专利名称:共焦点显微镜及采用它的荧光测量方法和偏振光测量方法
技术领域:
本发明涉及对生物体组织或生物体组织发出的荧光进行观察等时所使用得共焦点显微镜,并涉及高灵敏度、横方向、深度方向的分辩率好、能够进行大范围的动态观察的、采用液晶的共焦点显微镜,以及基于采用液晶的共焦点显微镜的微阵列基片的荧光测量方法和基于采用液晶的共焦点显微镜的偏振光测量方法。
背景技术:
过去,在生命科学的研究领域中,在对生物体组织或添加了荧光试剂的生物体组织试样的荧光发光的观察中,使用了共焦点显微镜。共焦点显微镜在深度方向上具有高分辩率,所以,主要用于生物体试样的三维观察等中。
在图19中表示共焦点显微镜的现有例1(参照例如非专利文献1)。激光161由光束分离器162反射,由物镜163在试样164上成像。然后,由试样164反射的反射光、或者荧光166透射光束分离器162,通过反射镜167和透镜169而进入检测器171内。在此,由于在检测器171的前面放置针孔170,所以能够除去从焦点面以外发生的光束,获得明确的图像。为了观察整个试样164,使放有试样164的载物台在平面内移动,即进行扫描172,以进行观察。
在共焦点显微镜中不进行试样移动而高速扫描的方法是1884年由Paul Nipkow发明的尼普科夫扫描圆盘方式。图20表示现有例2的采用尼普科夫扫描圆盘的多重共焦点显微镜的扫描方式原理(参见例如下列专利文献1、非专利文献2)。
在多重共焦点显微镜180中激光181入射到共焦点用扫描装置190内。共焦点用扫描装置190的构成部分有由2块圆盘构成的聚光盘191和针孔盘192、圆筒194和光束分离器182。聚光盘191和针孔盘192由圆筒194来进行保持,利用马达195进行旋转。
在此,激光181通过设置在聚光盘上的多个针孔193。该通过的光再经过光束分离器182,通过透镜183在被观察物184上形成多个焦点。然后,来自被观察物184的反射光通过光束分离器182使光路相对入射方向弯曲90°,利用透镜185在相机186上成像。这样来提高光的利用效率,实现多个焦点同时检测的多重共焦点显微镜。
图21表示现有例3的多重共焦点显微镜的结构(例如参见下述专利文献2)。多重共焦点显微镜200具有和图18的现有例1相同的光学系统。但不同点是在入射光的光路上设有液晶单元203。入射光201通过光束分离器202,经过液晶单元203之后,被物镜204聚光于试样205上。来自试样205的反射光,经过光束分离器202,通过透镜207,反射光208在相机209中成像。
在此,入射光201通过作为液晶单元的1个像素的开口部203a,在试样205的210a点上成像。然后,若对作为液晶单元的另一像素的203b进行开口,则入射光在试样205的210b的点上成像。这样,试样205的扫描,是通过依次对位于液晶单元平面上的像素,进行使入射光201通断的所谓X-Y扫描来进行的。
在下述专利文献3和4中公开了一种DNA检查装置,具有把入射光源制成多光束的多点阵列,对由所照射的激励光产生的荧光进行共焦点检测。
专利文献特开平5-60980号公报;特开平5-210051号公报;特开2001-108684号公报;特开2001-208688号公报;非专利文献Mark Schena著,加藤郁之进监译“DNA微阵列基片”,九善株式会社,2000年,P.19~45;川村信一郎及其他3人,“共焦点显微镜激光显微镜扫描器和CCD相机”横河技报,2001年,Vol.45,No.2,P.112-114。
但是,现有例1的试样扫描型的共焦点显微镜,由于进行单焦点下的检测,所以观察宽大的区域时必须进行扫描,很难进行荧光等实时观察。
现有例2的多重共焦点显微镜,因为同时检测多个点,所以,入射到邻接的焦点内的光之间产生干涉。将其称为交调失真(cross talk)。由于该干涉而产生的入射光强度分布,形成明暗花纹的干涉条纹。由于上述原因,照明光强度分布变得不均匀,存在有观察图像的横分辩率降低的问题。并且,存在有各焦点的光强度不一致的问题。再者,作为共焦点显微镜的应用,在检测器上不能一次观察到来自DNA芯片的误差大的荧光信号。
在现有例3的多重共焦点显微镜中,通过依次对液晶单元的多个点进行开关来进行扫描,因此像现有例2的扫描那样,不需要机械扫描机构。但是,为了使液晶单元的各像素通断,必须进行像素数量的X-Y扫描,所以扫描一个画面所需要的时间长,很难实时地检测出整个试样的荧光等。
并且,在上述专利文献3的DNA检查装置中,从多点阵列中入射的光之间产生干涉,并发生交调失真,和现有例2的共焦点显微镜一样,由于照明光强度分布不均匀,所以观察图像的横分辩率降低。
再者,在上述专利文献4的DNA检测装置中,利用偏振光元件来形成多点阵列。和现有例1的共焦点显微镜一样,对试样载物台进行平面内的扫描,以此进行观察。与现有例1的多重共焦点显微镜的单焦点的情况相比较,虽然扫描所需的时间缩短,但为了观察宽阔的区域,必须进行扫描,很难实时地观察荧光等。
发明内容
本发明的目的在于,针对上述问题,提出一种灵敏度高、横方向、深度方向分辨率高,能够对宽阔区域进行动态观察的、采用液晶的共焦点显微镜,以及基于采用了液晶的共焦点显微镜的微阵列基片的荧光测量方法以及基于采用液晶的共焦点显微镜的偏振光测量方法。
并且,本发明的采用液晶的共焦点显微镜,具有入射光学系统,从照明光源将经光强度调制的偏振光通过矩阵式液晶器件和物镜入射到被观察物,在所述矩阵式液晶器件的上部配置有光束分离器、微透镜阵列;检测光学系统,包含摄像器件,该摄像器件通过光束分离器和透镜来检测来自被观察物的反射光或荧光;以及控制系统,包括对矩阵式液晶器件的各像素进行控制的液晶控制部、以及照明光源的光强度调制控制部,其特征在于,使每个透射了微透镜阵列的微透镜的光,透射矩阵式液晶器件的各像素,利用物镜在被观察物上结成多个焦点,并且,利用液晶控制部,将透射矩阵式液晶器件的各像素的光的偏振光方向控制成互相垂直,通过把来自被观察物的反射光或者荧光的光强度调制信号变换成频率信号,进行检测。
在上述结构中,最好把偏光镜配置在矩阵式液晶器件的下部,并用矩阵式液晶的各像素来控制透射了该偏光镜的光的偏振光。并且,最好照明光源是单一波长或多波长,利用矩阵式液晶器件、音响光学器件、数字反射镜器件中的任一个器件,进行照明光源的光强度调制。并且,也可以对每个像素用多个调制频率进行照明光源的每个单一波长的光强度调制。此外,最好利用高速付立叶变换,对从来自被观察物的反射光或者荧光的光强度调制信号向频率信号的变换进行运算处理。
根据该结构,因为进一步对照射到被观察物上的入射光进行光强度调制,所以从被观察物来的反射光或者荧光在频率轴上进行信号变换,即可以高灵敏度检测出从被观察物来的反射光或荧光。并且,在照明光源为多波长的情况下,能够在短时间内以高灵敏度测量出从多波长来的反射光或荧光。
并且,本发明的采用液晶的共焦点显微镜,具有入射光学系统,把来自照明光源的偏振光通过第1矩阵式液晶器件入射到被观察物,在所述第1矩阵式液晶器件的上部配置有光束分离器、透镜、第1微透镜阵列;检测光学系统,包含摄像器件,该摄像器件通过第2矩阵式液晶器件、聚光透镜来检测来自被观察物的反射光或荧光,在该第2矩阵式液晶器件的上部配置有光束分离器、透镜、第2微透镜阵列;以及控制系统,包含对透射第1和第2矩阵式液晶器件的各像素的光的偏振光方向进行控制的第1和第2液晶控制部、以及照明光源的光强度调制控制部,其特征在于,使每个透射了第1微透镜阵列的微透镜的光,透射第1矩阵式液晶器件的各像素,在被观察物上结成多个焦点,再使每个透射了第2微透镜阵列的微透镜阵列的反射光或者荧光,透射第2矩阵式液晶器件的各像素,在摄像器件上结成多个焦点,并且,利用第1和第2液晶控制部来控制透射第1和第2矩阵式液晶器件的各像素的光的偏振光方向,通过把来自被观察物的反射光或荧光的光强度调制信号变换成频率信号,进行检测。
在上述结构中,最好上述入射光学系统的第1液晶控制部把透射上述第1矩阵式液晶器件的各像素的光的偏振光方向控制成互相垂直。并且,最好上述检测光学系统的第2液晶控制部把透射上述第2矩阵式液晶器件的各像素的光的偏振光方向控制成互相垂直。并且,也可以在上述第1矩阵式液晶器件的下部配置偏光镜,利用上述矩阵式液晶器件的各像素来控制透射该偏光镜的光的偏振光。最好上述照明光源是单一波长或多波长,利用矩阵式液晶器件、音响光学器件、数字反射镜器件中的任一个,进行照明光源的光强度调制。并且,也可以对每个像素用多个调制频率进行上述照明光源的每个单一波长的光强度调制。并且,最好利用高速付立叶变换,对从来自被观察物的反射光或者荧光的光强度调制信号向频率信号的变换进行运算处理。
根据该结构,则因为进一步对照射到被观察物上的入射光进行光强度调制,所以从被观察物来的反射光或者荧光在频率轴上进行信号变换,即可以高灵敏度检测出从被观察物来的反射光或荧光。并且,在照明光源为多波长的情况下,能够在短时间内以高灵敏度测量出从多波长来的反射光或荧光。
本发明的利用采用液晶的共焦点显微镜对微阵列基片进行的荧光测量方法,其特征在于,利用有选择地预先附加了作为标识的荧光物质的微阵列基片,用本发明的共焦点显微镜来对荧光物质产生的荧光进行观察。在上述结构中,微阵列基片包含微量的DNA或生物体物质,是将其配置成平板状的被观察物。并且,微阵列基片也可以是DNA芯片。根据该结构,由于使用本发明的采用液晶的共焦点显微镜,所以不用对微阵列基片进行扫描,即可进行荧光观察。
并且,本发明的利用采用液晶的共焦点显微镜对被观察物进行的偏振光测量方法,其特征在于,在对被观察物的偏振光测量中,利用本发明的共焦点显微镜来测量被观察物的反射光或荧光的偏振光。最好在采用液晶的共焦点显微镜的液晶矩阵中,通过使偏振光变化180度,对被观察物进行偏振光测量。根据该结构,本发明的采用液晶的共焦点显微镜中,能够对被观察物的反射光或荧光的偏振光进行高效率的观察。
根据本发明的采用液晶的共焦点显微镜,则由于采用矩阵式液晶器件,所以,不对被观察物进行扫描,即可一次完成对被观察物的测量。并且,利用矩阵式液晶器件的各像素的偏振光控制,能够减小交调干扰,提高横方向和深度方向的分辨率。并且,在光源用单一波长或多波长进行光强度调制的情况下,能够以高灵敏度检测反射光或荧光。
根据本发明的共焦点显微镜的微阵列基片的测量方法,不对微阵列基片进行机械扫描,即可用单一波长或多波长的荧光高效率地进行观察。并且,根据本发明的采用了液晶的共焦点显微镜的偏振光测量方法,不对被观察的偏振光进行机械扫描,即可用单一波长或多波长的荧光高效率地进行观察。
根据以下详细的说明以及表示本发明的几个实施方式的附图,能够更好地理解本发明。而且,附图所示的各种实施例并不是意在特定或限定本发明,而仅仅是为了便于说明和理解本发明。
图1是表示涉及本发明的第1实施方式的采用液晶的共焦点显微镜的结构的模式图。
图2是表示矩阵式液晶器件的各像素的偏振光控制的模式图。
图3是表示透射图2的矩阵式液晶器件中各像素的光的偏振光状态的图。
图4是表示涉及本发明的第1实施方式的共焦点显微镜的其他结构的图。
图5是说明在入射光学系统中设置的偏光镜的作用效果的概要图。
图6是表示涉及本发明的第2实施方式的共焦点显微镜的结构的模式图。
图7是表示采用本发明的共焦点显微镜的另一种结构的图。
图8是表示涉及本发明的第3实施方式的共焦点显微镜的结构的模式图。
图9是表示涉及本发明的第3实施方式的共焦点显微镜的照明光学系统的另一结构例的模式图。
图10是表示涉及本发明的第3实施方式的共焦点显微镜的另一结构的模式图。
图11是表示涉及本发明的第4实施方式的共焦点显微镜的结构的模式图。
图12是表示涉及本发明的第4实施方式的共焦点显微镜的照明光学系统的一结构例的模式图。
图13是表示涉及本发明的第4实施方式的共焦点显微镜的另一结构的模式图。
图14是表示涉及本发明的第5实施方式的共焦点显微镜的结构的模式图。
图15是表示涉及本发明的第5实施方式的共焦点显微镜的照明光学系统的另一结构例的模式图。
图16是表示采用本发明的共焦点显微镜的另一种结构的图。
图17是表示涉及本发明的第6实施方式的共焦点显微镜的结构的模式图。
图18是表示采用本发明的共焦点显微镜的另一种结构的图。
图19是表示现有例1的共焦点显微镜的结构的图。
图20是表示现有例2的采用尼普科夫扫描圆盘(Nipkow disc)的多重共焦点显微镜的扫描方式原理的图。
图21是表示现有例3的多重共焦点显微镜的结构的图。
具体实施例方式
以下参照附图,详细说明本发明的实施方式。
首先,表示本发明的采用液晶的共焦点显微镜的第1实施方式。图1是表示涉及本发明的第1实施方式的采用液晶的共焦点显微镜的结构的模式图。采用液晶的共焦点显微镜1具有照明光学系统10;包含矩阵式液晶器件、向被观察物上形成多重焦点的入射光学系统20;用于检测来自照明被观察物的反射光的检测光学系统30;用于对来自矩阵式液晶器件和检测光学系统的图像数据进行控制的控制系统50;以及用于放置被观察物2的载物台3。
照明光学系统10由照明光源11、准直仪12、第1偏光镜13和光束分离器14构成。照明光源11例如是激光光源,其射出的光被由透镜12a和透镜12b构成的准直仪12放大成所需的束径的平行光,经偏光镜13入射到光束分离器14内。激光光源的波长可以是从400nm到700nm的波长。在此,若作为照明光源11采用直线偏振光的激光光源,则能够省略偏光镜13。
入射光学系统20自上而下依次由微透镜阵列21、矩阵式液晶器件22和物镜23构成。入射到光束分离器14内的平行光被向下部方向反射,同样光强度分布的光,通过设置于光束分离器14下部的微透镜阵列21,在矩阵式液晶器件22的各像素上形成焦点。
该微透镜阵列21由在与矩阵式液晶器件22的各像素22a相对应的位置配置成阵列状的多个微小透镜构成,对矩阵式液晶器件22的每个像素22a能够高效率地入射光。入射到微透镜阵列21内的各光,以矩阵式液晶器件22的各像素22a为针孔而通过。以该像素22a为针孔而通过的各光先一次放大后,再通过物镜23在被观察物2的表面上形成多个焦点24。
被观察物2被放置在载物台3上。载物台3由能够向前后左右和上下方向移动的XYZ载物台3a和θ载物台3b构成。利用XYZ载物台3a在水平面内和垂直方向的两个方向内移动调整载物台3,这样能够对被观察物2进行位置调整。并且,这时,也可以用θ载物台3b来进行XYZ面内的角度调整,这样来进行被观察物2的位置调整。
以下说明用检测来自被观察物的反射光的检测光学系统。在检测光学系统30中,来自被观察物2的反射光在入射光径路中反向前进,通过光束分离器14入射到成像透镜31内,多个焦点32形成在摄像器件33上,使被观察物2的反射光成像。作为摄像器件33,可以采用能够一次接收上述成像的CCD型摄像器件和CMOS型摄像器件。并且,这些摄像器件33为了提高信噪比,也可以利用例如采用液氮或珀尔帖元件(peltier element)的冷却装置进行冷却,以减小噪声。
在此,被观察物的反射光有两种情况,一是与照明光源11相同波长时的通常反射光;二是作为来自由照明光源11激励的被观察物的激励光的荧光。荧光的波长通常大于照明光源的波长。所以观察荧光时,作为光束分离器14可以采用能够对照明光源的波长和荧光波长进行分离的分色镜等。
控制系统50具有个人计算机51、第1液晶控制器52、以及图像处理装置53。上述个人计算机51具有显示装置54,显示被观察物的图像等。
再者,上述个人计算机51向液晶控制部52输出对透射矩阵式液晶器件22的各像素的光的偏振光方向进行控制的数据。上述液晶控制部52是驱动电路,用于把光的偏振光方向变换成液晶器件驱动信号,该光在矩阵式液晶器件22的各像素22a中旋转。该驱动电路把来自个人计算机5 1的矩阵式液晶器件22的各像素22a的偏振光信号,变换成适合于矩阵式液晶器件22的液晶器件驱动信号,即变换成与各像素22a有关的电压信号。然后,由液晶控制部52对施加到各像素22a上的驱动电压进行适当调整,或者通过把驱动电压在驱动时间中进行变更,来对透射各像素22a的光的偏振光方向进行控制。摄像器件33的图像信号33a被输出到光学系统50的图像处理装置53内,利用个人计算机51来进行图像数据的运算处理,把图像输出到显示装置54。
以下说明矩阵式液晶器件的偏振光控制。矩阵式液晶器件22的各像素22a,利用构成控制系统50的第1液晶控制部51来对透射矩阵式液晶器件22的各像素22a的光的偏振光方向进行控制。由此,使入射到相邻的各像素内的光的偏振光方向互相垂直。这时,对矩阵式液晶器件的全部像素同时且在对被观察物2进行观察所需的时间内被进行控制,所以,能够使多个焦点24同时形成在被观察物上。
图2和图3是表示矩阵式液晶器件的各像素的偏振光控制的模式图。如图2所示,来自准直仪12的平行光15通过第1偏光镜13和微透镜阵列21而入射到矩阵式液晶器件22内。上述第1偏光镜13是已知的结构,例如把偏振光膜夹持在二块玻璃片之间并贴合而构成。
如图2所示,入射的平行光通过第1偏光镜13变成方向的照明偏振光16,利用矩阵式液晶的各像素22a控制入射光的偏振光16,使其变成如17a、17b、17c。在此,采用矩阵式液晶器件的偏振光17的偏振光17a、17b、17c,分别表示处于相对于照明光的偏振光16垂直、平行、垂直与平行的中间的状态。
图3表示透射矩阵式液晶器件22中的各像素22a的光的偏振光状态。图中的a和b分别表示偏振光处于与入射光平行和垂直的状态。所以,在图示的情况下,透射相邻的各像素22a的光的偏振光方向互相垂直。这样,若对透射矩阵式液晶器件22的相邻的各像素22a的光的偏振光方向进行控制,则互相邻接的a和b的入射光的振动成分相互正交,不会产生干涉。
这里,所干涉的像素是位于对角上的a和a以及b和b像素。位于对角上的a和a以及b和b的焦点的间隔与相邻的焦点a和b的间隔相比,前者宽21/2,所以,若与不对相邻的入射光的偏振光进行控制时相比较,则能够使相邻的焦点的间隔接近到2-1/2即0.71倍。所以,与过去相比,横向分辨率能够提高约30%。这样,通过使用矩阵式液晶器件,使聚光在相邻的焦点上的光的偏振光方向互相垂直,所以,相邻的照明光之间不产生干涉,能够防止交调失真造成的横向分辨率的降低。
以下说明本发明的采用液晶的共焦点显微镜的动作。照射到被观察物2上的光,通过微透镜阵列21,入射到作为针孔的矩阵式液晶器件22的各像素22a内,在被观察物2上形成第1多个焦点24。再者,被观察物2的反射光或荧光在检测光学系统30中,形成第2多个焦点32,所以,本发明的显微镜作为共焦点显微镜使用。这时,在矩阵式液晶器件22的各像素22a中,能够控制矩阵式液晶器件的各像素22a,使透射各像素22a的光的偏振光方向互相垂直。这样,能够防止多重共焦点间的交调失真,能够提高横方向和深度方向的分辨率。并且,不进行被观察物2的机械扫描,就能够高速进行对被观察物2的反射光或荧光的观察。
这里,作为矩阵式液晶器件22的各像素22a的间隔的间距量,严密时不能获得图像,所以,也可以使载物台3在X方向和Y方向上移动一个间距量,构成一个画面。这里,矩阵式液晶器件22的像素的间距约为10μm~20μm。通过把采用电致伸缩元件的驱动装置附加到载物台3上,来可进行该1个间距量的载物台的X-Y驱动控制。
以下,示出在本发明中采用液晶的共焦点显微镜的第1实施方式的变形例。图4表示本发明的采用液晶的共焦点显微镜的另一种结构。图4所示的共焦点显微镜1′与图1所示的采用液晶的共焦点显微镜1的不同的是入射光学系统20。其余的照明光学系统10、检测光学系统30、控制系统50和载物台3的结构与图1相同,所以,其说明从略。
在入射光学系统20中,在矩阵式液晶器件22的下部设置了第2偏光镜25,这一点不同于图1的入射光学系统。
图5是说明设置在入射光学系统中的偏光镜25的作用效果的概要图。如图5所示,来自准直仪12的平行光15通过第1偏光镜13、微透镜阵列21和矩阵式液晶器件22之后入射。这里,上述第1偏光镜13和第2偏光镜25配置成不同轴、而互相垂直(90°)。
在矩阵式液晶器件的像素22a上不施加驱动电压的状态下,如17所示,透射了第1偏光镜13的光透射像素22a,偏振光方向扭曲90°,所以在透射第1偏光镜13和透射轴偏置90°的第2偏光镜25后,变成透射光26a。
另一方面,在像素22a上施加驱劝电压的状态下,根据电压的大小,像素22a内的液晶分子的扭曲状态发生变化,所以能够使透射了第1偏光镜13的直线偏振光的偏振光方向在该像素22a内以0~90°的范围旋转。这样,能够任意控制透射第2偏光镜25的光的强度。所以,能够利用矩阵式液晶器件22的各像素的22a的驱动电压进行控制,以使入射光变成透射光26a、不透射的遮挡光26b及其中间状态(灰色光)26c,因此能够改变照明光强度。
在此,说明本发明的采用液晶的共焦点显微镜的动作特征。在该例中,通过增加第2偏光镜25,进行照明光的强度控制。这样,可根据被观察物的不同来控制矩阵式液晶器件的各像素22a,来控制照明光强度。
以下,示出本发明的采用液晶的共焦点显微镜的第2实施方式。图6是表示涉及本发明的第2实施方式的采用液晶的共焦点显微镜的结构的模式图。图中,采用液晶的共焦点显微镜5包括照明光学系统10、包括矩阵式液晶器件的向被观察物2上形成多重焦点的入射光学系统20′、用于检测来自被观察物的反射光的检测光学系统30′、对来自矩阵式液晶器件和检测光学系统的图像数据进行控制的控制系统50′、以及用于安放被观察物2的载物台3。而且,对于和图1相同的结构部分,标注相同的标记,其说明从略。照明光学系统10与图1的照明光学系统相同,由照明光源11、准直仪12、和第1偏光镜13构成,使偏振的平行光入射到光束分离器14内。
入射光学系统20′由物镜26、透镜27、微透镜阵列21和矩阵式液晶器件22构成。来自光束分离器14的偏振的平行光利用物镜26和透镜27再次被放大。该被放大的同样光强度分布的光,照射到第1微透镜阵列21的整面上。通过了在第1矩阵式液晶器件22的表面上安装的第1微透镜阵列21的每个微透镜的光,透射第1矩阵式液晶器件22的各像素22a,在载物台3上所安放的被观察物2上形成多个焦点24。
如图2和图3中说明的那样,矩阵式液晶器件22的各像素22a利用构成控制系统50′的第1液晶控制部5 1进行控制,使第1矩阵式液晶器件22的各像素22a的相邻像素的偏振光方向互相垂直。这样,通过使用第1矩阵式液晶22,使相邻的焦点上聚焦的入射光的偏转方向互相垂直,所以相邻的入射光之间不会相互干涉,能够防止因交调失真而造成横向分辨率降低。
以下说明检测光学系统30′,在来自被观察物2的反射光或荧光通过光束分离器14后,该检测光学系统30′对其进行检测。
检测光学系统30′包括反射镜34、滤光镜35、物镜36、透镜37、第2微透镜阵列38、第2矩阵式液晶器件39、聚光透镜40以及摄像器件33。在此,从物镜36到第2矩阵式液晶器件39的光学系统,与从入射光学系统20′的物镜26到第1矩阵式液晶器件22的结构相同。反射镜34使通过了光束分离器14的来自被观察物的反射光的光路弯曲90°,经仅使特定波长的光通过的滤光镜35,入射到物镜36。
在对来自被观察物2的荧光进行观察的情况下,荧光的波长比照明光源11的波长长,所以,为了仅使荧光透射检测光学系统30′,作为光束分离器14可以采用分色镜。再者,为了提高荧光的对比度,最好采用仅使荧光透射的激发滤光镜(エミツシヨンフイルタ)。
然后,物镜36和透镜37进一步对来自被观察物2的反射光或荧光进行放大,并把同样光强度分布的光照射到第2微透镜阵列38的整面上。该第2微透镜阵列38与第1微透镜阵列21相同,由在与第2矩阵式液晶器件39的各像素相对应的位置上排列成阵列状的微小透镜构成,对第2矩阵式液晶器件39的各像素均能够高效地入射光线。透过在第2矩阵式液晶器件39的表面上安装的第2微透镜阵列38的每个微透镜的光,通过第2矩阵式液晶器件39的每个像素,通过聚光透镜40,在摄像器件33上形成多个焦点41。
控制系统50′的结果在图1的控制系统50内还增加了第2液晶控制部55之外,均和控制系统50相同,所述第2液晶控制部55作为检测光学系统30′的第2矩阵式液晶器件39的控制部。入射光学系统的矩阵式液晶器件22如图2和图3说明的那样,利用构成控制系统50′的第1液晶控制部52进行控制,使透射矩阵式液晶器件22的各像素22a的相邻像素的光的偏振光方向互相垂直。
在入射到检测光学系统30′内的反射光或荧光,在这些的偏振光方向相同而受到干涉影响的情况下,在透射检测光学系统的第2矩阵式液晶器件39时,只要使反射光或荧光的偏振光方向互相垂直即可。这样,入射到摄像器件内的互相邻接的反射光或荧光相互不干涉,能够防止因交调失真而造成的横向分辨率降低。
并且,对于透射检测光学系统30′的第2矩阵式液晶器件39的像素的反射光,也能够进行偏振光方向控制。这时,能够把检测光学系统30′的矩阵式液晶器件39的各像素控制成透射、遮光或其中间的状态,所以能够进行视野限制等。
在此,说明本发明的采用液晶的共焦点显微镜的动作。
照射到被观察物2上的光通过第1微透镜阵列21,入射到第1矩阵式液晶器件的各像素22a内,在被观察物2上形成第1多个焦点24。再者,被观察物2的反射光或荧光在检测光学系统30′中,使用第1微透镜阵列38和第2矩阵式液晶器件39的各像素来形成第2多个焦点41。所以,本发明的显微镜作为共焦点显微镜动作。这时,在透射矩阵式液晶器件22、39的各像素的光中,为使其偏振光方向互相垂直,可以对矩阵式液晶器件22、39的各像素进行控制。
所以,如上述现有例1所示,不必在所离开的程度足以不产生交调失真的针孔之下扫描试样,来按时序测量图像并进行合成。并且,不必对离开的程度足以不产生交调失真的每组针孔的图像,按时序进行测量并进行合成。因此,根据本发明的采用液晶的共焦点显微镜,即使形成将矩阵式液晶器件的所有像素作为针孔的画面,也不会出现交调失真造成的画面混乱,能够实时地观察被观察物的整个图像。这样一来,不进行被观察物2的机械扫描控制,即可高速进行被观察物2的反射光或荧光的观察。并且能够防止多重共焦点间的交调失真,所以能够提高横方向和深度方向的分辨率。并且,通过2块矩阵式液晶器件的组合,即可实现偏振光控制、检测信号的选择等。
以下,示出在本发明中采用液晶的共焦点显微镜的第2实施方式的变形例。图7表示本发明的采用液晶的共焦点显微镜的另一种结构。图示中的采用液晶的共焦点显微镜5′与图6所示的采用液晶的共焦点显微镜5的不同的是入射光学系统20′。其他照明光学系统10、检测光学系统30′、控制系统50′和载物台3与图6的结构相同。所以其说明从略。本例在入射光学系统20′中,在矩阵式液晶器件22的下部设置了第2偏光镜25,这一点不同于图6的入射光学系统。
该第2偏光镜25的作用是如图4和图5说明的那样,利用第1矩阵式液晶器件的像素22a的驱动电压来改变照明光强度。在入射光学系统的第1矩阵式液晶器件22的各像素22a中,为了使透射相邻各像素22a的光的偏振光方向互相垂直,可以控制第1矩阵式液晶器件22的各像素。
在此,通过第2矩阵式液晶器件的各像素的偏振光控制,可以防止由被观察物2的反射光在摄像器件33上形成的多个焦点41之间的交调失真。所以,即使在进行入射光的照明控制的情况下,也能够形成无反射光的交调失真的图像,所以,不必像过去的共焦点显微镜那样,进行机构扫描来合成整个画面,能够直接用控制系统50′的显示装置54进行观察。这样,不进行被观察物2的机械扫描,即可高速进行被观察物2的反射光或荧光的观察。并且,能够防止多重共焦点间的交调失真,能够提高分辨率。再者,利用2块矩阵式液晶器件和第2偏光镜25的组合,即可实现照明光控制、偏振光控制、检测信号的选择等。
以下,示出本发明的共焦点显微镜的第3实施方式。图8是表示第3实施方式的采用液晶的共焦点显微镜的结构的模式图。图8所示的共焦点显微镜7与图1所示的共焦点显微镜1不同的是照明光学系统60和控制系统70。其他的入射光学系统20、检测光学系统30、载物台3与图1所示的结构相同,所以,其说明从略。
照明光学系统60能够对照明光源11进行光强度调制,这一点不同于图1的采用液晶的共焦点显微镜1。照明光学系统60由照明光源11和光强度调制部61构成。光强度调制部61产生对照明光源11进行了光强度调制的束光62。作为照明光源11的光强度调制,可以采用矩阵式液晶器件、音响光学器件、数字反射镜器件等光强度调制元件。
图8所示的照明光学系统60是采用矩阵式液晶器件作为光强度调制元件的情况,其中包括照明光源11、准直仪12、第3偏光镜63、光强度调制用矩阵式液晶器件64和第4偏光镜65。
照明光源11采用例如激光源,射出的光通过由透镜12a和透镜12b构成的准直仪12而放大成所需束径的平行光。第3偏光镜63和第4偏光镜65的配置是互相垂直的配置,该被放大的光束,通过在第3和第4偏光镜63、65之间所插入的光强度调制矩阵式液晶器件64的各像素上所施加的电压,来对光强度进行调制即所谓的AM调制(频率f1)。
光强度调制用矩阵式液晶器件64由下述控制系统70进行控制。这时,为了使相邻的像素之间的光强度调制频率不同,也可以利用例如像f1、f2那样不同的多个频率进行强度调制。这些调制频率最好选择成不会互相形成高次谐波关系。
图9是表示本发明第3实施方式的共焦点显微镜的照明光学系统的另一结构例模式图。照明光学系统60′在照明光源11和准直仪12之间设置有音响光学器件68,这一点不同于图8的照明光学系统60。照明光源11利用音响光学器件68进行光强度调制(调制频率fAO)之后,利用准直仪12放大成所需束径的平行光,然后,利用光强度调制用矩阵式液晶器件64来对光强度进行调制(调制频率f2),所谓二重强度调制。音响光学器件68能够利用比光强度调制用矩阵式液晶器件高的频率来进行光强度调制(fAO>f1,f2)。
控制系统70对光强度调制后的反射光进行检测,这一点不同于图1的采用液晶的共焦点显微镜的控制系统50。控制系统70具有光强度调制控制部56以及对光强度调制后的反射光进行检测的图像处理装置58。光强度调制控制部58对光强度调制元件64、68进行驱动控制,进行照明光源11的光强度调制。在照明光学系统60中,经过光强度调制的入射光,和图1所示的共焦点显微镜1一样,通过入射光学系统20而照射到被观察物2上。来自该被观察物2的反射光入射到检测光学系统30,在图像处理装置53中进行信号处理之后,图像信号被发送到个人计算机51内。
图像处理装置58具有检测电气信号用的放大器、A/D变换器等,使来自检测光学系统的时间轴信号数字化,将其发送到个人计算机51内。个人计算机51进行把时间轴信号变换到频率轴的付立叶变换处理,获得被观察物2的反射光的或者荧光的光强度分布,显示到显示装置54上。付立叶变换可以采用高速付立叶变换的计算机方法来进行。
以下说明涉及第3实施方式的共焦点显微镜7的动作。
第3实施方式的共焦点显微镜7的动作,对照射到被观察物2上的光进行光强度调制,这一点不同于共焦点显微镜1。在矩阵式液晶器件22的各像素22a中,对矩阵式液晶器件的各像素22a进行控制,使透射各像素22a的光进行光强度调制,并且其偏振光方向互相垂直。来自被观察物2的反射光或照射到荧光上的光,在检测光学系统30和控制系统70中,把来自被光强度调制的从各像素的信号变换成频率信号,这样能够在频率轴上进行检测。这时,在采用液晶的共焦点显微镜7内产生的交调失真以外的噪声等,与光强度调制频率不同,很容易用频率轴进行判断处理,所以能够增大信杂比(S/N比)。也就是说,能够以高灵敏度检测出来自被观察物2的反射光或荧光。并且,相邻像素之间用不同的频率进行光强度调制的情况下,能够进一步防止交调失真。这样,能够防止多重共焦点间的交调失真,并且能够用光强度调制的频率来检测反射光或荧光的强度,所以灵敏度高,与共焦点显微镜1相比,能够进一步提高横方向和深度方向的分辨率。并且,不进行被观察物2的机械扫描,就能够高速进行被观察物2的反射光或荧光的观察。
以下,示出共焦点显微镜的上述第3实施方式的变形例。图10是表示第3实施方式的采用液晶的共焦点显微镜的另一种结构的模式图。图10所示的共焦点显微镜7′与图8所示的采用液晶的共焦点显微镜7不同的是入射光学系统20。其他的照明光学系统60、检测光学系统30、控制系统70和载物台3与图8的结构相同,所以,其说明从略。在入射光学系统20中,在矩阵式液晶器件22的下部设置了第2偏光镜25,这一点不同于图8的入射光学系统。在该例中增加了第2偏光镜25,所以,如图5所示,能够进行照明光的强度控制。这样,根据被观察物来控制矩阵式液晶器件的各像素22a,由此能够控制照明光强度。
以下,示出本发明的共焦点显微镜的第4实施方式。图11是表示第4实施方式的采用液晶的共焦点显微镜的结构模式图。图11所示的共焦点显微镜8与图8所示的采用液晶的共焦点显微镜7不同的是照明光学系统80和控制系统90。其他入射光学系统20、检测光学系统30、载物台3与图8的结构相同,所以其说明从略。照明光学系统80具有光源,其照明光源11具有多个波长;以及光强度调制部82,对各种波长的光源进行不同的光强度调制。在图中,假设照明光源11具有3个不同的波长的光源11a、11b、11c进行说明。光强度调制部82发出对照明光源11进行了光强度调制的光束84。照明光源11的光强度调制中,可以使用矩阵式液晶器件、音响光学器件、数字反射镜器件等光强度调制元件。控制系统90具有照明光源的光强度调制控制部91、以及检测经光强度调制的被观察物2的反射光或荧光的图像处理装置92。
图12是表示上述第4实施方式的共焦点显微镜的照明光学系统的一结构例的模式图。照明光学系统80对3个不同波长的光源11a、11b、11c分别具有准直仪12a、12b、12c、第3偏光镜63a、63b、63c、光强度调制用矩阵式液晶器件64a、64b、64c、第4偏光镜66a、66b、66c和光束分离器85、86、87。例如在照明光源11a中,和图9中说明的照明光源11同样,射出的光通过由透镜12a和透镜12b构成的准直仪12放大成所需束径的平行光。第3偏光镜62和第4偏光镜66的配置是互相垂直的配置。该被放大的光束通过在第3偏光镜62a和第2偏光镜66a之间所插入的光强度调制用矩阵式液晶器件64a的各像素上所施加的电压,对光强度进行调制即所谓的AM调制(频率f1),使其变成被光强度调制的光束84a。
光强度调制用矩阵式液晶器件64a利用控制系统90的光强度调制控制部9进行控制。在照明光源11b和11c中,和照明光源11a同样,利用光强度调制用矩阵式液晶器件64b和64c进行光强度调制,变成光束84b(频率f2)、84c(频率f3)。
光强度调制控制部91对光强度调制元件64a、64b、64c进行驱动控制,并进行照明光源11a、11b、11c的强度调制。在照明光学系统80中,经过光强度调制的光束84a、84b、84c分别入射到光束分离器85、86、87内,并进行合波(合波),变成经过光强度调制的光束84。在此,也可以利用不同的多个频率来对经过光强度调制的光束84a、84b、84c的各像素进行强度调制,使相邻像素之间的光强度调制频率不同。例如,也可以把经过光强度调制的光束84a(波长λ1)的光强度调制频率,按照互相邻接的像素顺序设定为f1、f2、f3,同样,把经过光强度调制的光束84b(波长λ2)的光强度调制频率设定为f4、f5、f6;把经过光强度调制的光束84c(波长λ3)的光强度调制频率设定为f7、f8、f9。希望把这些调制频率选定为互不形成高次谐波关系。
经过光强度调制的光束84,和图8所示的采用液晶的共焦点显微镜7一样,通过入射光学系统而照射到被观察物2上。来自该被观察物2的反射光或荧光入射到检测光学系统30内,在图像处理装置92中进行信号处理之后,图像信号被发送到个人计算机51内。
图像处理装置92具有检测电气信号用的放大器、A/D变换器等,将来自检测光学系统的时间轴信号进行数字化,发送到个人计算机51。个人计算机51进行付立叶变换处理,把时间轴信号变换成频率轴,取得反射光的强度分布,显示到显示装置54上。为了缩短处理时间,所述的付立叶变换可以利用高速付立叶变换的计算方法来进行运算处理。
以下说明上述第4实施方式的共焦点显微镜8的动作。该共焦点显微镜8的动作,对照射到被观察物2上的多个光进行光强度调制,这一点不同于共焦点显微镜7。在矩阵式液晶器件22的各像素22a中,对透射各像素22a的光进行光强度调制,并对矩阵式液晶器件的各像素22a进行控制,使其偏振光方向互相垂直。对于来自被观察物2的多个波长的反射光或荧光,在检测光学系统30和控制系统90中,能够在频率轴上检测出从各波长的经光强度调制的各像素来的信号。这时,在采用液晶的共焦点显微镜7内产生的交调失真以外的噪声等与光强度调制频率不同,能够容易在频率轴上进行判断处理,所以,能够增大信噪比(S/N比)。也就是说,能够以高灵敏度来检测出来自被观察物2的多个波长的反射光或荧光。互相邻接的像素被用不同频率进行了光强度调制的情况下,能够进一步防止交调失真。这样一来,能够防止多重共焦点间的交调失真,并能够用光强度调制的频率来检测来自多个波长的反射光或荧光的强度,所以在多波长时灵敏度高,用共焦点显微镜7不能取得的来自多波长的横方向和深度方向的分辨率提高。并且,不进行被观察物2的机械扫描,就能够高速进行被观察物2的反射光或荧光的观察。
以下示出共焦点显微镜的第4实施方式的变形例。图13是表示第4实施方式的采用液晶的共焦点显微镜的另一种结构的模式图。图13所示的共焦点显微镜8′与图11所示的采用液晶的共焦点显微镜8的不同点是入射光学系统20。其他照明光学系统80、检测光学系统30、控制系统90、载物台3、均与图11的结构相同,所以,其说明从略。在入射光学系统20中,在矩阵式液晶器件22的下部设置了第2偏光镜25,这一点不同于图11的入射光学系统。在该变形例中,通过增加第2偏光镜25,即可如图5说明那样,进行照明光的强度控制。这样,根据被观察物来控制矩阵式液晶器件的各像素22a,即可控制照明光强度。
以下,示出本发明的共焦点显微镜的第5实施方式。图14是表示第5实施方式的采用液晶的共焦点显微镜的结构模式图。图14所示的共焦点显微镜9与图6所示的采用液晶的共焦点显微镜5不同的是照明光学系统60和控制系统100。其他的入射光学系统20′、检测光学系统30′和载物台3与图6的结构相同,所以其说明从略。照明光学系统60与图8所示的照明光学系统60相同,由光源11和光强度调制部62构成,利用光强度调制用矩阵式液晶器件64来对照明光源11进行光强度调制,生成光束62。光强度调制用矩阵式液晶器件64由下述控制系统100进行控制。这时,最好用不同的多个频率进行强度调制,以使邻接像素相互的光强度调制频率不同。
图15是表示上述第5实施方式的共焦点显微镜的照明光学系统的另一种结构例的模式图。在该共焦点显微镜9A中,照明光学系统60在照明光源11和准直仪12之间还设置了音响光学器件68,这一点不同于图14的照明光学系统60。照明光源11利用音响光学器件68进行光强度调制之后,利用准直仪12将其放大成所需束径的平行光,然后,利用光强度调制用矩阵式液晶器件64来进行光强度调制即所谓二重强度调制。音响光学器件68能够利用比光强度调制的矩阵式液晶器件高的频率进行光调制。
控制系统100具有光强度调制控制部56和图像处理装置101,后者用于检测经光强度调制后的反射光,这一点不同于图6的控制系统50′。光强度调制控制部56对光强度调制元件64进行驱动控制,并进行照明光源11的强度调制。在照明光学系统60中,经光强度调制的反射光,和图6所示的共焦点显微镜5一样,通过入射光学系统20′而照射到被观察物2上。来自该被观察物2的反射光入射到检测光学系统30′,并在图像处理装置101中进行信号处理之后,图像信号被发送到个人计算机51。
图像处理装置101具有检测电气信号用放大器、A/D变换器等,将来自检测光学系统的时间轴信号进行数字化后,发送到个人计算机51。个人计算机51进行把时间轴信号变换到频率轴的付立叶变换处理,取得被观察物2的反射光或荧光的光强度分布,显示在显示装置54上。付立叶变换能够用付立叶变换的计算方法来进行。
在此,说明第5实施方式的共焦点显微镜的动作。在上述第5实施方式的共焦点显微镜9中,和第2实施方式的共焦点显微镜5的动作说明同样,对矩阵式液晶器件22、39的各像素进行控制,使透射矩阵式液晶器件22、39的光的偏振光方互相垂直。
在第5实施方式中,对于来自被观察物2的反射光或者照射到荧光上的光,在检测光学系统30和控制系统100中,能够在频率轴上检测出从经光强度调制的各像素来的信号。这时,在采用液晶的共焦点显微镜9中生成的交调失真以外的噪声等,与光强度调制频率不同,容易在频率轴上进行判断处理,所以,能够增大信噪比(S/N比)。也就是说,能够以高灵敏度来检测出从被观察物2来的反射光或荧光。并且,在互相邻接的像素之间以不同的频率进行了光强度调制的情况下,能够进一步防止交调失真。
以下,在图16中表示本发明共焦点显微镜的第5实施方式的变形例。图所示的采用液晶的共焦点显微镜9B与图14所示的采用液晶的共焦点显微镜9的不同点是入射光学系统20′。其他照明光学系统60、检测光学系统30′、控制系统100、载物台3、均与图14的结构相同,所以,其说明从略。在本例中,入射光学系统20′中,在矩阵式液晶器件22的下部设置了第2偏光镜25,这一点不同于图14的入射光学系统。
如图4和图5说明的那样,该第2偏光镜25的作用是利用第1矩阵式液晶器件的像素22a的驱动电压来改变照明光强度。在入射光学系统的第1矩阵式液晶器件22的各像素22a中,对第1矩阵式液晶器件22的各像素进行控制,使透射相邻各像素22a的光的偏振光方向互相垂直。
以下,图17示出本发明的共焦点显微镜的第6实施方式。共焦点显微镜9C与图14所示的共焦点显微镜9不同的是照明光学系统80和控制系统100′。而且,对于和图14相同的结构部分,标注相同的符号,其说明从略。照明光学系统80能够采用和图11及图12相同的结构,所以,其详细说明从略。并且,控制系统100′具有光强度调制控制部56和图像处理装置101,后者用于检测出经光强度调制的反射光。此外,可以采用和图14相同的结构,所以其详细说明从略。
在此,照明光源11具有不同的3个波长的光11a、11b、11c,对各种波长的光进行光强度调制。在矩阵式液晶器件22、39的各像素中透射的光中,对矩阵式液晶器件22、39的各像素进行控制,以使其偏振光方向互相垂直。并且,在各像素中对不同波长的反射光或荧光进行光强度调制,所以,不会产生交调失真。并且,由于各像素中的波长不同的入射光的光强度调制频率不同,所以,能够很容易地识别出来自各波长的反射光或荧光。
再者,在共焦点显微镜9内生成的交调失真以外的噪声等也不同于光强度调制频率,能够很容易地在频率轴上进行判断处理。所以,能够增大信噪比(S/N比)。也就是说,能够以高灵敏度检测出来自被观察物2的反射光或荧光。
这样,不进行被观察物2的机械扫描,不根据波长来切换检测器,就能够以高灵敏度高速进行来自被观察物2的多波长的反射光或荧光的观察。并且,能够防止多重共焦点间的交调失真,提高分辨率。
以下参照图18,说明共焦点显微镜的第6实施方式的变形例。图示的采用液晶的共焦点显微镜9D与图17所示的共焦点显微镜9C的不同点是入射光学系统20。其他照明光学系统80、检测光学系统30′、控制系统100′、载物台3、均与图17的结构相同,所以,其说明从略。在本例中,入射光学系统20′中,在矩阵式液晶器件22的下部设置了第2偏光镜25,这一点不同于图17的入射光学系统。
如图4和图5说明的那样,该第2偏光镜25的作用是利用第1矩阵式液晶器件的像素22a的驱动电压来改变照明光强度。在入射光学系统的第1矩阵式液晶器件22的各像素22a中,对第1矩阵式液晶器件22的各像素进行控制,以使透射相邻各像素22a的光的偏振光方向互相垂直。
在此,通过第2矩阵式液晶器件的各像素的偏振光控制,可以防止利用被观察物2的反射光在摄像器件33上形成的多个焦点41之间的交调失真。所以,即使在进行入射光的照明控制的情况下,也能够形成无反射光的交调失真的图像,所以,不必像过去的共焦点显微镜那样,进行机械扫描来合成整个画面,能够直接用控制系统100′的显示装置54进行观察。这样,不进行被观察物2的机械扫描,即可高速进行来自被观察物2的多波长的反射光或荧光的观察。此外,能够防止多重共焦点间的交调失真,能够提高分辨率,并且,可利用已进行了光调制的光源提高灵敏度。再者,利用2块矩阵式液晶器件和第2偏光镜25的组合,即可实现照明光控制、偏振光控制、检测信号的选择等。
以下,说明使用共焦点显微镜的微阵列基片的测量方法的实施方式。
在此,微阵列基片是把微量的DNA或生物体物质布置成平板状的被观察物。这些微阵列基片上预先有选择地附加了作为标识的荧光物质。并且,该微阵列基片也可以是荧光标识化的未知的一条链DNA和经杂交反应的DNA微阵列基片。
以下说明利用图6所示的本发明的共焦点显微镜5来观察上述DNA微阵列基片的测量方法。共焦点显微镜5的第1和第2矩阵式液晶器件22和39的大小,与DNA微阵列基片相比是足够大的。所以,DNA微阵列基片整体的反射图像或者荧光,可以用共焦点显微镜5进行观察。
首先,把DNA微阵列基片放置在载物台3上,把照明光源11点亮。然后利用XYZ载物台3a和θ载物台3b来调节所观察的DNA微阵列基片的Z方向位置,使照明光源11的焦点位置与DNA微阵列基片的检测位置相重叠。
利用第1液晶控制部52控制向DNA微阵列基片的入射光,以使通过矩阵式液晶器件22透射相邻像素的入射光的偏振光方向互相垂直。这时,检测光学系统的第2矩阵式液晶器件39的各像素也由第2液晶控制部进行控制。
这样,通过作为摄像器件33例如使用CCD相机,能够同时检测在DNA微阵列基片上产生的全部荧光,能够改变被检测的信号的强度或偏振光方向来进行荧光图像观察。
在此,矩阵式液晶器件22、29的像素的大小为10μm~20μm,例如DNA微阵列基片上产生的一个荧光的大小是直径约为100μm,所以分辨率足够高。因此,能够直接判断DNA微阵列基片的荧光数或荧光发生部位。并且,能够利用控制系统50的个人计算机51,迅速进行图像的记录和数据处理。
并且,若利用图14所示的本发明的共焦点显微镜9来观察上述DNA微阵列基片,则对光源进行光强度调制,能够在频率轴上以高灵敏度从DNA微阵列基片中测量荧光。
以下说明利用图11所示的本发明的共焦点显微镜5来观察下述情况下的DNA微阵列基片的测量方法,该情况是有选择性地预先附加了具有作为标识的多个荧光波长的荧光物质。若利用图16所示的本发明的共焦点显微镜9B来进行观察,则光源为多波长,对各波长进行光强度调制,能够在频率轴上以高灵敏度来测量来自DNA微阵列基片的多波长荧光。
根据利用上述共焦点显微镜的微阵列基片的测量方法,则在微阵列基片上产生相当于矩阵式液晶器件的像素数的多重焦点,其反射光通过分离光学系统而入射到共焦点检测光学系统内,通过矩阵式液晶器件而形成相当于像素数的多重焦点。所以,根据本发明的共焦点显微镜,则能够一次观察到与矩阵式液晶器件的像素数相对应的被观察物。并且,不仅限于一个波长,可以采用多波长的光源,所以,能够在短时间内以良好的精度测量出来自DNA微阵列基片的多波长荧光。这样,不进行DNA微阵列基片的机械扫描,即可实时地观察在DNA微阵列基片上激励的荧光的鲜明的整个图像。
以下说明采用共焦点显微镜的偏振光测量方法的实施方式。偏振光是从被观察物2的反射光或荧光中来的偏振光,例如利用图17所示的本发明的共焦点显微镜9C来观察从上述DNA微阵列基片的荧光中来的偏振光,以此为例进行说明。
首先,把DNA微阵列基片放置在载物台3上,把照明光源11点亮。然后利用XYZ载物台3a和θ载物台3b来调节被观察的DNA微阵列基片的Z方向位置,以使照明光源11的焦点位置与DNA微阵列基片的检测位置相重叠。
利用第1液晶控制部52控制向DNA微阵列基片的入射光,以使经矩阵式液晶器件22透射相邻像素的入射光的偏振光方向互相变化。这时,能够按每个像素独立地控制透射各像素的光的偏振光方向。若使该偏振光旋转180度、则透射偏光镜25的光的量发生变化,能够观察出来自被观察物的偏振光的变化。
这样,例如能够使用CCD相机作为摄像器件33,对从DNA微阵列基片、生物试样、糖等中的荧光或者反射光来的偏振光进行检测。并且,若采用本发明的共焦点显微镜9B进行观察,则光源为多波长,对各波长进行光强度调制,能够在频率轴上以高灵敏度检测出从DNA微阵列基片来的多波长荧光的偏振光。
在此,矩阵式液晶器件22、29的像素的大小为10μm~20μm,例如DNA微阵列基片上产生的一个荧光的大小,直径约为100μm,所以分辨率足够高。因此,能够直接测量出DNA微阵列基片的荧光的偏振光。这时,能够利用控制系统50的个人计算机51,迅速进行图像的记录和数据处理。
根据利用本发明的共焦点显微镜的反射光和荧光的偏振光的测量方法,则在微阵列基片上产生相当于矩阵式液晶器件的像素数的多重焦点,其反射光通过分离光学系统而入射到共焦点检测光学系统内,通过矩阵式液晶器件而形成相当于像素数的多重焦点。所以,根据本发明的共焦点显微镜,则能够一次观察到与矩阵式液晶器件的像素数相对应的被观察物的偏振光。并且,不仅限于一个波长,可以采用多波长的光源,所以,能够在短时间内以良好的精度测量出从被观察物来的多波长的反射光或者荧光来的偏振光。
不言而喻,本发明不仅限于上述实施方式,而是在所述的发明的范围内,能够进行各种变形,这些也包括在本发明的范围内。在上述实施方式中检测光学系统中采用了摄像器件。但检测系统,也可以根据需要采用多个检测系统,以便也能够在摄像器件位置上进行目视的观察和拍摄照片等。并且,当然,采用多波长的入射光学系统和检测光学系统的构成或光强度调制元件等,可以根据被观察物来选择最佳设计和所用部件。
权利要求
1.一种采用液晶的共焦点显微镜,具有入射光学系统,从照明光源将经光强度调制的偏振光通过矩阵式液晶器件和物镜入射到被观察物,在所述矩阵式液晶器件的上部配置有光束分离器、微透镜阵列;检测光学系统,包含摄像器件,该摄像器件通过上述光束分离器和透镜来检测来自被观察物的反射光或荧光;以及控制系统,包括对上述矩阵式液晶器件的各像素进行控制的液晶控制部、以及上述照明光源的光强度调制控制部,其特征在于,使每个透射了上述微透镜阵列的微透镜的光,透射上述矩阵式液晶器件的各像素,利用上述物镜在上述被观察物上结成多个焦点,并且,利用上述液晶控制部,将透射上述矩阵式液晶器件的各像素的光的偏振光方向控制成互相垂直,通过把来自被观察物的反射光或者荧光的光强度调制信号变换成频率信号,进行检测。
2.如权利要求1所述的采用液晶的共焦点显微镜,其特征在于,把偏光镜配置在上述矩阵式液晶器件的下部,并用上述矩阵式液晶的各像素来控制透射了该偏光镜的光的偏振光。
3.如权利要求1所述的采用液晶的共焦点显微镜,其特征在于,上述照明光源是单一波长或多波长,利用矩阵式液晶器件、音响光学器件、数字反射镜器件中的任一个器件,进行上述照明光源的光强度调制。
4.如权利要求1或3所述的采用液晶的共焦点显微镜,其特征在于,对每个像素用多个调制频率进行上述照明光源的每个单一波长的光强度调制。
5.如权利要求1所述的采用液晶的共焦点显微镜,其特征在于,利用高速付立叶变换,对从来自被观察物的反射光或者荧光的光强度调制信号向频率信号的变换进行运算处理。
6.一种采用液晶的共焦点显微镜,具有入射光学系统,把来自照明光源的偏振光通过第1矩阵式液晶器件入射到被观察物,在所述第1矩阵式液晶器件的上部配置有光束分离器、透镜、第1微透镜阵列;检测光学系统,包含摄像器件,该摄像器件通过第2矩阵式液晶器件、聚光透镜来检测来自被观察物的反射光或荧光,在该第2矩阵式液晶器件的上部配置有光束分离器、透镜、第2微透镜阵列;以及控制系统,包含对透射上述第1和第2矩阵式液晶器件的各像素的光的偏振光方向进行控制的第1和第2液晶控制部、以及上述照明光源的光强度调制控制部,其特征在于,使每个透射了上述第1微透镜阵列的微透镜的光,透射上述第1矩阵式液晶器件的各像素,在被观察物上结成多个焦点,此外,使每个透射了上述第2微透镜阵列的微透镜阵列的上述反射光或者荧光,透射上述第2矩阵式液晶器件的各像素,在上述摄像器件上结成多个焦点,并且,利用上述第1和第2液晶控制部来控制透射上述第1和第2矩阵式液晶器件的各像素的光的偏振光方向,通过把来自上述被观察物的反射光或荧光的光强度调制信号变换成频率信号,进行检测。
7.如权利要求6所述的采用液晶的共焦点显微镜,其特征在于上述入射光学系统的第1液晶控制部把透射上述第1矩阵式液晶器件的各像素的光的偏振光方向控制成互相垂直。
8.如权利要求6所述的采用液晶的共焦点显微镜,其特征在于,上述检测光学系统的第2液晶控制部把透射上述第2矩阵式液晶器件的各像素的光的偏振光方向控制成互相垂直。
9.如权利要求6所述的采用液晶的共焦点显微镜,其特征在于,在上述第1矩阵式液晶器件的下部配置偏光镜,利用上述矩阵式液晶的各像素来控制透射该偏光镜的光的偏振光。
10.如权利要求6所述的采用液晶的共焦点显微镜,其特征在于,上述照明光源是单一波长或多波长,利用矩阵式液晶器件、音响光学器件、数字反射镜器件中的任一个,进行上述照明光源的光强度调制。
11.如权利要求6或10所述的采用液晶的共焦点显微镜,其特征在于,对每个像素用多个调制频率进行上述照明光源的每个单一波长的光强度调制。
12.如权利要求6所述的采用液晶的共焦点显微镜,其特征在于,利用高速付立叶变换,对从来自被观察物的反射光或者荧光的光强度调制信号向频率信号的变换进行运算处理。
13.一种基于采用液晶的共焦点显微镜的微阵列基片的荧光测量方法,其特征在于,在有选择地预先附加了作为标识的荧光物质的微阵列基片的荧光测量中,利用权利要求1~12中的任一项所述的采用液晶的共焦点显微镜,对来自上述荧光物质的荧光进行观察。
14.如权利要求13所述的基于采用液晶的共焦点显微镜的微阵列基片的荧光测量方法,其特征在于,上述微阵列基片包含微量的DNA或生物体物质。
15.如权利要求13或14所述的基于采用液晶的共焦点显微镜的微阵列基片的荧光测量方法,其特征在于,上述微阵列基片是DNA芯片。
16.一种基于采用液晶的共焦点显微镜的偏振光测量方法,其特征在于,在来自被观察物的反射光或来自荧光的偏振光测量中,利用权利要求1~12中的任一项所述的采用液晶的共焦点显微镜,来测量来自上述被观察物的偏振光。
17.如权利要求16所述的采用液晶的共焦点显微镜的偏振光测量方法,其特征在于,在上述采用液晶的共焦点显微镜的液晶矩阵中,通过使偏振光改变180度,对上述被观察物进行偏振光测量。
全文摘要
本发明的共焦点显微镜以及利用它的荧光测量方法和偏振光测量方法,它具有入射光学系统(10、10′),使偏振光从照明光源(11)经过把微透镜阵列(21)配置在上部的矩阵式液晶器件(22)和物物(23)而入射到被观察物2内;检测光学系统(30、30′),检测从被观察物来的反射光或荧光;以及液晶控制部(52),控制液晶器件(22),其特征在于使每个透射了微透镜阵列(21)的微透镜的光透射液晶器件(22)的各像素(22a),利用物镜(23)使多个焦点(24)形成在被观察物(2)上,并且,利用液晶控制部(52)来对透射液晶器件(22)的各像素的光的偏振光方向进行控制,使透射各像素的光的偏振光方向互相垂直。
文档编号G01N21/64GK1991335SQ200710001810
公开日2007年7月4日 申请日期2003年9月18日 优先权日2002年9月30日
发明者林照刚, 前川克广, 柴田隆行 申请人:独立行政法人科学技术振兴机构