专利名称:血糖值测定装置的制作方法
技术领域:
本发明涉及不需采血测定生物活体中葡萄糖浓度的非入侵式血糖值测定方法及装置。
背景技术:
Hilson等人报道了向糖尿病患者静脉注射葡萄糖后,脸和舌头下面的温度变化(非专利文献1)。Scott等人对糖尿病患者和体温调节的问题进行了论述(非专利文献2)。根据这些研究结果,Cho等人提出了不用采血,通过测定温度求出血液中葡萄糖浓度的方法及装置(专利文献1,2)。
另外,对于不用采血算出葡萄糖浓度正在进一步进行各种尝试。例如,提出如下方法,用3个波长的近红外光照射测定部位,检测出透过光强度,同时检测出体温,求出吸光率的2次微分值的代表值,对应基于预先设定的基准温度产生的体温偏移修正上述代表值,求出与被修正的代表值相当的血糖浓度(专利文献3)。还提供了在测定部位检测体温的同时进行加热或冷却,基于温度变化瞬间的光照射测定减光度,而后测定形成减光度温度依赖性原因的葡萄糖浓度装置(专利文献4)。另外报道了取参照光和照射试样后透过光的输出比,从输出比的对数和体温的1次式计算出葡萄糖浓度的装置(专利文献5)。
Diabe&METABOLISME,“FACIAL AND SUBLINGUALTEMPERATURE CHANGES FOLLOWING INTRAVENOUS GLUCOSEINJECTION IN DIABETICS”by R.M.Hilson and T.D.R.Hockaday,1982,8,15-19[非专利文献2]Can.J.Physiol.Pharmacol.,“Diabetes mellitus andthermoregulation”,by A.R.Scott,T.Bennett,I.A.MacDonald,1987,65,1365-1376[专利文献1]美国专利第5,924,996号公报[专利文献2]美国专利第5,795,305号公报[专利文献3]特开平2000-258343号公报[专利文献4]特开平10-33512号公报 特开平10-108857号公报血液中的葡萄糖(血糖)在细胞内发生葡萄糖氧化反应,产生维持活体必需的能量。特别是在基础代谢的状态,由于产生的能量大部分作为维持体温的热能,故可以预想到血液中的葡萄糖浓度和体温之间存在某种关系。但是,考虑到生病发烧,很明显体温也会由于血液中葡萄糖浓度以外的主要因素产生变动。以往,提出了不用采血通过测定温度求出血液中葡萄糖浓度的方法,但很难说具有足够的精度。
发明内容
本发明的目的是提供可以根据被检测者的温度数据,不用采血,高精度地求出血液中葡萄糖浓度的方法及装置。
血糖通过血管系统特别是毛细血管提供给全身的细胞。在人体内存在复杂的代谢路径,葡萄糖氧化实质上是血糖和氧反应,生成水、二氧化碳和能量的反应。这里所说的氧是由血液供给细胞的氧,氧供给量由血液中的血红蛋白浓度、血红蛋白氧饱和度和血流量决定。另一方面,由于葡萄糖氧化在体内产生的热量通过对流、热辐射、传导等方式被从身体夺走。我们认为体温是由在体内的葡萄糖燃烧的能量生成量即生热和散热的平衡决定的,构思了如下模型(1)生热量和散热量视为相等。
(2)生热量是血液中葡萄糖浓度和氧供给量的函数。
(3)氧供给量由血液中血红蛋白浓度、血液中血红蛋白氧饱和度和毛细血管中的血流量决定的。
(4)散热量主要是由热对流和热辐射决定的。
依据该模型,发现对体表进行热测定,同时测定和血液中氧浓度有关的参数及和血流量有关的参数,采用这些测定结果可以高精度地求出血糖值,从而完成本发明。作为实例之一,可以把人体的一部分例如指尖作为测定对象进行为求出上述参数的测定。与对流和辐射有关的参数可以通过对指尖进行热测定求得。与血液中血红蛋白浓度及血液中血红蛋白氧饱和度有关的参数,可以依分光学方式测定血液中的血红蛋白,通过携氧血红蛋白和非携氧血红蛋白比率求出。另外,特别是对于和血液中血红蛋白浓度及血红蛋白氧饱和度有关的参数,即使不进行测定,采用预先存储的常数也不会对测定精度有太大损害。与血流量有关的参数可以通过测定来自皮肤的热移动量求出。
作为本发明的血糖值测定装置的一个例子,具有测定来自体表的多个温度、得到用于计算出与来自体表的散热有关的对流传热量和辐射传热量的信息的热量测定部,得到与血液中氧量有关的信息的氧量测定部,存储与多个温度及血液中氧量各自对应的参数和血糖值的关系的存储部,将由热量测定部及氧量测定部输入的多个测定值各自转换成上述参数、并将上述参数适用于存储在存储部的上述关系中计算血糖值的计算部,显示由计算部计算出的血糖值的显示部。氧量测定部具有得到与血流量有关的信息的血流量测定部和得到血液中的血红蛋白浓度、血红蛋白氧饱和度的光学测定部,血流量测定部具有体表接触部、引导被检测体到体表接触部的导件、与体表接触部邻接设置的邻接温度检测器、检测出离开体表接触部的位置的温度的间接温度检测器、连接体表接触部和上述间接温度检测器的热传导部件。
本发明的血糖值测定装置的另一例,具有测定环境温度的环境温度测定器,接触体表的体表接触部,引导被检测体到体表接触部的导件,邻接体表接触部设置的邻接温度检测器,测定来自体表的辐射热的辐射热检测器,连接体表接触部设置的热传导部件,邻接热传导部件并且设置在离开体表接触部的位置、检测出离开体表接触部的位置的温度的间接温度检测器,向体表接触部照射至少2个不同波长的光的光源,检测出光在上述体表反射产生的反射光的光检测器,具有将邻接温度检测器、间接温度检测器、环境温度测定器、辐射热检测器及光检测器各自的输出各自转换成参数的转换部和预先存储上述参数和血糖值的关系、并将上述参数适用于上述关系计算出血糖值的处理部的计算部,显示由计算部输出的血糖值的显示部。
本发明的血糖值测定装置的另一例,具有测定环境温度的环境温度测定器,接触体表的体表接触部,引导被检测体到体表接触部的导件,邻接体表接触部设置的邻接温度检测器,测定来自体表的辐射热的辐射热检测器,连接体表接触部设置的热传导部件,邻接热传导部件并且设置在离开体表接触部的位置、检测出离开体表接触部的位置的温度的间接温度检测器,存储与血液中血红蛋白浓度和血红蛋白氧饱和度有关的信息的存储部,具有将邻接温度检测器、间接温度检测器、环境温度测定器及辐射热检测器的输出转换成参数的转换部和预先存储上述参数和血糖值的关系、并将上述参数适用于上述关系计算出血糖值的处理部的计算部,显示由计算部输出的血糖值的显示部。
上述导件可以设成包围着体表接触部。另外,导件可以具有决定被检测体位置的止动件,止动件可以由确定被检测体的前端位置的第1止动件和确定被检测体的宽度方向位置的第2及第3止动件构成。止动件位置可以是可调的。止动件最好是具有小于等于0.1W/m·k的热传导率。另外,导件还可以具有仿照被检测体形状的凹槽。
根据本发明,不仅可以进行非入侵式测定而且还能以和以往的侵入式方法相同的精度求出血糖值。
图1是说明从体表到块的热传递的模型图;图2是表示温度T1及温度T2的测定值的时间变化的图;图3表示温度T3的时间变化的测定例之图;图4是图示各种传感器的测定值和由此导出的参数的关系的说明图;图5是本发明的非入侵式血糖值测定装置的俯视图;图6是表示装置的操作步骤的图;图7是测定部的详细图;图8是详细表示手指放置部和手指放置导件的图;图9是表示手指接触型手指放置导件的例子的图;图10是表示手指接触型手指放置导件的其他例的图;图11是表示在装置内数据处理的流程的概念图;图12是本发明的葡萄糖浓度计算值和酶电极法的葡萄糖浓度测定值的绘制图;图13是测定部的其他例的详细图;图14是表示在装置内的数据保管场所的概念图;图15是本发明的葡萄糖浓度计算值和酶电极法的葡萄糖浓度测定值的绘制图。
具体实施例方式
下面,结合附图对本发明的实施方式进行说明。为了容易理解,在下面的图中对于同样的功能部分标注同一符号进行说明。
首先,对具体的前述模型进行说明。考虑散热量问题时,作为其主要因素的对流传热与环境温度(室温)和体表温度之间的温度差有关,依斯蒂芬-玻耳兹曼定律,作为另一主要因素的辐射的散热量,同体表温度的4次方成比例。因而,知道来自人体的散热量与室温和体表温度有关。另一方面,作为与生热量有关的一个主要因素的氧供给量可表示为血红蛋白浓度、血红蛋白氧饱和度和血流量的乘积。
这里,血红蛋白浓度可以通过携氧血红蛋白和脱氧血红蛋白的摩尔吸光系数相等时的波长(等吸光波长)处的吸光率来测定。血红蛋白氧饱和度可通过测量在等吸光波长处的吸光率,以及在至少一种不同波长处的吸光率后,通过求解联立方程来测定。其中在至少一种不同的波长处,携氧血红蛋白与脱氧血红蛋白的摩尔吸光系数的比率是已知的。即,血红蛋白浓度和血红蛋白氧饱和度可以通过测定最少2个波长的吸光率得到。
剩下的是血流量。血流量可以通过各种方法测定,下面对其测定方法的一个例子进行说明。
图1是说明在具有某程度热容量的固体块接触体表一定时间后离开时,从体表到块的热传递的模型图。块材质可以用塑料等的树脂例如氯乙烯。这里,着眼于块和体表接触部分的温度T1的时间变化,及在块上部离开体表的位置的温度T2的时间变化。血流量可以主要通过追踪温度T2(在块上的空间上离开体表的点的温度)的时间变化来推定。下面详细地说明。
块和体表接触前,块的2个点的温度T1、T2和室温Tr相等。当体表温度Ts比室温Tr高时,如果块和体表接触,温度T1由于从皮肤的热传递迅速上升,并接近体表温度Ts。另一方面,由于传导到块内的热量从固体块表面放热,温度T2比T1减弱,并且稳定上升。温度T1、T2的时间变化依赖于从体表到块的热传递量。从体表到块的热传递量取决于流在皮肤下的毛细血管中的血流量。要是把毛细血管看作热交换器,从毛细血管到周围的细胞组织的热传递系数可以作为血流量的函数被给出。因而,通过追踪温度T1、T2的时间变化,如果测定了从体表到块的热移动量,就可以推定从毛细血管到细胞组织的热传递量,并可以由此推定血流量。因此,通过时间方式追踪T1、T2的温度变化,如果测定了从体表到块的热传递量,就可以推定从毛细血管到细胞组织的热传递量,并由此可以推定血流量。
图2是表示在块中和体表接触部分的温度T1及离开体表接触位置的块上的位置的温度T2的测定值的时间变化的图。块和体表接触时T1测定值迅速上升,分离时缓慢下降。
图3表示通过辐射温度检测器测定的温度T3的测定值时间变化。由于作为温度T3测定来自体表的辐射的温度,因此要比其他传感器对温度变化反应敏感。由于辐射热以电磁波传播,可以在瞬间传达温度变化。因此,例如,如下面图7所示,如果将辐射温度检测器放置在靠近应检测来自体表的辐射热的块与体表接触的位置的话,就能够从温度T3的变化可以检测出块和体表的接触开始时刻tstart及接触结束时刻tend。例如,如图3所示设定温度阈值,将超过阈值时设定为接触开始时刻tstart,将从阈值开始下降时设定为接触结束时刻tend。温度阈值例如设定为32℃等。
接着,通过S型曲线例如逻辑曲线使时刻tstart和时刻tend之间的T1测定值近似。逻辑曲线采用温度为T、时刻为t的下式表示。
T=b1+c×exp(-a×i)+d]]>可以通过采用非线性最小二乘法求得系数a,b,c,d使测定值近似。对求得的近似式,把T从时刻tstart到时刻tend积分的值作为S1。
同样,由T2测定值算出积分值S2。这时,(S1-S2)越小,意味着从手指表面到T2位置的热移动量越大。另外,手指接触时间tCONT(=tend-tstart)越长,(S1-S2)越大。由此,把a5作为比例系数,把a5/(tCONT×(S1-S2))作为表示血流量的参数X5。
基于以上说明,为通过前述模型求出血液中葡萄糖浓度,需要知道室温(环境温度)、体表温度、和体表接触的块的温度变化、来自体表的辐射的温度及最少2个波长的吸光率等必要的测定量。
图4是图示各种传感器的测定值和由此导出的参数的关系的说明图。准备和体表接触的块,通过在其2处设置有2个温度传感器测定2种温度T1和T2的时间变化。另外,测定体表的辐射温度T3和室温T4。以与血红蛋白的吸收有关的至少两种波长测定吸光率A1、A2。由温度T1、T2、T3、T4得到与血流量有关的参数。由温度T3得到与辐射传热量有关的参数,由T3和T4得到与对流传热量有关的参数。另外,由吸光率A1得到与血红蛋白浓度有关的参数,由吸光率A1和A2得到与血红蛋白氧饱和度有关的参数。
接着,依据本发明的原理对实现非入侵式血糖值的具体装置结构进行说明。
图5是本发明的非入侵式血糖值测定装置的俯视图。该装置中作为体表使用指尖肚的皮肤,也可以使用其它体表。
在装置上面,设有操作部11,放置作为测定对象的手指的测定部12,显示测定结果、装置状态和测定值等的显示部13。在操作部11中,配置有为进行装置操作的4个按钮11a~11d。在测定部12中,设有盖14,打开盖14(图表示开盖的状态),在手指放置导件36中存在具有椭圆形圆周的手指放置部15。在手指放置部15中,有辐射温度传感器的开口端16、接触温度传感器部17和光学传感器部18。
图6表示装置的操作步骤。如果按操作部的按钮接通装置电源,在液晶显示器上显示“加热”,装置内的电子电路被加热。同时,检测程序运作,自动检测电子电路。如果“加热”结束,在液晶显示部显示“请放置手指”。要是将手指放置在手指放置部,在液晶显示部显示倒计时。当倒计时结束时,在液晶显示部显示“请移开手指”。如果将手指离开手指放置部,在液晶显示部显示“数据处理中”。然后,在液晶显示部显示血糖值。这时,显示的血糖值连同日期·时间存储在集成电路板(IC卡)中。要是读取显示的血糖值,按操作部的按钮。装置在约1分钟后进入等待下次测定、在液晶显示部显示“请放置手指”的状态。
图7是表示测定部详细例的图,(a)是俯视图,(b)是其XX截面图,(c)是其YY截面图。
首先,对本发明的非入侵式血糖值测定装置的温度测定进行说明。在被检测部(指尖肚)接触的部分设置有热传导率高的材料例如用金做的薄金属板21,以传热方式连接到该金属板21上的比金属板21热传导率低的材料,例如由聚氯乙烯形成的棒状的热传导部件22伸到装置内部。作为温度传感器,设有作为测定金属板21的温度并且构成同被检测部邻接的温度检测器的热敏电阻23,及作为测定仅仅距离金属板21一定距离的热传导部件部分的温度并且构成间接检测同被检测部的温度检测器的热敏电阻24。在可以看透放置在手指放置部15的被检测部(指尖肚)的装置内部位置设置有红外线透镜25,在红外线透镜25的下方通过红外线透过窗26设置有热电检测器27。另外,靠近热电检测器27设置有另一热敏电阻28。
这样测定部的温度传感器部具有4个温度传感器,测定下面的4种温度。
(1)手指表面的温度(热敏电阻23)T1(2)热传导部件的温度(热敏电阻24)T2(3)手指的辐射温度(热电检测器27)T3(4)室温(热敏电阻28)T4图8是详细表示手指放置部和手指放置导件的图。(a)是俯视图,(b)是其XX截面图。如按照上述装置操作步骤,在测定时将手指37放置在手指放置部15上进行测定。对该动作稍加详细地描述,在如图5所示的方向将装置放在被检测者的前面,手指大概保持在手指放置部15的高度同时使其水平移动,放置在手指放置部15进行测定。通过该动作,如图中所示,手指37接触手指放置部15及接触温度传感器部的金属板21而设置。
由于手指放置导件36在放置手指的动作时起以视觉方式引导手指的作用,为了可以每次都在指肚部的大致相同位置进行测定,在手指放置部15的周围设置为接近手指轮廓的椭圆形状,尺寸比手指稍大,并且,如图8(b)所示,手指放置导件36设置在放置手指时不会接触手指的位置。手指放置导件36通过不接触手指,可以手指的热量不向其传递地引导手指到手指放置部15。因此,本例的手指放置导件36的材料没有特别地限制,例如可以采用氯乙烯、ABS树脂等,插入装置本体的外装盒·传感器部或一体成型都可以。手指放置导件36的大小对应手指在横向的外径尺寸可以是20~30mm左右,在前后方向的外径尺寸可以是40~60mm左右。在手指放置导件36和手指放置部15之间,可以设有深度为3~5mm左右的沟。
在手指放置导件36和空气具有同程度的热传导率时,可以使手指37和手指放置导件36接触,可以做成物理意义上的手指定位结构。和手指接触的手指放置导件36的热传导率可以和空气实质上相同或比空气小,最好是具有空气热传导率±15%范围内的低热传导率的材料。这是由于期望在和空气中放置手指的状态尽可能相同的状态下进行测定。作为具有接近空气的热传导率的材料,例如有聚乙烯泡沫塑料(0.027W/m·k)。但是,即使采用具有小于等于0.1W/m·k的热传导率的材料也不会对测定精度产生大的影响。采用和空气具有同程度的热传导率的部件的手指放置导件36的例子如图9和图10所示。
图9是表示手指接触型手指放置导件的例子的图,(a)是俯视图,(b)是其XX截面图。如图9所示的手指放置导件,除了包围手指放置部15并朝向指肚侧的部分36以外,还具有采用低热传导部件的屏风状手指放置导件36a。在手指放置到手指放置部15上时,屏风状手指放置导件36a接触指尖决定前后方向的位置。还可以附加决定手指左右方向的位置的屏风状手指放置导件36b或36c。这些屏风状手指放置导件做成左右或前后可动,可以做成能调整到适合被检测者个人指肚的位置的结构。屏风状手指放置导件36a,36b,36c和手指的接触面积越大其越大,最好是采用具有接近空气的热传导率的材料。
在图9所示的可动结构的例子中,可动结构具有为使手指放置导件36a,36b,36c左右或前后移动的沟38,该沟在可动区域内决定手指放置导件位置,并且设有多个用于固定的楔状的凹槽。通过固定在手指放置导件上或一体成型的挡体39嵌入该凹槽中决定手指放置导件位置和对其进行固定。
图10是表示手指接触型手指放置导件的其他例的图,(a)是俯视图,(b)是其XX截面图,(c)是侧面图。手指放置导件36使用与上述同样的具有和空气同程度的热传导率的低热传导部件,手指放置导件36本身形成大致呈手指形状的凹槽。通过使手指吻合该凹槽可以将指肚定位于手指放置部而放置。
即使图9、图10所示形状以外的形状,只要手指放置导件的材料具有和空气同等的热传导率,就可以用作手指放置导件。这些手指放置导件36在将手指放置在手指放置部15时,改善了手指放置部15被指尖遮挡从而很难正确地放置指肚的状况,具有使手指放置动作容易的效果。
接着,对光学传感器部18进行说明。光学传感器部是为了求出氧供给量而测定必要的血红蛋白浓度和血红蛋白氧饱和度。要测定血红蛋白浓度和血红蛋白氧饱和度,需要测定最少2个波长下的吸光率,图7(c)表示通过2个光源33,34和1个检测器35进行2个波长测定的结构例子。
2个光纤维31,32的端部位于光学传感器部18中。光纤维31是光照射用的光纤维,光纤维32是接受光用的光纤维。如图7(c)所示,光纤维31和形成支线的纤维31a,31b连接,在其末端设置有2个波长的发光二极管33,34。在接受光用的光纤维32的末端设置有光电二极管35。发光二极管33发射出波长810nm的光,发光二极管34发射出波长950nm的光。波长810nm是携氧血红蛋白和脱氧血红蛋白的摩尔吸光系数相等时的等吸光波长,波长950nm是携氧血红蛋白和脱氧血红蛋白的摩尔吸光系数的差值大时的波长。
2个发光二极管33,34分时地发光,由发光二极管33,34发出的光通过光照射用光纤维31照射到被检测者的手指上。照射到手指的光在手指的皮肤反射,射入接受光用光纤维32中通过光电二极管35被检测出。照射到手指的光在手指的皮肤反射时,一部分光通过皮肤侵入组织内部,由毛细血管中流着的血液中的血红蛋白所吸收。光电二极管35的测定数据为反射率R,吸光率用log(1/R)来近似地计算。通过波长810nm和波长950nm的光各自进行照射,各自测定R值,并且求出log(1/R),来测定波长810nm的吸光率A1和波长950nm的吸光率A2。
假设脱氧血红蛋白浓度为[Hb],携氧血红蛋白浓度为[HbO2],用下式表示吸光率A1和吸光率A2。
A1=a×([Hb]×AHb(810nm)+[HbO2]×AHbO2(810nm))]]>=a×([Hb]+[HbO2])×AHbO2(810nm)]]>A2=a×([Hb]×AHb(950nm)+[HbO2]×AHbO2(950nm))]]>=a×([Hb]+[HbO2])×((1-[HbO2][Hb]+[HbO2])×AHb(950nm)+[HbO2][Hb]+[HbO2]×AHbO2(950nm))]]>AHb(810nm)和AHb(950nm)、AHbO2(810nm)和AHbO2(950nm)分别为脱氧血红蛋白、携氧血红蛋白的摩尔吸光系数,在各波长下为已知。a为比例系数。可以从上式求出血红蛋白浓度([Hb]+[HbO2])、血红蛋白氧饱和度{[HbO2]/[Hb]+[HbO2]}如下。
+[HbO2]=A1a×AHbO2(810nm)]]>[HbO2][Hb]+[HbO2]=A2×AHbO2(810nm)-A1×AHb(950nm))A1×(AHbO2(950nm)-AHb(950nm))]]>另外,这里对通过2个波长下的吸光率测定对测定血红蛋白浓度和血红蛋白氧饱和度的例子进行了说明,但也可通过用3个以上波长测定吸光率,来降低阻碍成分的影响,提高测定精度。
图11是表示装置中的数据处理的流程的概念图。在该例子的装置中,存在由热敏电阻23、热敏电阻24、热电检测器27、热敏电阻28和光电二极管35组成的5个传感器。由于以光电二极管35测定波长810nm的吸光率和波长950nm的吸光率,故在装置中输入6种测定值。
5种模拟信号各自经过A1~A5的放大器,通过AD1~AD5的模数转换器进行数字转换。由进行数字转换后的值计算参数xi(i=1,2,3,4,5)。具体地xi表示如下(a1~a5是比例系数)。
和热辐射成比例的参数x1=a1×(T3)4和热对流成比例的参数x2=a2×(T4-T3)和血红蛋白浓度成比例的参数x3=a3×(A1a×AHbO2(810nm))]]>和血红蛋白氧饱和度成比例的参数x4=a4×(A2×AHbO2(810nm)-A1×AHb(950nm)A1×(AHbO2(950nm)-AHb(950nm)))]]>和血流量成比例的参数x5=a5×(1tCONT×(S1-S2))]]>接着,根据由实际的多数健康者及糖尿病患者的数据得到的参数xi的平均值和标准偏差计算出标准化参数。通过下面的公式由各参数xi计算标准化参数Xi(i=1,2,3,4,5)。
Xi=xi-x‾iSD(xi)]]>xi参数 参数的平均值SD(xi)参数的标准偏差取前述的5个标准化参数,进行为进行最终显示的葡萄糖浓度的变换计算。在处理计算中必要的程序储存在ROM中,该ROM安装于装在装置里的微处理器中。另外,在处理计算中必要的储存区同样地由安装在装置中的RAM(随机存取储存器)来保证。计算处理的结果显示在液晶显示器上。
在ROM中存入了作为处理计算时必要的程序组成要素,特别是为求出葡萄糖浓度C的函数。该函数定义如下。首先,C用下面的式(1)表示。ai(i=0,1,2,3,4,5)预先由多个测定数据决定。求ai的步骤如下。
(1)形成表示标准化参数和葡萄糖浓度C的关系的多重回归式。
(2)由通过最小二乘法得到的式子求出和标准化参数有关的标准方程式(联立方程式)。
(3)由标准方程式求出系数ai(i=0,1,2,3,4,5)的值,代入多重回归式中。
首先,做出表示葡萄糖浓度C和标准化参数X1,X2,X3,X4,X5关系的下面的回归式(1)。
C=∫(X1,X2,X3,X4,X5)=a0+a1X1+a2X2+a3X3+a4X4+a5X5……(1)接着,为了求出和酶电极法的葡萄糖浓度值Ci的误差最小的多重回归式,采用最小二乘法。假设残差的平方和为D,D用下式(2)表示。
D=Σi=1ndi2]]>=Σi=1n(Ci-f(Xi1,Xi2,Xi3,Xi4,Xi5))2]]>=Σi=1n{Ci-(a0+a1Xi1+a2Xi2+a3Xi3+a4Xi4+a5Xi5)}2......(2)]]>
由于在以a0,a1,…,a5对式(2)偏微分等于零时,残差的平方和D最小,从而得到下式。
∂D∂a0=-2Σi=1n{Ci-(a0+a1Xi1+a2Xi2+a3Xi3+a4Xi4+a5Xi5)}=0]]>∂D∂a1=-2Σi=1nXi1{Ci-(a0+a1Xi1+a2Xi2+a3Xi3+a4Xi4+a5Xi5)}=0]]>∂D∂a2=-2Σi=1nXi2{Ci-(a0+a1Xi1+a2Xi2+a3Xi3+a4Xi4+a5Xi5)}=0]]>∂D∂a3=-2Σi=1nXi3{Ci-(a0+a1Xi1+a2Xi2+a3Xi3+a4Xi4+a5Xi5)}=0]]>∂D∂a4=-2Σi=1nXi4{Ci-(a0+a1Xi1+a2Xi2+a3Xi3+a4Xi4+a5Xi5)}=0]]>∂D∂a5=-2Σi=1nXi5{Ci-(a0+a1Xi1+a2Xi2+a3Xi3+a4Xi4+a5Xi5)}=0......(3)]]>假设C,X1~X5的平均值各自为Cmean,X1mean~X5mean,由于Ximean=0(i=1~5),由式(1)得到式(4)。
a0=Cmean-a1X1mean-a2X2mean-a3X3mean-a4X4mean-a5X5mean=Cmean……(4)另外,标准化参数之间的变动·共变用式(5)表示,标准化参数Xi(i=1~5)和C的共变用式(6)表示。
Sij=Σk=1n(Xki-Ximean)(Xkj-Xjmean)=Σk=1nXkiXkj(i,j=1,2,..5)......(5)]]>SiC=Σk=1n(Xki-Ximean)(Ck-Cmean)=Σk=1nXki(Ck-Cmean)(i=1,2,..5)......(6)]]>把式(4)(5)(6)代入式(3)进行整理,得到联立方程式(标准方程式)(7),通过解该方程求出a1~a5。
a1S11+a2S12+a3S13+a4S14+a5S15=S1Ca1S21+a2S22+a3S23+a4S24+a5S25=S2Ca1S31+a2S32+a3S33+a4S34+a5S35=S3Ca1S41+a2S42+a3S43+a4S44+a5S45=S4Ca1S51+a2S32+a3S53+a4S34+a5S35=S5C……(7)
用式(4)求出常数项a0。以上求得的ai(i=0,1,2,3,4,5)在装置制造时被储存在ROM中。在利用装置作实际测定中,通过把由测定值求出的标准化参数X1~X5代入回归式(1)中,计算出葡萄糖浓度C。
下面给出葡萄糖浓度计算过程的具体例子。预先由对健康者及糖尿病患者测定的多个数据确定回归式(1)的系数,把下面的葡萄糖浓度的计算式储存在微处理器的ROM中。
C=99.4+18.3×X1-20.2×X2-23.7×X3-22.0×X4-25.9×X5X1~X5是对参数x1~x5标准化后的参数。假定参数的分布是标准分布,标准化参数的95%取从-2到2之间的值。
以健康者的测定值作为一个例子,把标准化参数X1=-0.06、X2=+0.04、X3=+0.05、X4=-0.12、X5=+0.10代入上述的式子中,得到C=96mg/dl。另外,以糖尿病患者的测定值作为一个例子,把标准化参数X1=+1.15、X2=-1.02、X3=-0.83、X4=-0.91、X5=-1.24代入上述的式子中,得到C=213mg/dl。
以往的测定方法即酶电极法中,使通过采血得到的血液和试剂反应,由该反应测定产生的电子量,测定血糖值。下面对酶电极法的测定结果和本发明的一个实施例的测定结果进行陈述。以健康者的测定值为一个例子,在酶电极法的葡萄糖浓度为89mg/dl时,把同时刻通过本发明方法测定得到的标准化参数X1=-0.06、X2=+0.04、X3=+0.05、X4=-0.12、X5=+0.10代入上述的式子中,得到C=96mg/dl。另外,以糖尿病患者的测定值作为一个例子,在酶电极法的葡萄糖浓度为238mg/dl时,把同时刻通过本发明方法测定得到的标准化参数X1=+1.15、X2=-1.02、X3=-0.83、X4=-0.91、X5=-1.24代入上述的式子中,得到C=213mg/dl。由上述的结果,通过本发明方法可以高精度地求出葡萄糖浓度得到证实。
图12是以纵轴为本发明方法的葡萄糖浓度的计算值,横轴为酶电极法的葡萄糖浓度的测定值,针对多个患者绘制各自的测定值的图。通过按照本发明方法测定氧供给量·血流量可以得到良好的相关(相关系数=0.9324)。
在上述的实施例中,与血液中血红蛋白浓度及血液中血红蛋白氧饱和度有关的参数通过以分光学方式测定血液中的血红蛋白求得。可是,由于血红蛋白浓度对于无贫血、出血及红血球增加症等症状的人是稳定的,而且,血红蛋白浓度对于男性为13~18g/dL、女性为12~17g/dL是正常值,血红蛋白浓度正常值的变化幅度范围为5~6%,在上述的血糖值计算式中与血流量有关的项的加权比其他项小,因此,即使作为常数处理也不会太大地损害精度。同样,关于血红蛋白氧饱和度,若在大气压下呼吸空气、处于安静、轻松的状态下,其稳定在97~98%,因此,也可以作为常数处理。因而,血红蛋白浓度和血红蛋白氧饱和度可以作为常数处理,氧供给量可以由血红蛋白浓度常数、血红蛋白氧饱和度常数和血流量的积求出。
通过将血红蛋白浓度和血红蛋白氧饱和度可以作为常数处理,对于用于血糖值测定的传感器结构上,可以去除光学传感器等而加以简化。另外,通过省略光学测定的时间及光学测定结果处理的时间,可以实现血糖值测定的一系列快速化。
另外,由于血红蛋白氧饱和度特别是安静时形成稳定的值,如果把血红蛋白浓度和血红蛋白氧饱和度作为常数处理,特别是在安静时的血糖值测定中可以提高测定精度,并且可以实现血糖值测定的一系列快速化。在此,所谓安静时是指在坐在椅子上或躺着身体几乎不活动的状态经过了5分钟左右的时候。
下面,对将血红蛋白浓度和血红蛋白氧饱和度作为常数处理的实施例进行说明。本实施例除了将血红蛋白浓度和血红蛋白氧饱和度作为常数处理以外,由于和上述实施例同样,在此,主要对和上述实施例不同的地方进行说明。
本实施例不测定图4中血红蛋白浓度和血红蛋白氧饱和度,而作为常数处理。因而,本实施例的测定部如图13所示,做成从图7所示的上述实施例的测定部去除光源33,34、光电二极管35及光纤维31,32的结构。另外,作为使手指正确地放置在手指放置部15上的手指放置导件36,在测定部中具有和采用图8、图9、图10说明的上述实施例相同结构的手指放置导件。在本实施例中使用的参数是与热辐射成比例的参数x1、与热对流成比例的参数x2及与氧供给量成比例的参数x3(以下,与氧供给量成比例的参数表示为x3),由这些参数如上述计算出标准化参数,根据该3个标准化参数Xi(i=1,2,3)计算葡萄糖浓度。在数据处理中,可以省略上述实施例中必需的“由光学计测量数据到标准化参数的转换处理”(参照图11)。
图14是表示本实施例装置的功能块图的图。该装置由电池41驱动。通过由温度传感器构成的传感器部43测定的信号进入和各信号对应设置的模数转换器44(模数转换器AD1~AD4)转换成数字信号。作为微处理器45的外围电路,具有模数转换器AD1~AD4、液晶显示器13、RAM42,它们各自通过总线46被微处理器45所访问。另外,按钮11a~11d各自和微处理器45连接。微处理器45内部装有存储了软件的ROM。另外,微处理器45可以通过按按钮11a~11d接受来自外部的指令。
装在微处理器45内的ROM47存储计算处理中必要的程序。即,具有运算部的功能。微处理器45内部还装有存储血红蛋白浓度的常数的血红蛋白浓度常数存储部48、存储血红蛋白氧饱和度的常数的血红蛋白氧饱和度常数存储部49。计算程序在手指的测定结束后,从血红蛋白浓度常数存储部48和血红蛋白氧饱和度常数存储部49找出最佳常数进行计算。另外,在计算处理中必要的存储区域同样由编入在装置中的RAM42确保。计算处理的结果显示在液晶显示部。
在ROM中存入了作为处理计算时必要的程序组成要素,特别是为求出葡萄糖浓度C的函数。该函数定义如下。首先,C用下面的式(8)表示。ai(i=0,1,2,3)预先由多个测定数据决定。求ai的步骤如下。
(1)形成表示标准化参数和葡萄糖浓度C的关系的多重回归式。
(2)由通过最小二乘法得到的式子求出和标准化参数有关的标准方程式(联立方程式)。
(3)由标准方程式求出系数ai(i=0,1,2,3)的值,代入多重回归式中。
首先,做出表示葡萄糖浓度C和标准化参数X1,X2,X3之关系的下面的回归式(8)。
C=f(X1,X2,X3)=a0+a1X1+a2X2+a3X3……(8)接着,为了求出和酶电极法的葡萄糖浓度值Ci的误差最小的多重回归式,采用最小二乘法。假设残差的平方和为D,D用下式(9)表示。
D=Σi=1ndi2]]>=Σi=1n(Ci-f(Xi1,Xi2,Xi3))2]]>=Σi=1n{Ci-(a0+a1Xi1+a2Xi2+a3Xi3)}2......(9)]]>由于在以a0~a3对式(9)偏微分等于零时,残差的平方和D最小,从而得到下式。
∂D∂a0=-2Σi=1n{Ci-(a0+a1Xi1+a2Xi2+a3Xi3)}=0]]>∂D∂a1=-2Σi=1nXi1{Ci-(a0+a1Xi1+a2Xi2+a3Xi3)}=0]]>∂D∂a2=-2Σi=1nXi2{Ci-(a0+a1Xi1+a2Xi2+a3Xi3)}=0]]>∂D∂a3=-2Σi=1nXi3{Ci-(a0+a1Xi1+a2Xi2+a3Xi3)}=0......(10)]]>假设C,X1~X3的平均值各自为Cmean,X1mean~X3mean,由于Ximean=0(i=1~3),由式(8)得到式(11)。
a0=Cmean-a1X1mean-a2X2mean-a3X3mean=Cmean……(11)另外,标准化参数之间的变动·共变用式(12)表示,标准化参数Xi(i=1~3)和C的共变用式(13)表示。
Sij=Σk=1n(Xki-Ximean)(Xkj-Xjmean)=Σk=1nXkiXkj(i,j=1,2,3)......(12)]]>SiC=Σk=1n(Xki-Ximean)(Ck-Cmean)=Σk=1nXki(Ck-Cmean)(i=1,2,3)......(13)]]>
把式(11)(12)(13)代入式(10)进行整理,得到联立方程式(标准方程式)(14),通过解该方程求出a1~a3。
a1S11+a2S12+a3S13=S1Ca1S21+a2S22+a3S23=S2Ca1S31+a2S32+a3S33=S3C……(14)用式(11)求出常数项a0。以上求得的ai(i=0,1,2,3)在装置制造时被储存在ROM中。在利用装置作实际测定中,通过把由测定值求出的标准化参数X1~X3代入回归式(8)中,计算出葡萄糖浓度C。
下面表示葡萄糖浓度计算过程的具体例。预先由对健康者及糖尿病患者测定的多个数据确定回归式(8)的系数,把下面的葡萄糖浓度的计算式储存在微处理器的ROM中。
C=101.7+25.8×X1-23.2×X2-12.9×X3X1~X3是对参数x1~x3标准化后的参数。假定参数的分布是标准分布,标准化参数的95%取从-2到+2之间的值。
以健康者的测定值作为一个例子,把标准化参数X1=-0.06、X2=+0.04、X3=+0.10代入上述的式子中,得到C=101mg/dl。另外,以糖尿病患者的测定值作为一个例子,把标准化参数X1=+1.35、X2=-1.22、X3=-1.24代入上述的式子中,得到C=181mg/dl。另外,在上式中血红蛋白浓度定为常数15g/dl,血红蛋白氧饱和度定为常数97%。
在以往的测定方法即酶电极法中,使通过采血得到的血液和试剂反应,由该反应测定产生的电子量,测定血糖值。下面对酶电极法的测定结果和本发明的一个实施例的测定结果进行陈述。以健康者的测定值为一个例子,在酶电极法的葡萄糖浓度为93mg/dl时,把同时刻通过本发明方法测定得到的标准化参数X1=-0.06、X2=+0.04、X3=+0.10代入上述的式子中,得到C=101mg/dl。另外,以糖尿病患者的测定值作为一个例子,在酶电极法的葡萄糖浓度为208mg/dl时,把同时刻通过本发明方法测定得到的标准化参数X1=+1.35、X2=-1.22、X3=-1.24代入上述的式子中,得到C=181mg/dl。该计算结果表现出约13%的误差,但由于一般地为血糖测定的装置被制作成通常容许15~20%的误差,因此该水平的精度被认为是足够的精度。由上述的结果,通过本发明方法可以高精度地求出葡萄糖浓度得到证实。
图15是以纵轴为本发明方法的葡萄糖浓度的计算值,横轴为酶电极法的葡萄糖浓度的测定值,针对多个患者绘制各自的测定值的图。通过按照本发明方法测定可以得到良好的相关(相关系数=0.8932)。
权利要求
1.一种血糖值测定装置,其特征在于,具有测定来自体表的多个温度、得到用于计算出与来自上述体表的散热有关的对流传热量和辐射传热量的信息的热量测定部,得到与血液中氧量有关的信息的氧量测定部,存储与上述多个温度及上述血液中氧量各自对应的参数和血糖值的关系的存储部,将由上述热量测定部及上述氧量测定部输入的多个测定值各自转换成上述参数、并将上述参数适用于存储在上述存储部的上述关系中计算上述血糖值的计算部,显示由上述计算部计算出的血糖值的显示部;上述氧量测定部具有得到与血流量有关的信息的血流量测定部和得到血液中的血红蛋白浓度、血红蛋白氧饱和度的光学测定部,上述血流量测定部具有体表接触部、引导被检测体到上述体表接触部的导件、与上述体表接触部邻接设置的邻接温度检测器、检测出离开上述体表接触部的位置的温度的间接温度检测器、连接上述体表接触部和上述间接温度检测器的热传导部件。
2.根据权利要求1所述的血糖值测定装置,其特征在于,上述导件设成包围着上述体表接触部。
3.根据权利要求1所述的血糖值测定装置,其特征在于,上述导件具有决定被检测体位置的止动件。
4.根据权利要求3所述的血糖值测定装置,其特征在于,上述止动件具有确定被检测体的前端位置的第1止动件和确定被检测体的宽度方向位置的第2及第3止动件。
5.根据权利要求3所述的血糖值测定装置,其特征在于,上述止动件位置可调。
6.根据权利要求1所述的血糖值测定装置,其特征在于,上述导件具有仿照被检测体形状的凹槽。
7.一种血糖值测定装置,其特征在于,其具有测定环境温度的环境温度测定器,接触体表的体表接触部,引导被检测体到上述体表接触部的导件,邻接上述体表接触部设置的邻接温度检测器,测定来自上述体表的辐射热的辐射热检测器,连接上述体表接触部设置的热传导部件,邻接上述热传导部件并且设置在离开上述体表接触部的位置、检测出离开上述体表接触部的位置的温度的间接温度检测器,向上述体表接触部照射至少2个不同波长的光的光源,检测出上述光在上述体表反射产生的反射光的光检测器,具有将上述邻接温度检测器、上述间接温度检测器、上述环境温度测定器、上述辐射热检测器及上述光检测器各自的输出各自转换成参数的转换部和预先存储上述参数和血糖值的关系、并将上述参数适用于上述关系计算出血糖值的处理部的计算部,显示由上述计算部输出的血糖值的显示部。
8.根据权利要求7所述的血糖值测定装置,其特征在于,上述导件设成包围着上述体表接触部。
9.根据权利要求7所述的血糖值测定装置,其特征在于,上述导件具有决定被检测体位置的止动件。
10.根据权利要求9所述的血糖值测定装置,其特征在于,上述止动件具有确定被检测体的前端位置的第1止动件和确定被检测体的宽度方向位置的第2及第3止动件。
11.根据权利要求9所述的血糖值测定装置,其特征在于,上述止动件位置可调。
12.根据权利要求9所述的血糖值测定装置,其特征在于,上述止动件具有小于等于0.1W/m·k的热传导率。
13.根据权利要求7所述的血糖值测定装置,其特征在于,上述导件具有仿照被检测体形状的凹槽。
14.一种血糖值测定装置,其特征在于,其具有测定环境温度的环境温度测定器,接触体表的体表接触部,引导被检测体到上述体表接触部的导件,邻接上述体表接触部设置的邻接温度检测器,测定来自上述体表的辐射热的辐射热检测器,连接上述体表接触部设置的热传导部件,邻接上述热传导部件并且设置在离开上述体表接触部的位置、检测出离开上述体表接触部的位置的温度的间接温度检测器,存储与血液中血红蛋白浓度和血红蛋白氧饱和度有关的信息的存储部,具有将上述邻接温度检测器、上述间接温度检测器、上述环境温度测定器及上述辐射热检测器的输出转换成多个参数的转换部和预先存储上述参数和血糖值的关系、并将上述参数适用于上述关系计算出血糖值的处理部的计算部,显示由上述计算部输出的血糖值的显示部。
15.根据权利要求14所述的血糖值测定装置,其特征在于,上述导件设成包围着上述体表接触部。
16.根据权利要求14所述的血糖值测定装置,其特征在于,上述导件具有决定被检测体位置的止动件。
17.根据权利要求16所述的血糖值测定装置,其特征在于,上述止动件具有确定被检测体的前端位置的第1止动件和确定被检测体的宽度方向位置的第2及第3止动件。
18.根据权利要求16所述的血糖值测定装置,其特征在于,上述止动件位置可调。
19.根据权利要求16所述的血糖值测定装置,其特征在于,上述止动件具有小于等于0.1W/m·k的热传导率。
20.根据权利要求14所述的血糖值测定装置,其特征在于,上述导件具有仿照被检测体形状的凹槽。
全文摘要
本发明提供了一种基于温度测定进行非入侵式血糖值测定的血糖值测定装置。本发明采用的解决方案是通过用血液中氧饱和度和血流量修正温度测定方式的非入侵式血糖值测定值,谋求测定数据的稳定化。并设置有为引导被检测部到测定部的导件。
文档编号G01N33/66GK1657006SQ20041003165
公开日2005年8月24日 申请日期2004年3月31日 优先权日2004年2月17日
发明者赵玉京, 金允玉, 佐藤信彦, 三卷弘 申请人:株式会社日立制作所