利用腔环降光谱法的锥形光纤应变仪的制作方法

文档序号:6089992阅读:377来源:国知局
专利名称:利用腔环降光谱法的锥形光纤应变仪的制作方法
技术领域
本发明一般涉及腔环降检测系统,尤其涉及利用腔环降光谱法(cavity ring-down spectroscopy)的光纤应变仪(fiber optic straingauge)。
背景技术
尽管本申请涉及利用腔环降检测对材料进行应变测量,但是下面的吸收光谱学的背景对于理解本发明是很有用的。
现在参考附图,在所有附图中,相同的附图标记表示相同的元件,

图1以对数比例示出了电磁波谱。光谱学研究光谱。不同于关注光谱其他部分的科学,光学特别涉及可见光和近可见光——在从大约1mm到大约1nm的波长内延伸的非常窄的那部分可用光谱。近可见光包括比红光更红的颜色(红外线)以及比紫光更紫的颜色(紫外线)。该范围正好足够远地延伸到可见光的每一端,从而该可见光仍然可由通常材料制成的大多数透镜和反射镜加以处理。通常必须考虑材料的光学性质对波长的依赖性。
吸收型光谱学提供了高灵敏度、微秒数量级的响应时间、免于中毒,以及与除了在研究中的物质之外的分子物质(species)的有限干扰。通过吸收光谱法可以检测或识别各种分子物质。这样,吸收光谱学提供了检测重要且痕量的物质(trace species)的一般方法。在气相中,由于这些物质的吸收强度集中在一组清楚的谱线上,因此该方法的灵敏度和选择性最佳。光谱中的窄线可用于区别出最有可能相互干扰的物质。
在许多工业生产过程中,必须以高速和高精确度来测量和分析在流动的气流和液体中的痕量物质的浓度。由于污染物的浓度对最终产品的质量经常是很关键的,因此需要这种测量和分析。例如,使用诸如N2、O2、H2、Ar和He的气体来制造集成电路,在那些气体中存在杂质(即使是百亿分之几(ppb)的级别)是具有破坏性的,并且降低了运算电路的产量。因此,利用光谱方法以相对较高的灵敏度监控水的这种相对较高的灵敏度对于制造在半导体工业中所用的高纯度气体是很重要的。在其他工业应用中也必须检测各种杂质。此外,液体中杂质的存在,无论是固有的杂质还是故意放置的杂质,均已成为近期特别关注的问题。
光谱法已经达到对于高纯度气体中的气态污染物的百万分之几(ppm)级别的检测。在一些情况下可达到ppb级别的检测灵敏度。因此,已经将几种光谱方法应用于诸如对气体的定量污染监控的应用中,这些光谱法包括在传统的长光程长度(pathlength)单元中的吸收测量、光声光谱法、频率调制光谱法,和腔内激光吸收光谱法。这些方法具有几个特点,这在授予Lehmann的美国专利US5528040中进行了讨论,这些特征使其很难用于一些工业应用,并且对这些工业应用来说不切实际。因此,它们主要限制于实验室研究。
相反,腔环降光谱法(CRDS)已经成为应用于科学、工业生产过程控制和大气痕量气体检测的一项重要的光谱技术。作为用于测量光学吸收的技术,已经证明CRDS在常规方法灵敏度不足的低吸收率状态中显示出卓越性能。CRDS利用高精密(high-finesse)光学谐振腔中的光子的平均寿命作为可观测的吸收-灵敏度。
通常,谐振腔由一对标称上等价的、窄带的超高反射率介质镜来形成,对其进行适当地配置以形成稳定的光学谐振腔。激光脉冲通过反射镜输入到该谐振腔中,从而经历平均寿命,该平均寿命取决于光子来回行程的传播时间(round-trip transit time)、谐振腔的长度、物质的吸收横截面和数密度,以及说明谐振腔固有损耗(当衍射损耗可以忽略时主要由依赖频率的镜面反射率而引起)的因子。因此,光学吸收的确定从常规的功率比测量变为衰减时间的测量。CRDS的极限灵敏度由谐振腔固有损耗的量来确定,利用能够制作超低损耗光学系统的诸如超磨光的技术可以使得该谐振腔固有损耗变为最小。
目前,CRDS限制为能够利用高反射率介质镜的光谱区域。这大大限制了该方法在大量紫外线和红外线区域中的使用,这是因为目前不能获得具有足够高反射率的反射镜。甚至在可获得适当介质镜的区域中,每组反射镜也仅仅允许在很小的波长范围内工作,通常是百分之几的小范围。此外,许多介质镜的构造所需要使用的材料可能随时间退化,特别是当暴露于化学腐蚀环境时。由于存在的限制限定了或阻碍了在许多潜在应用中使用CRDS,因此,已经清楚地认识到需要对谐振腔构造方面的当前技术状态进行改进。
A.Pipino等人在Rev.Sci.Instrum.68(8)(1997年8月)所发表的论文“具有全内反射小型腔的渐逝波腔环降光谱法(Evanescent wavecavity ring-down spectroscopy with a total-internal reflectionminicavity)”提出了一种改进的谐振腔构造的方法。该方法利用正多边形几何形状(例如正方形和八边形)的单块全内反射(TIR)环谐振腔,其具有至少一个凸面从而产生稳定性。通过位于谐振腔外面及其附近的第一棱镜将光脉冲全反射,产生通过光子隧穿(tunneling)而进入该谐振腔并激发谐振腔的稳定模式的渐逝波。当光以大于临界角入射在较低折射率的传播介质的表面上时,这些光被完全反射。J.D.Jackson“经典电动力学(Classical Electrodynamics)”第七章,JohnWiley&Sons有限公司纽约,NY(1962)。但是,存在除了非传播的反射点之外的场,且其随着与界面的距离而按指数规律衰减。该渐逝场不在纯电介质中传输功率,但是反射波的衰减允许观察在该渐逝场中存在的吸收物质。F.M.Mirabella(ed.),“内反射光谱学(InternalReflection Spectroscopy)”第2章,Marcel Dekker有限公司纽约,NY(1993)。
根据单块谐振腔中的光子的平均寿命来获得位于谐振腔的全反射表面的物质的吸收光谱,这可通过利用第二棱镜(也是位于该谐振腔的外面,但在其附近的全反射棱镜)向外耦合而从检测器处接收到的信号的时间依赖性中而提取出。这样,通过光子隧穿,光辐射进入和射出该谐振腔,这允许精确地控制输入和输出耦合。CRDS的小型谐振腔得以实现,并且TIR环谐振腔将CRDS概念延伸到凝聚态物质光谱法。TIR的宽带特性避开了在常规气相CRDS中由介质镜强加的窄带宽限制。A.Pipino等人的成果仅仅适用于TIR光谱学,将其固有地限制于短的完全吸收光程长度,并因此限制于很强的吸收强度。相反,本发明提供长的吸收通路长度,因此允许检测弱的吸收强度。
在授予Lehmann等人的美国专利US5973864、US6097555、US6172823B1和US6172824B1中提供了基于反射镜的CRDS系统的各种新方法,这些专利在此引入作为参考。这些方法给出了使用由两个反射元件或棱镜元件形成近共焦谐振腔的启示。
图2说明现有技术的CRDS装置10。如图2中所示,由窄带、可调的连续波二极管激光器20产生光。温度控制器30对激光器20进行温度调节,以使其波长处于分析物的所需谱线上。隔离器40位于从激光器20发出的辐射之前且与该辐射同轴。隔离器40提供单向传输路径,使辐射沿远离激光器20的方向传播,但防止辐射沿反向传播。单模光纤耦合器(F.C.)50将激光器20发出的光耦合到光纤48中。光纤耦合器50位于隔离器40之前并于该隔离器同轴。光纤耦合器50容纳且保持光纤48,并将激光器20发出的辐射导向第一透镜46并使其通过第一透镜46。第一透镜46收集该辐射并使其聚焦。由于激光器20发出的光束模式(beam pattern)与在光纤48中传播的光模式(pattern of light)不完全匹配,因此,存在不可避免的失配损耗。
激光辐射近似模式匹配到环降腔(RDC)单元60中。反射镜52将该辐射导向分束器54。分束器54将大约90%的辐射引导通过第二透镜56。第二透镜56将该辐射收集到单元60中并使其聚焦。剩余的辐射穿过分束器54,并由反射镜58引导到分析物参考单元90中。
透射通过分析物参考单元90的辐射导向第四透镜92并通过第四透镜92。第四透镜92在分析物参考单元90和第二光电检测器94(PD 2)之间对准。光电检测器94向计算机和控制电子设备100提供输入。
单元60由两个高度反射镜62、64制成,这两个反射镜作为近共焦标准具沿着轴a对准。反射镜62、64构成单元60的输入和输出窗。所研究的样品气体流过狭窄的管66,该管与单元60的光轴a共轴。反射镜62、64放置在用真空密闭的波纹管密封的可调凸缘或架上,从而对单元60的光学对准进行调节。
反射镜62、64具有高反射率介质涂层,并利用面向由单元60形成的空腔内部的涂层来定向。一小部分激光通过前反射镜62进入单元60,并在单元60的空腔内部往复“环绕”。将透过单元60的后反射镜64(反射器)的光导向第三透镜68,并通过该第三透镜,又成像到第一光电检测器70(PD1)上。光电检测器70、94中的每一个都将输入的光束变为电流,从而向计算机和控制电子设备100提供输入信号。该输入信号代表空腔环降的衰减率。
图3说明在现有技术的CRDS谐振腔100中的光路。如图3中所示,用于CRDS的谐振腔100基于利用两个布儒斯特角后向反射器棱镜50、52。偏振或布儒斯特角ΘB以相对于棱镜50而示出。入射光12和出射光14分别以入射到棱镜52和从棱镜52出射来进行说明。谐振光束在每个棱镜50、52中经历两次大约45°的无损全内反射,该角度大于熔融石英和大多数其他普通光学棱镜材料的临界角。光沿着光轴54在棱镜50、52之间传播。
发明人已经发现,CRDS提供的优点可适用于测量在材料中产生的应变。常规的应变测量设备依靠电阻变化或信号损失来确定材料中产生的应变程度。但是这些方法的缺点在于,这些系统所固有的低灵敏度致使它们不足以用于测量在检查中的材料的微小变化。
为了克服测量应变的已知方法的这些缺点,提供一种利用腔环降光谱法的基于光纤的应变仪。

发明内容
鉴于现有技术的缺点,并鉴于本发明的目的,本发明提供一种与相干辐射源一同使用的装置,用以测量基底中产生的应变。该装置包括无源光纤环;至少一个传感器,其具有预定形状并与该光纤环同轴,该至少一个传感器与基底耦合;耦合装置,用于i)将该相干源发出的一部分辐射引入到该无源光纤环中,ii)接收在该无源光纤环中谐振的一部分辐射;检测器,用于检测由该耦合装置接收的辐射大小并产生响应于此的信号;以及与该检测器耦合的处理器,用于根据在该无源光纤环中的辐射的衰减率来确定基底中产生的应变程度。
根据本发明的另一方面,该预定形状是在与基底连接的传感器的两端之间形成的松弛区域。
根据本发明的又一方面,该检测器产生的信号是基于当基底中产生应变时传感器的预定形状的变化。
根据本发明的再一方面,该装置进一步包括放置在该耦合装置与该检测器之间的光路中的滤光器,从而有选择地使辐射的接收部分从该无源光纤环传递到该检测器。
根据本发明的又一方面,该滤光器根据辐射的波长将该辐射传递到该检测器。
根据本发明的再一方面,该耦合装置包括i)第一耦合器,用于将该相干源发出的部分辐射引入到该光纤的第一部分,ii)第二耦合器,用于在光纤的第二部分处接收该光纤中的那部分辐射。
根据本发明的又一方面,该传感器具有在传感器的两端之间形成且暴露于周围环境中的锥形部分。
根据本发明的再一方面,该装置包括隔离器,该隔离器耦合在该激光器和该耦合装置之间并与该激光器发出的辐射同轴,该隔离器使该激光器中的噪声最小。
根据本发明的另一方面,当基底中产生应变时,该光纤发出的辐射的耗散改变由该耦合装置接收到的辐射的衰减率。
根据本发明的另一方面,该装置进一步包括控制装置,用于在该输入检测器确定激光器将能量供给该光纤之后,根据从该光纤接收辐射的接收装置,使该激光器不起作用。
根据本发明的再一方面,一种测量材料中的应变的方法,包括由通过使一部分光纤成锥形的光纤形成传感器;将该传感器与该材料连接,从而使该传感器的两端之间的部分具有预定的松弛量;使材料受到应变;从相干源发出辐射;将该相干源发出的辐射的至少一部分耦合到该光纤环中;接收在该光纤环中传播的一部分辐射;以及根据在该光纤环中的辐射的第一衰减率来确定应变程度。
根据本发明的再一方面,在该光纤中传播的辐射的渐逝场暴露于围绕该材料的周围环境中。
根据本发明的再一方面,该方法进一步包括确定表示材料的松弛状态的该光纤中的基线衰减率;以及将该基线衰减率与第一衰减率进行比较。
应该理解,前面的概述和下面的详述都是示范性的,而不是对本发明的限制。
附图简述当结合附图阅读以下详细描述时,可从这些描述中最好地理解本发明。要强调的是,根据一般惯例,附图的各个特征不是按照比例绘制的。相反,出于清楚的原因任意扩大或缩小了各个特征的尺寸。附图中包括下面各幅图图1说明按照对数比例的电磁波谱;图2说明利用反射镜的现有技术的CRDS系统;图3说明利用棱镜的现有技术的CRDS单元(cell);图4是本发明的第一示范性实施例的图解;图5A是常规光纤的端视图;图5B是根据本发明示范性实施例的传感器的透视图;图6A是说明辐射在光纤缆中传播的该光纤缆的横截面视图;图6B是说明根据本发明示范性实施例的渐逝场的光纤传感器的横截面;图6C是说明根据本发明另一示范性实施例的渐逝场的光纤传感器的横截面;图7是本发明第二示范性实施例的图解;图8A-8D是根据本发明第三示范性实施例的光纤传感器的图解;图9A-9C是根据本发明第四示范性实施例的光纤传感器的图解;图10A-10C是根据本发明第五示范性实施例的光纤传感器的图解;图11是在应变测量应用中的本发明示范性实施例的方框图;图12是供图11的示范性实施例中所用的示范性应变传感器的详细视图;图13A-13B是在各个应变程度下的图12的应变传感器的透视图;以及图14是说明图11的示范性实施例的示范性动态范围和可检测的位移的图。
发明详述图4说明根据本发明第一示范性实施例的基于光纤的环降(ring-down)装置400,通过该装置可以检测气体或液体中的痕量物质或分析物。在图4中,装置400包括谐振光纤环408,该谐振光纤环具有光纤缆402和沿着光纤缆402的长度分布的多个传感器500(在下面详细描述)。谐振光纤环408的长度很容易适合于各种采集情况,如检测周长或穿过物理设备(physical plant)的各个部分。尽管如图所示,传感器500沿着光纤回路408的长度分布,但是如果需要,可以只利用一个传感器500来实施本发明。分布多于一个传感器500允许对遍布安装地点的各个点处的痕量物质进行采样。还可以利用将多个传感器500与暴露于样品液体或样品气体的光纤402的直线部分的这种组合来实施本发明,或者将多个传感器500与暴露于该样品液体或样品气体的光纤402的仅仅多个直线部分的这种组合来实施本发明。可以设想,谐振光纤环的长度可以是短到大约1米,或者长到几千米。
相干辐射源404发出辐射,该相干辐射源如光学参量发生器(OPG)、光学参量放大器(OPA)或激光器,所述辐射的波长与所关心的分析物或痕量物质的吸收频率相一致。相干源404可以是可调谐的二极管激光器,其基于所关心的痕量物质而具有窄带宽。商业上可用的光学参量放大器的例子是可从加利福尼亚州芒廷维尤的光谱物理学(Spectra Physics,of Mountain View,California)获得的OPA-800C这种型号。
可以设想,本发明可用于检测对人和/或动物有害的各种化学和生物制剂。还可以设想,可以通过将无源光纤环的表面涂敷能够特别结合所需抗原的抗体来增强这种检测。
在第一个示范性实施例中,相干源404发出的辐射通过可选的光隔离器406、耦合器410和渐逝输入耦合器412而提供给谐振光纤环408。当相干源404是二极管激光器时,利用光隔离器406可通过防止辐射反射回到激光器中而使得激光器中噪声最小。渐逝输入耦合器412可以使固定百分比的辐射从相干源404进入谐振光纤环408中,或者可根据整个谐振光纤环408存在的损耗对其进行调节。优选的是,渐逝输入耦合器412供给谐振光纤环408的辐射量与光纤缆402和连接器(未示出)中存在的损耗相匹配。商业上可用的提供辐射的1%耦合(99%/1%的分流比耦合)的渐逝耦合器是由新泽西州(NewJersey)的ThorLabs of Newton制造的,其零件号为10202A-99。在优选实施例中,渐逝输入耦合器412将相干源404发出的小于1%的辐射耦合到光纤402中。
在一个示范性实施例中,为了检测痕量物质或分析物,将覆盖光纤缆402的一部分护套402a去掉,从而露出围绕光纤缆402的内芯402c的包层402b。可替换的是,可以去掉护套402a和包层402b以露出内芯402c,或者可以将光纤缆402的护套部分暴露于样品液体或样品气体中。例如在渐逝场(在下面讨论)延伸到护套内用以与痕量物质相互作用的情况下(痕量物质已经吸收或溶解在护套中),后面的方法可能是有用的。但是,由于在一些类型的光纤缆中所用的内芯402c的易碎性,护套和包层都去掉可能不是最优选的。图5A中示出典型光纤缆的横截面。
使全内反射(TIR)元件弯曲可改变入射电磁波接触反射表面的角度。在使光纤绕圆柱体弯曲的情况下,在与该圆柱体相对的纤芯表面上的反射角更接近直角,并且该渐逝场的穿透深度增大。通过在圆柱形芯元件502上绕几匝光纤402(参见图5B),该渐逝场的穿透深度增大,并且能将更长的光纤以更小的物理体积暴露于检测流体中。D.Littlejohn等人在应用光谱学(Applied Spectroscopy)53845-849(1999)的“用于近红外光谱学的弯曲硅光纤渐逝吸收传感器(BentSilica Fiber Evanescent Absorption Sensors for Near InfraredSpectroscopy)”中讨论了通过改变弯曲半径来改进传感光纤的实验检验。
图5B说明用于检测液体样品或气体样品中的痕量物质的示范性传感器500。如图5B中所示,传感器500包括圆柱形芯元件502(其可以是实心、空心或其他可渗透的),如心轴,一部分光纤缆402卷绕在芯元件502上一段预定长度506,(在该例子中)露出包层402b。也可以通过卷绕芯元件502来制作传感器500,其中在露出光纤缆402的芯402c。芯元件502的直径是使形成的纤芯402c小于临界半径r,在这一点处,当纤芯402c围绕芯元件502时,通过纤芯402c可能损失过多的辐射,或者损害了光纤完整性。临界半径r取决于通过光纤缆402的辐射的频率和/或该光纤的组成。在本发明的优选实施例中,芯元件502的半径在大约1cm和10cm之间,最优选是至少大约1cm。如所示的,在输入端504输入来自光纤402的辐射,在输出端508输出该辐射。圆柱形芯元件502可以具有在其表面上的螺旋槽,光纤402以及将光纤402固定到圆柱形芯元件502上的装置放在该螺旋槽中。这种固定装置可以采取多种可能的形式,如攻入圆柱形芯元件502中的螺钉、粘合剂,如环氧或硅橡胶,等。可以使传感器500与光纤402集成,或者利用商业上可用的光纤连接器或者与光纤402耦合来实施本发明。
图6A说明辐射怎样传播通过典型的光纤缆。如图6A中所示,辐射606在内芯402c和包层402b之间的界面处显示出全内反射(TIR)。存在一些可忽略的损耗(未示出),即辐射不被反射而是被吸收到包层402b中。尽管图6A中描述为光纤缆,但是图6A和本发明的多个示范性实施例同样可适用于空心光纤,如空腔波导管,其中包层402b环绕空心型芯。
图6B是传感器500的一个示范性实施例的横截面视图,其说明光纤缆402卷绕芯元件502的效果。如图6B中所示,仅仅从光纤缆402上去掉护套402a。辐射606在芯402c中传播,并在内芯402c和邻近芯元件502的那部分包层402b-1之间的界面处以可忽略的损耗609显示出全内反射。另一方面,在有痕量物质或分析物610的情况下,渐逝场608穿过内芯402c和包层的露出部分402b-2之间的界面。实质上根据存在的痕量物质610的量使辐射606衰减,并称作衰减全内反射(ATR)。应该注意,如果不存在具有与辐射波长相一致的吸收带的痕量物质,那么辐射606不衰减(除了该光纤内的固有损耗之外)。
图6C是传感器500的另一个示范性实施例的横截面视图,其说明光纤缆402卷绕芯元件502且一部分护套402a保持完整的效果。如图6D中所示,仅仅从光纤缆402上去掉护套402a的上部。与传感器500的第一示范性实施例类似,辐射606在芯402c中传播,并在内芯402c和邻近芯元件502的那部分包层402b-1之间的界面处以可忽略的损耗609显示出全内反射。另一方面,在有痕量物质或分析物610的情况下,渐逝场608穿过内芯402c和包层的露出部分402b-2之间的界面。
可以设想,可以通过机械装置来去掉护套402a(在传感器500的任一个例子中),该机械装置如常规的光纤剥离工具,或者通过将这部分光纤缆浸入溶剂中来去掉护套402a,这种溶剂可腐蚀或溶解护套402a同时不会影响包层402b和内芯402c。在部分地去掉护套402a的情况下,可以通过有选择地向所要去掉的那部分护套施加该溶剂来改进该溶剂方法。
为了增强对液体样品中痕量物质的分析物分子的吸引,可以在无源光纤环中的没有护套的部分涂敷一种材料来有选择地增大痕量物质在该光纤环的涂敷部分处的浓度。这种涂敷材料例如是聚乙烯。另外,可以使用抗原特有结合剂来涂敷该光纤从而以高专一性吸引所需的生物学分析物。
再次参考图4,在穿过传感器500之后剩余的辐射继续穿过光纤回路402。一部分剩余辐射由渐逝输出耦合器416耦合到光纤回路402外面。渐逝输出耦合器416通过检测器418和信号线422与处理器420耦合。处理器420可以是PC,例如具有用于将检测器418的模拟输出变为用于处理的数字信号的装置。处理器420还通过控制线424控制相干源404。只要处理器420从检测器418接收到信号,该处理器就可以根据接收到的辐射的衰减率来确定存在的痕量物质的数量和类型。
可选的是,可以在渐逝输出耦合器416和检测器418之间放置波长选择器430。波长选择器430起滤波器的作用,用以阻止不在预定范围内的辐射输入到检测器418中。
检测器414与输入耦合器412的输出耦合。检测器414的输出经信号线422提供给处理器420,用以确定谐振光纤环402接收到进行痕量物质分析的足够辐射的时间。
在检测液体中的痕量物质或分析物的情况下,该液体的折射率必须低于光纤缆的折射率。例如,假定光纤缆的折射率n=1.46,那么本发明可以用于检测溶解在水(n=1.33)和许多有机溶剂中的痕量物质,这些有机溶剂例如包括甲醇(n=1.326)、n-正己烷(n=1.372)、二氯甲烷(n=1.4242)、丙酮(n=1.3588)、二乙醚(n=1.3526)和四氢呋喃(n=1.404)。化学制品及其各自折射率的扩展列表可以在ClevelandOhio的Chemical Rubber公司的Weast,Rober C.,ed所著《CRCHandbook of Chemistry and Physics》于1971年第52版第E-201页中获得,其在此引入作为参考。还存在具有不同折射率的其他类型的可用光纤,并且在假定光纤的折射率高于给定液体折射率且通过目标分析物可有效地透射吸收带范围内的光时,本发明可适合于该给定液体基质。
还存在许多普遍可用的不同类型的光纤。一个例子是在电信应用中具有标准用途的康宁公司的(Corning)SMF-28e熔融硅光纤。存在透射许多不同波长的光的特殊光纤,如Austin,Texas的3M制造的488nm/514nm单模光纤(零件号为FS-VS-2614),Austin,Texas的3M制造的630nm可见光波长单模光纤(零件号为FS-SN-3224),Austin,Texas的3M制造的820nm标准单模光纤(零件号为RS-SN-4224),以及日本的KDD Fiberlabs制造的4微米透射的0.28-NA氟化物玻璃光纤(零件号为GF-F-160)。此外,并且如上所述,光纤缆402可以是空心光纤。
可以设想,光纤402可以是中红外透射光纤,以便允许进入具有更高分析物吸收强度的光谱区域,从而提高装置400的灵敏度。透射该区中的辐射的光纤通常是由氟化玻璃制成的。
图7说明本发明的第二示范性实施例,通过该实施例可以检测气体和液体中的痕量物质或分析物。在描述图7中,与关于第一示范性实施例所描述的那些元件执行类似功能的元件使用相同的附图标记。在图7中,装置700使用类似的谐振光纤环408,该谐振光纤环包括光纤缆402和多个传感器500。相干源404发出的辐射通过可选的光隔离器406、耦合器410和渐逝输入/输出耦合器434而提供给谐振光纤环408。渐逝输入/输出耦合器434可以使固定百分比的辐射从相干源404进入谐振光纤环404中,或者可根据整个谐振光纤环408存在的损耗对其进行调节。在该示范性实施例中,渐逝输入/输出耦合器434基本上是上面关于第一示范性实施例所述的渐逝输入耦合器412的重新配置。在优选实施例中,渐逝输入/输出耦合器434将激光器404发出的小于1%的辐射耦合到光纤402中。
对痕量物质进行的检测与在第一示范性实施例中描述的类似,因此这里不再重复。
在穿过传感器500之后剩余的辐射继续穿过光纤回路402。一部分剩余辐射由渐逝输入/输出耦合器434耦合到光纤回路402外面。渐逝输入/输出耦合器434通过检测器418和信号线422与处理器420耦合。如第一示范性实施例中那样,处理器420还通过控制线424控制相干源404。只要处理器420从检测器418接收到信号,该处理器就可以根据接收到的辐射的衰减率来确定存在的痕量物质的数量和类型。
可选的是,可以在渐逝输入/输出耦合器434和检测器418之间放置波长选择器430。波长选择器430起滤波器的作用,用以阻止不在预定范围内的辐射输入到检测器418中。波长选择器430还可以由处理器420进行控制,以防止在相干源404发出的辐射耦合到光纤402中之后的时期中相干源404发出的辐射“遮住(blinding)”检测器418。
图8A-8D说明用于检测液体样品或气体样品中的痕量物质的另一种示范性传感器800。如图8A和8D中所示,通过使内芯804和包层805锥化(逐渐变细)从而形成具有锥形内芯808和锥形包层809的锥形区域802而由光纤801形成传感器800。可以利用下面两种技术中的任一种来形成锥形区域802。第一种技术是加热光纤801的局部,同时绝热地拉伸希望形成传感器800的区域的每一侧。这一过程在光纤801中形成恒定的锥度。然后可将该锥形光纤例如用作根据第一示范性实施例的光谱传感器。在第二种示范性技术中,可以通过利用化学试剂可控制地去掉预定厚度的光纤包层805以形成锥形包层809来形成锥形区域802。下面参考图10A-10C详细描述利用第二种技术形成的传感器。
图8B说明传感器800在锥形区域前和后的横截面。如图8B中所示,内芯804和包层805都处于未改变状态。应该注意,为简单起见,图解和描述不涉及光纤缆801的护套,尽管假定对于光纤缆801的至少一部分而言这种护套位于适当位置。
图8C说明在锥形区域802中传感器800的横截面。如图8C中所示,锥形内芯808和锥形包层809的每一个与内芯804和包层805相比都具有明显减小的直径。根据特殊应用,锥形区域802可以具有任何所需的长度。在示范性实施例中,如图8D中所示,例如该锥形区域的长度大约为4mm,腰部直径814大约为12微米。
再次参考图8A,与锥形区域802中的增强渐逝场810相比,内芯804的区域中的渐逝场806很窄并且受限制。如所示的,增强渐逝场810很容易暴露于如上面关于较早示范性实施例所讨论的痕量物质(未示出),因此,该增强渐逝场能够更好地检测区域812中的痕量物质。
图9A-9C说明用于检测液体样品或气体样品中的痕量物质的另一种示范性传感器900。如图9A中所示,通过去掉一部分包层905形成基本上“D”形横截面区域902而由光纤901形成传感器900。例如,可以通过利用磨料磨光光纤包层905的一侧来形成“D”形横截面区域902。该磨料用于沿区域902以连续增大的深度去掉包层905从而保持导模品质,最后在最小包层厚度909处达到最大深度。最小包层厚度的区域代表最大渐逝暴露区域910。
图10A-10C说明用于检测液体样品或气体样品中的痕量物质的再一种示范性传感器1000。利用上面关于锥形传感器示范性实施例所描述的第二种技术来形成传感器1000。如图10A中所示,通过利用化学试剂去掉一部分包层1005以形成具有锥形包层1009的锥形区域1002而由光纤1001形成传感器1000,其中该化学试剂对本领域的技术人员来说是已知的。重要的是,不允许该化学试剂干扰或去掉内芯的任何部分,因为这可能在传感器1000中引入相当大的损耗。
图10B说明传感器1000在锥形区域前和后的横截面。如图10B中所示,内芯1004和包层1005都处于未改变状态。此外应该注意,为简单起见,图解和描述不涉及光纤缆1001的护套,尽管假定对于光纤缆1001的至少一部分而言,这种护套位于适当位置。
图10C说明传感器1000在锥形区域1002中的横截面。如图10C中所示,内芯1008不受影响而锥形包层1009与包层1005相比具有明显减小的直径。根据特殊应用,锥形区域1002可以具有任何所需的长度。在示范性实施例中,例如该锥形区域的长度大约为4mm,腰部直径1014大约为12微米。
再次参考图10A,与锥形区域1002中的增强渐逝场1010相比,内芯1004的区域中的渐逝场1006很窄并且受限制。如所示的,增强渐逝场1010很容易暴露于如上面关于较早示范性实施例所讨论的痕量物质(未示出),因此,该增强渐逝场能够更好地检测区域1012中的痕量物质。
关于上述传感器800、900和1000,可以通过在光纤改变之前为所需检测极限确定适当的锥形直径或磨光深度而在渐逝场暴露的量和由形成这些传感器而在光纤中产生的损耗之间进行平衡。此外,为传感器800、900和/或1000提供防护架可以补偿由于各自的锥化和磨光操作而增大的易碎性。
可以设想,传感器800、900和/或1000可用在如心轴(图5B中所示)的圆柱形芯元件502(可以是实心、空心或其他可渗透的)上的无限制光纤中,或者用在回路或弯曲构型(未示出)中。
通过用浓缩物质涂敷传感区域可进一步增强传感器800、900和/或1000,该浓缩物质如用于吸引所关心的分析物的生物制剂。这些生物制剂对本领域的技术人员来说是已知的。还可以设想,可以沿着光纤缆的长度形成几个检测区域800、900和/或1000以制作分布的环降传感器。
图11说明根据本发明第二示范性实施例的基于光纤的环降装置1100,通过该装置可以检测材料中引起的应变。与第一示范性实施例一样的元件具有相同的附图标记。
如图11中所示,装置1100包括谐振光纤环408,该谐振光纤环具有光纤缆402和沿着光纤缆402的长度分布的一个或多个传感器1102(在下面详细描述)。谐振光纤环408的长度很容易适合于各种数据采集情况,如周长检测或穿过物理设备(physical plant)的各个部分。尽管如图所示,传感器1102沿着光纤回路408的长度分布,但是如果需要,可以只利用一个传感器1102来实施本发明。分布多于一个传感器1102允许对遍布所监控的结构的各个点处的材料应变进行采样。传感器1102可以是光纤402的组成部分或者与光纤402耦合。可以设想,谐振光纤环的长度可以短到大约1米,或者长到几千米。
光的波长影响光模式变换,并因此影响灵敏度,但是这种影响可通过锥形设计来平衡。为了获得最大的灵敏度,该波长优选应该选择为与光纤的设计波长相匹配。尽管一些波长可能对模式变换更敏感并因此对应变更敏感,但是可以预料的是,远离光纤设计波长的那些波长通过引起太大的传输损耗和不能用的环降信号而丧失(erode)所需的灵敏度。在一个示范性实施例中,该波长是1550nm(在电信光纤中最小的损耗波长),对于该波长,可充分利用最便宜和耐久的电信元件。但是,尽管设想本发明可以使用在1250nm和1650nm的范围内的波长,其他波长也是合适的,如1300nm(在电信光纤中的零色散波长)。
相干辐射源404可以是光学参量发生器(OPG)、光学参量放大器(OPA)或激光器,例如其具有为了与该光纤的设计波长相匹配而选择的波长。商业上可用的光学参量放大器的例子是从加利福尼亚州芒廷维尤的光谱物理学(Spectra Physics,ofMountain View,California)获得的OPA-800C这种型号。
在第一个示范性实施例中,相干源404发出的辐射通过任选的光隔离器406、耦合器410和渐逝输入耦合器412而提供给谐振光纤环408。当相干源404是二极管激光器时,利用光隔离器406可通过防止反射回到激光器中而使该激光器中的噪声最小。渐逝输入耦合器412可以使固定百分比的辐射从相干源404进入谐振光纤环408中,或者可根据整个谐振光纤环408存在的损耗对其进行调节。优选的是,渐逝输入耦合器412供给谐振光纤环408的辐射量与光纤缆402和连接器(未示出)中存在的损耗相匹配。商业上可用的提供辐射的1%耦合(99%/1%的分流比耦合)的渐逝耦合器是由新泽西州的ThorLabs of Newton制造的,其零件号为10202A-99。在优选实施例中,渐逝输入耦合器412将相干源404发出的小于1%的辐射耦合到光纤402中。
在一个示范性实施例中,传感器1102是基于如关于图8A-8D所描述的传感器800。在另一个示范性实施例中,传感器1102是基于关于图10A-10C所描述的传感器1000。但是,传感器1102与800/1000之间的一个区别在于传感器1102没有绕在芯上,而基本上是直线的,并且利用公知的胶粘剂1108附着到在试验中的基底1106上,公知的胶粘剂如环氧树脂或胶带。当将传感器1102附着到基底1106时,由于考虑到在基底1106中产生的任何应变,而在连接点之间提供预定量的间隙(relief)或松弛部分(如图中区域1104所示)。在一个示范性实施例中,可以在传感器施加于基底1106时形成区域1104。在另一个示范性实施例中,如对于高灵敏度应用,可以在将传感器1102附着到基底1106之前预先形成区域1104。
在再一个示范性实施例中,传感器1102可以是非锥形的光纤,其包括光纤布拉格光栅,并按照如上所述的方式与基底1106连接。
当基底1106处于松弛状态时,如图12所示,可以确定光纤环408中产生的辐射达到环降的时间测量值。该时间是基底1106处于其松弛状态的基线度量(measure)。区域1104中的传感器1102的形状变化可影响系统中的环降率(ring-down rate)。这种环降时间的变化是在基底1106中产生的应变的度量。
现在参考图13A-13B,图中示出基底1106中产生的各种类型的示范性应变(基底的原始长度(或宽度)除其长度(或宽度)变化)。如图13A-13B中所示,当应变作用于基底1106时,根据基底1106的运动方向使区域1104松弛或拉紧(enhanced)。由于区域1104的形状变化,该系统测量的环降时间发生变化。环降时间的变化表示基底1106中产生的应变程度,并且由锥形区域中从最低阶传播模式到更高阶、更大损耗模式的光模式变化所引起。可以选择传感器1102的具体参数,如锥形区域的长度和腰部直径,来获得覆盖几个数量级的非常大的动态范围,或者极高的灵敏度(大约1微应变或更高的数量级)。
尽管图12-13B示出附着到在试验中的基底上的单个传感器1102,但是本发明不限于此。还可以使形成的传感器1102具有彼此隔开的多个锥形区域,从而可以测量基底1106的多个轴。在一个示范性实施例中,锥形区域1104的长度例如可以在5-25厘米之间。另一方面,基底1106可以具有在每个方向上达到几米的任何尺寸。该实施例在所有其他方面都类似于第一示范性实施例。
图14是说明示范性锥形传感器的动态范围和可检测的位移的图。如图所示,在线性区域1402中,根据在10cm锥形上Δt为0.263μs,噪声等效位移大约为0.3693μm(~370nm)。这对应于37με(微应变)。通过利用不同的锥形参数(锥形损耗和锥形长度的组合),该动态范围可延伸到几千微应变或者为了测量次微应变(sub-micro-strain)变化而优化的灵敏度。
尽管这里参考一些具体实施例进行说明和描述,但是本发明不意在限于所示出的细节。相反,可以在权利要求的等效方案的范围和界限内并且不背离本发明的精神的情况下进行各种修改。
权利要求
1.一种与相干辐射源一同使用的装置,用于测量基底中产生的应变,该装置包括无源光纤环;至少一个传感器,其具有预定形状并与该光纤环同轴,该至少一个该传感器与该基底耦合;耦合装置,用于i)将该相干源发出的一部分辐射引入到该无源光纤环中,并且ii)接收在该无源光纤环中谐振的该辐射的一部分;检测器,用于检测由该耦合装置接收的该辐射的大小并产生响应于此的信号;以及与该检测器耦合的处理器,用于根据在该无源光纤环中的该辐射的衰减率来确定该基底中产生的应变程度。
2.根据权利要求1的装置,其中该预定形状是在与该基底耦合的传感器的两端之间形成的松弛区域。
3.根据权利要求2的装置,其中该检测器产生的信号是基于当该基底中产生应变时该传感器的该预定形状的变化。
4.根据权利要求2的装置,其中该预定形状设置在该传感器的两端之间。
5.根据权利要求1的装置,其中该至少一个传感器中的第一传感器沿着该基底的第一轴定向。
6.根据权利要求1的装置,其中该至少一个传感器中的第二传感器沿着该基底的第二轴定向。
7.根据权利要求1的装置,其中该至少一个传感器包括光纤布拉格光栅(FBG)。
8.根据权利要求1的装置,其中该耦合装置是单个光耦合器。
9.根据权利要求1的装置,还包括放置在该耦合装置与该检测器之间的光路中的滤光器,以将该辐射的接收部分从该无源光纤环有选择地传递到该检测器。
10.根据权利要求9的装置,其中该滤光器根据辐射的波长将该辐射传递到该检测器。
11.根据权利要求1的装置,其中该耦合装置包括i)第一耦合器,用于将该相干源发出的该部分辐射引入到该光纤的第一部分,ii)第二耦合器,用于在该光纤的第二部分处接收该光纤中的该部分辐射。
12.根据权利要求1的装置,其中该预定形状是在该传感器的两端之间形成的锥形部分,该预定形状暴露于周围环境中。
13.根据权利要求12的装置,其中在该光纤中传播的该辐射的渐逝场暴露于该周围环境中。
14.根据权利要求12的装置,其中通过对该光纤进行加热和绝热拉伸来形成该锥形部分。
15.根据权利要求1的装置,其中该相干辐射源是光学参量发生器。
16.根据权利要求1的装置,其中该相干辐射源是光学参量放大器。
17.根据权利要求1的装置,其中该相干辐射源是激光器。
18.根据权利要求1的装置,其中该相干辐射源是脉冲激光器。
19.根据权利要求1的装置,其中该相干辐射源是连续波激光器。
20.根据权利要求17、18或19的装置,其中该激光器是光纤激光器。
21.根据权利要求19的装置,其中该连续波激光器是具有窄带的可调二极管激光器。
22.根据权利要求21的装置,还包括隔离器,该隔离器耦合在该激光器和该耦合装置之间,并与该激光器发出的辐射同轴,该隔离器使该激光器中的噪声最小。
23.根据权利要求1的装置,其中当该基底中产生应变时,该光纤发出的该辐射的耗散将改变由该耦合装置接收到的该辐射的衰减率。
24.根据权利要求1的装置,其中该无源光纤由熔融石英、蓝宝石和基于氟化物的玻璃中之一形成。
25.根据权利要求1的装置,其中该无源光纤由空心光纤形成。
26.根据权利要求24或25的装置,其中该无源光纤是单模光纤。
27.根据权利要求24或25的装置,其中该无源光纤是多模光纤。
28.根据权利要求1的装置,其中该相干源是在1250nm附近和1650nm附近的波长范围内可调的单模激光器。
29.根据权利要求1的装置,其中该相干源具有在1300nm附近的波长范围。
30.根据权利要求1的装置,其中该相干源具有在1550nm附近的波长范围。
31.根据权利要求1的装置,其中该无源光纤在电磁波谱的可见光区域到中红外光区域之间的波长处发生谐振。
32.根据权利要求1的装置,还包括输入检测器,用于确定能量从该激光器供给该光纤的时间。
33.根据权利要求32的装置,还包括控制装置,用于在该输入检测器确定该激光器已将能量供给该光纤之后,根据从该光纤接收辐射的接收装置使该激光器不起作用。
34.根据权利要求33的装置,其中该控制装置和该输入检测器与该处理装置耦合。
35.根据权利要求1的装置,其中耦合到该光纤中的该部分辐射小于供给该耦合装置的该辐射的大约1%。
36.根据权利要求1的装置,其中耦合到该光纤中的该部分辐射是可变的。
37.根据权利要求1的装置,其中根据在该无源光纤环中的损耗来改变耦合到该光纤中的该部分辐射。
38.根据权利要求37的装置,其中在该光纤中的损耗至少基于连接器损耗和光纤损耗。
39.根据权利要求1的装置,其中该光纤至少大约1米长。
40.根据权利要求1的装置,其中该光纤至少大约10米长。
41.根据权利要求1的装置,其中该光纤至少大约1千米长。
42.一种用于测量应变的装置,包括无源谐振光纤环;至少一个传感器,其与该光纤环同轴,该至少一个传感器中的每一个都具有锥形部分;发射辐射的相干源;第一光耦合器,用以将该相干源发出的至少一部分该辐射供给该无源谐振光纤环的第一部分;第二光耦合器,用以从该谐振光纤环的第二部分接收在该无源谐振光纤环中的该辐射的一部分;以及与第二光耦合器耦合的处理器,用以根据该第二光耦合器接收到的该辐射的衰减率来确定应变程度。
43.根据权利要求42的装置,还包括耦合在该第二光耦合器和该处理器之间的第一光学检测器,用于产生响应于该第二光耦合器接收到的该辐射的信号。
44.根据权利要求42的装置,还包括耦合在该第一光耦合器和该处理器之间的第二光学检测器,用于确定能量从该激光器供给该无源光纤环的时间。
45.根据权利要求44的装置,其中该第二光检测器响应于从该相干源接收辐射而产生供给该处理器的触发信号。
46.根据权利要求42的装置,其中该第一和第二光耦合器是单一耦合器。
47.根据权利要求42的装置,其中该至少一个传感器中的每一个都包括置于该传感器的两端之间的预成形部分。
48.一种用于测量材料中的应变的方法,该方法包括通过使一部分光纤成锥形而由一光纤形成传感器;将该传感器与该材料耦合,从而使该传感器的两端之间的部分具有预定量的松弛;使材料受到应变;从相干源发出辐射;将该相干源发出的辐射的至少一部分耦合到该光纤环中;接收在该光纤环中传播的一部分辐射;以及根据在该光纤环中的该辐射的第一衰减率来确定应变程度。
49.根据权利要求48的方法,还包括将该光纤中传播的该辐射的渐逝场暴露于围绕该材料的周围环境的步骤。
50.根据权利要求49的方法,还包括以下步骤确定表示该材料的松弛状态的该光纤中的基线衰减率;以及将该基线衰减率与第一衰减率进行比较。
全文摘要
一种用于测量材料中的应变的装置。该装置包括无源光纤环;至少一个传感器,其具有预定形状并与该光纤环同轴,该至少一个传感器与基底耦合;耦合装置,用于i)将该相干源发出的一部分辐射引入到该无源光纤环中,ii)接收在该无源光纤环中谐振的一部分辐射;检测器,用于检测由该耦合装置接收的该辐射的大小并产生响应于此的信号;与该检测器耦合的处理器,用于根据由该检测器产生的该信号的衰减率来确定该基底中产生的应变程度。
文档编号G01N21/55GK1839301SQ200480023840
公开日2006年9月27日 申请日期2004年8月9日 优先权日2003年8月20日
发明者凯文·K·莱曼, 彼得·B·塔尔萨, 保罗·拉比诺维茨 申请人:普林斯顿大学理事会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1