回路都易于适合MO生物盘。此外,本发明的范围并不仅仅局限于只有双珠复合物的形成。其方法和装置易于适合多个珠测定的产生。诸如,单捕获珠可结合多个报道珠。同样,单报道珠可结合多个捕获珠。而且,通过捕获与报道珠之间的靶物介导的结合,可形成多个珠和双珠复合物的连接链。这些连接链可进一步凝集,借此增大感兴趣靶剂的可检测性。
本发明的范围因此被后面的权利要求书所指明,而不仅仅是以上的描述所指出的。在权利要求书等同意思和范围内作出的所有改变、修改和变型都被认为是在本发明的范围内。
权利要求
1.一种用于生物磁性测定的磁性光学生物盘,所述生物盘包括具有中心和外缘的基底;与所述基底相联的磁性光学堆;以及在所述磁性光学堆上形成的一个或多个磁畴,所述一个或多个磁畴用于结合和释放生物磁性颗粒。
2.根据权利要求1所述的磁性光学生物盘,其特征在于,所述生物磁性颗粒是附着有结合剂的顺磁珠。
3.根据权利要求2所述的磁性光学生物盘,其特征在于,所述的结合剂是从包括以下物质的组中选择的抗原、抗体、配体、受体、生物素、链霉亲和素、DNA片断和RNA片断。
4.根据权利要求1所述的磁性光学生物盘,其特征在于,利用磁性光学盘驱动器,在所述基底的所述中心和外缘有选择地形成所述一个或多个磁畴。
5.根据权利要求4所述的磁性光学生物盘,其特征在于,利用所述磁性光学盘驱动器,有选择地擦除所述的一个或多个磁畴。
6.根据权利要求4或5所述的磁性光学生物盘,其特征在于,形成和擦除所述一个或多个磁畴,从而使所述生物磁性颗粒有选择地结合和释放。
7.根据权利要求6所述的磁性光学生物盘,其特征在于,利用所述磁性光学盘驱动器,来读取和检测位于所述磁畴内的特征。
8.根据权利要求7所述的磁性光学生物盘,其特征在于,还进一步包括与所述基底相联的通道层,所述通道层具有切掉的部分,以形成射流回路。
9.根据权利要求8所述的磁性光学生物盘,其特征在于,还进一步包括与所述通道层相联的帽部分。
10.根据权利要求9所述的磁性光学生物盘,其特征在于,所述射流回路包括入口、混合室、分离室、一个或多个测试室、以及排气孔,所有这些组成部分都彼此以流体相通。
11.根据权利要求10所述的磁性光学生物盘,其特征在于,所述一个或多个测试室预装有含有试剂的测试溶液。
12.一种根据权利要求11所述的磁性光学生物盘的使用方法,用于检测、定量和测试用于药物灵敏性的靶细胞,所述使用方法包括以下步骤提供细胞样品;通过所述入口,将所述样品装入所述混合室内;提供附着有结合剂的生物磁性颗粒,所示结合剂是针对样品中的靶细胞表面上的表面标志物的;将所述生物磁性颗粒装入所述混合室内;将所述样品与生物磁性颗粒温育足够的时间,以使结合剂与样品中的靶细胞上的表面标志物结合,借此生成标记细胞;将所述磁性光学生物盘装入所述磁性光学盘驱动器内;在所述分离室内的预定部位形成磁畴;旋转所述磁性光学生物盘,以便将所述样品和生物磁性颗粒移入所述分离室内;使所述生物磁性颗粒和标记细胞结合到所述分离室内的所述磁畴上;以及用电磁辐射束扫描所述分离室,以确定所述磁畴是否含有标记细胞。
13.根据权利要求12所述的方法,其特征在于,还进一步包括以下步骤定量所述磁畴内的标记细胞的数目;有选择地擦除结合有标记细胞的所述磁畴,借此有选择地释放标记细胞;通过顺序擦除和形成所述磁畴以便将预定数目的标记细胞移入一个或多个测试室内,而将所述标记细胞磁性引到所述一个或多个测试室内;使所述标记细胞与所述试剂温育;以及用电磁辐射束扫描所述测试室,以测定活细胞和凋亡(apototic)细胞的数目,并由此测定细胞对所述试剂的灵敏度。
14.一种根据权利要求9所述的磁性光学生物盘的使用方法,用于在所述射流回路中的生物基质内产生神经网络,所述使用方法包括以下步骤在所述射流回路中形成所述生物基质;将具有轴突和树突的神经元提供到所述生物基质内,所述神经元具有并入其内的磁性颗粒;将所述磁性光学生物盘装入所述磁性光学盘驱动器内;在所述射流回路内写入和擦除磁畴,以便生成向彼此生长的所述神经元的所述轴突和树突;以及通过所述轴突和树突,使所述神经元之间相互作用,借此形成由所述磁畴磁性控制的所述神经网络。
15.权利要求11的磁性光学生物盘。
16.一种用于磁性光学生物磁性测定的磁性光学生物盘系统,所述系统包括磁性光学生物盘和磁性光学盘驱动器,所述磁性光学生物盘包括具有磁性光学堆的基底;以及在所述基底内形成的一个或多个磁畴,所述一个或多个磁畴用于结合和释放生物磁性颗粒;所述磁性光学盘驱动器包括用于将光引向所述盘的光源,所述光源还用来形成和擦除所述一个或多个磁畴;以及用于检测从所述盘反射或透过所述盘的光线、并提供信号的检测器。
17.根据权利要求16所述的磁性光学生物盘系统,其特征在于,还进一步包括处理器,所述处理器利用所述信号来计数结合到所述一个或多个磁畴上的项目。
18.根据权利要求17所述的磁性光学生物盘系统。
19.一种磁性光学生物盘的制造方法,所述方法包括以下步骤提供具有中心、外缘和一个或多个磁性光学堆的基底;在所述中心和外缘内形成一个或多个磁畴;以及形成与所述一个或多个磁畴以流体相通的分析室。
20.根据权利要求19所述的方法,其特征在于,还进一步包括以下步骤形成与所述分析室以流体相通的混合室。
21.根据权利要求19所述的方法,其特征在于,还进一步包括以下步骤在所述分析室内形成生物基质。
22.根据权利要求20所述的方法,其特征在于,还进一步包括以下步骤在所述混合室内沉积多个生物磁性颗粒,每个所述生物磁性颗粒都包括结合剂。
23.根据权利要求22所述的方法,其特征在于,还进一步包括以下步骤指定与所述混合室相联的输入位点,所述输入位点用于接收为确定靶细胞的存在而将要测试的细胞样品。
24.根据权利要求21或23所述的方法,其特征在于,还进一步包括以下步骤在与所述基底相联的信息层上编码信息,所述编码信息可由用于控制盘的旋转的盘驱动组件来擦除。
25.根据权利要求24所述的方法,其特征在于,还进一步包括以下步骤形成与所述分析室以流体相通的测试室。
26.根据权利要求25所述的方法,其特征在于,还进一步包括以下步骤用试剂填充所述测试室。
27.一种根据权利要求21制备的磁性光学生物盘的使用方法,用于在所述射流回路中的生物基质内产生神经网络,所述使用方法包括以下步骤将具有轴突和树突的神经元提供到所述生物基质内;将磁性颗粒并入所述神经元;将所述磁性光学生物盘装入所述磁性光学盘驱动器内;在所述分析室内擦除和形成所述一个或多个磁畴,以便生成向彼此生长的所述神经元的所述轴突和树突;以及通过所述轴突和树突,使所述神经元之间相互作用,借此形成由所述磁畴磁性控制的所述神经网络。
28.一种根据权利要求26制备的磁性光学生物盘的使用方法,用于检测、定量和测试用于药物灵敏性的所述细胞样品中的所述任何靶细胞,所述使用方法包括以下步骤通过所述输入位点,将所述样品装入所述混合室内;将所述样品与生物磁性颗粒温育足够的时间,以使结合剂与样品中的靶细胞上的表面标志物结合,借此生成标记细胞;将所述磁性光学生物盘装入所述磁性光学盘驱动器内;在所述分析室内的预定部位形成磁畴;旋转所述磁性光学生物盘,以便将所述样品和生物磁性颗粒移入所述分析室内;使所述生物磁性颗粒和标记细胞结合到所述分析室内的所述磁畴上;以及用电磁辐射束扫描所述分析室,以确定所述磁畴是否含有标记细胞。
29.根据权利要求28所述的方法,其特征在于,还进一步包括以下步骤定量所述磁畴内含有的标记细胞的数目;有选择地擦除结合有标记细胞的所述磁畴,借此有选择地释放标记细胞;通过顺序擦除和形成所述磁畴以便将预定数目的标记细胞移入测试室内,而将所述标记细胞磁性引到所述测试室内;使所述标记细胞与所述试剂温育;以及用电磁辐射束扫描所述测试室,以测定活细胞和凋亡细胞的数目,并由此测定细胞对所述试剂的灵敏度。
全文摘要
本发明一般涉及分子和细胞生物磁性测定,尤其是涉及在磁性光学生物盘上进行的分子和细胞生物磁性测定。本发明还涉及包括磁性光学生物盘和MO驱动器的磁性光学生物盘系统。更具体地说,但不局限于此后参照最佳实施方式所描述的具体实施例,本发明涉及利用磁性颗粒或珠,检测和选择性操纵细胞群及细胞群溶液中的特异性靶细胞的生物磁性方法,包括免疫磁性方法,并且还涉及磁性引导的神经突生长、神经再生和利用MOBDS磁性形成的神经网络。
文档编号G01N33/533GK1636138SQ02827511
公开日2005年7月6日 申请日期2002年11月27日 优先权日2001年11月27日
发明者詹姆斯·霍华德·科姆斯, 布里吉特·乔·范, 拉蒙西托·马格潘塔伊·瓦伦西亚 申请人:长冈实业株式会社, 伯斯坦技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1