流量传感器的制作方法

文档序号:6153976阅读:217来源:国知局
专利名称:流量传感器的制作方法
技术领域
本发明通常涉及患者通风系统,尤其涉及一种双向流量
传感器,其在测量流向患者的呼吸流量和从患者呼出的呼吸流量方面 具有提高的精度。
背景技术
机械呼吸器用于通过辅助呼吸周期中的吸气相和呼气相 而对患者提供呼吸支持。在一设备中,机械呼吸器可以通过三通部件 (wye fitting)被连接至患者。三通部件依次通过连接至患者接口的 患者导管而流体地连接至患者的气道。三通部件可以具有连接至三通 部件的一个支管的呼气阀。 呼气阀根据呼吸周期的相而在开启与闭合位置之间移 动。在吸气相期间,呼气阀闭合以允许将来自呼吸器的压縮气体输送 至患者。在呼气相期间,呼气阀开启以允许患者将气呼出至大气。在 某些呼吸器设备中,为了在呼气相期间提供超过大气压的高回压,将 呼气末正压通气(PEEP)阀与呼气阀结合使用。 流量传感器用于判定从呼吸器流至患者的压縮气体的流 量以及判定从患者流至呼气阀的呼出气体的流量。压差检测是用于测 量气体的流量的较常用的技术之一。压差流量传感器包括置于流经传 感器的气流中的限流器(flowrestrictor)以允许测量穿过限流器而 发生的压降(即压差)。取决于在限流器的相反两端上的上游及下游测 压孔之间的可测压差,双向流量传感器能够判定两个方向的流量。可 测压差与以凭经验确立的流量相关。在一些情况下,患者接口设置为用于将压縮气体从机械 呼吸器输送至患者的气管导管。气管导管通常具有相对小的直径。气 道接合器用于使小直径的气管导管连接至标准尺寸的大直径的流量传 感器部件。流量传感器优选地其位置尽可能地靠近患者,在一些现有技术的设备中,流量传感器可以合并入三通部件或者可以位于三通部 件与患者接口之间。由于相对小直径的气管导管与大直径流量传感器之间的 尺寸差异,患者的呼气会导致相对高速的压力射流离开气管导管而进 入流量传感器。来自气管导管的人为的高速压力撞击在流量传感器中 的限流器的测压孔上。相对于凭经验确立的流量/压差的关系,高速压 力射流会导致对于给定气流的人为的高压差测量。结果为人为的高流 在试图克服由压力射流产生的人为的高流速的问题上, 一些现有技术的通风系统将从气管导管至流量传感器的距离增加了大 约六英寸。在流量传感器与气管导管之间增加的距离允许压力射流在 撞击到测压孔之前在流量传感器中更均匀地分散。这样,穿过流量传 感器的截面区域的流速相对恒定,从而压力测量被认为是更精确。不 幸的是,从流量传感器至气管导管的距离的增加也增加了再呼吸体积 的总量或者患者气道中的无效腔。所增加的无效腔会导致先前呼出气 体的再呼吸。 另一个与流量测量相关的问题是,在吸气相期间,由于 气流中的气动噪声的结果会导致流量传感器可能发生不准确的压力测 量。这种气动噪声可能包括在流量传感器的呼吸器端(即与患者端相 对)的紊流、振动或者不对称流状况。某种机械通风系统被配置为利 用偏流工作,该偏流可能包括气动噪声。例如,该机械呼吸器系统类 似于在授权给DeVries的美国专利6, 102,038中公开的机械呼吸器系 统,其利用偏流工作,该偏流根据呼气阀是开启还是关闭而流经三通 部件。 对于大多数应用,偏流通常在约2-10公升每分钟(LPM) 的范围内,并且可以将气动噪声引入流量传感器,这会降低流量传感 器的精度。偏流中的气动噪声可能是在流量传感器的入口处的不对称 流的产物。尤其是,由于三通部件的几何形状,偏流会在非轴向方向 上进入流量传感器,在流量传感器处产生了涡流或交叉流,这导致了 在流量传感器的测压孔处的不准确的压力测量。
5
流量传感器中测定出的压力可以用于使机械呼吸器呼气
阀根据每一呼吸周期中患者激发的吸气相及呼气相而循环。尤其对于 新生儿及小儿患者,期望使偏流中的气动噪声最小以使触发吸气相及
呼气相的0.2LPM流量不被气动噪声扰动。在这点上,期望气动噪声维 持在0. 1LPM或者0. 1LPM以下。 可以看出,现有技术存在对适于新生儿及小儿患者使用 的流量传感器的需求。尤其是,现有技术存在对可以减少气动噪声而 操作的流量传感器的需求,减少气动噪声以使每一个呼吸周期中患者 激发的吸气相及呼气相以适合的流量被触发。另外,现有技术存在对 适于与小直径气管导管一起使用的流量传感器的需求。 优选地,流量传感器被配置为消除在呼气期间由从气管 导管排出的压力射流所产生的人为的高压测量。而且,期望流量传感 器被配置为使无效腔最小从而防止患者再呼吸C02。最后,现有技术存 在对流量传感器的需求,其在吸气和呼气期间使气流阻力最小的同时 克服了在呼吸器端气动噪声的不利影响。

发明内容
本发明具体解决示出与用于机械呼吸器的流量传感器相 关的上述需求,本发明提供了一种双向流量传感器。所述流量传感器 适于与机械呼吸器一起使用以测量在吸气相及呼气相期间到达患者的 压縮气体的流量。机械呼吸器可以依靠常规的三通部件连接至患者。 三通部件还可以被流体地连接至呼气阀和/或呼吸末正压通气(PEEP) 阀。流量传感器具体适于将气动噪声限定在大约0. 1公升每分钟(LPM) 从而能够以大约0. 2LPM触发患者激发的吸气相及呼气相。流量传感器 可以并入三通部件中或者设置为与三通部件独立的元件。流量传感器 可以连接至患者导管,患者导管依次可以连接至诸如气管导管的患者 接口。 在最广义上,流量传感器包括具有用于测量压差的限流 器的细长的中空的管状构件。流量传感器可以包括在管状构件一端的 导流板和/或在管状构件的相对端的流阻塞器。导流板具体适于校直非 轴向流,非轴向流诸如来自机械呼吸器的偏流。流阻塞器优选地与气管导管在轴向上对齐,以使在患者呼气期间离开气管导管的压力射流 在到达限流器之前被分散为匀速轮廓,在限流器中测量呼出流测量。 管状构件包括连接至机械呼吸器的呼吸器端和连接至患 者气道的患者端。管状构件可以安装有常规气道接合器,该气道接合 器与气管导管连接。管状构件可以为圆柱状的并且具有内腔,内腔限 定了内表面并且具有中心轴。内腔可以在位于呼吸器端和患者端之间 的颈部具有减小的截面面积。颈部在气流到达测量呼出流的限流器之 前压縮进入患者端的呼出流。 限流器完全设置在颈部中以使限流器将颈部分成两部 分。在这点上,限流器相对于中心轴横向安装。限流器包括一对设置 在其轴向相对两端上的测压孔。每一测压孔限定了孔高度,孔高度优 选地关于中心轴对称地设置。每一测压孔通过独立的液道而流体地连 接至相应的一对外部压力孔。 压力孔可以例如经由压力管或部件而流体地连接至压力 转换器以允许将压差转换为流量。所测定出的压力用于测量吸气流/呼 出流。限流器优选地具有对称的空气动力学截面形状,其具有沿中心 轴排列的长宽比。 导流板设置在内腔中的呼吸器端处并且包括多个叶片, 多个叶片从中心轴径向向外延伸并且与中心轴轴向对齐。导流板优选 地被定尺寸且被配置为使在测压孔处的非轴向流最小。在这点上,导 流板被配置为校直进入流量传感器的偏流的角度特征(angular nature)。偏流在到达限流器之前由叶片校直,限流器测量气流的压差, 随后压差被转换为流量。在这点上,导流板防止了在限流器处的交叉 流以增加压力测量的精确度。 每一叶片优选地包括形成在导流板的与呼吸器端相反的 一端的径向内侧(即邻近中心轴)的槽口。叶片中的槽口共同限定了 用于导流板的共同的卸压。卸压具体适于使相邻叶片通道之间的压差 (即,叶片与叶片间的压差)最小。这样,来自呼吸器端的气流优选 地具有匀速剖面以确保在限流器处的精确的压力测量。 在流量传感器的相反端上,流阻塞器设置在患者端与颈 部之间的内腔中。流阻塞器优选地相对于中心轴横向安装以使流阻塞器将内腔分成两部分(即,完全设置在其中)。另外,流阻塞器优选地 从轴向观察时其被定向为与限流器垂直或正交。 而且,流阻塞器优选地具有空气动力学截面形状,例如 菱形或水滴形。为了提高在测压孔处的压力测量的精确度,流阻塞器 优选地被配置为促使在颈部处匀速穿过内腔。流阻塞器优选地具有防 止来自气管导管的高速压力射流直接撞击测压孔的阻塞器高度,高速 压力射流直接撞击测压孔会导致不准确的压力测量。 流量传感器具体适于与机械呼吸器一起使用,并且为了 允许如新生儿通风器所要求的以O. 2LPM的相对小的流量触发呼吸周期 中患者激发的吸气相及呼气相,其优选地配置为使气动噪声维持在小 于O. 1公升每分钟(LPM)。


通过结合附图和以下示出此处公开的各个实施例的这些 以及其它特征及优点将变得更好理解,其中相似标记指代相似部件, 并且其中图1为本发明的流量传感器的分解立体图,并且进一步
示出示出了流体地连接至气管导管的气道接合器;图2为从患者端所截取的流量传感器的立体图;图3为流量传感器的纵向截面图,示出示出了设置在呼
吸器端的导流板、设置在患者端的流阻塞器和插在导流板及流阻塞器
之间的限流器;图4a为流量传感器及接合器的纵向截面图,示出示出二 者间的相互连接性; 图4b为流量传感器的侧视截面图,示出示出了形成在呼 吸器端中的锥形部,并示出了流阻塞器与限流器之间的关系; 图5为流量传感器的纵向俯视截面图,示出了流阻塞器 的截面及限流器的轴向截面; 图6为流量传感器在呼吸器端的侧视图,示出了多个成 角度间隔的构成导流板的叶片;
图7为流量传感器沿着图4b的线7-7截取的轴向截面图,并且进一步示出了限流器的测压孔; 图8为流量传感器沿着图4b的线8-8截取的轴向截面图,并且示出了在患者端的外环凸缘; 图9为流量传感器的纵向截面图,示出了在患者端的流阻塞器;及 图10为流量传感器的纵向截面图,示出了气流进入呼吸器端的螺旋方向及导流板的校直效果。
具体实施例方式附图的目的是用于示出本发明的优选实施例,而不是用于将本发明限制为与其相同,现参照附图,图1及图2示出了双向流
量传感器10的立体图,其具体适用于测定流经流量传感器10的气流中的压力。所示的流量传感器10适于与诸如可具有相对小尺寸(即小内径76)的气管导管16的患者导管14互连。接合器70摩擦接合至流量传感器10,诸如通过将接合器70插入形成在流量传感器10 —端的环状槽68中。气管导管16还可以具有相对大直径以用于成人使用。除了气管导管外,患者导管14的可选配置可以与流量传感器一起使用。不考虑它们的具体配置,患者导管14适于将患者气道连接至流量传感器10。不考虑患者导管14的配置,流量传感器10适于利于精确测量流经其的流量。 流量传感器10包括在患者端26的流阻塞器64。在流阻塞器64的两端为一对测压孔44a、 44b。流阻塞器64具体被定向为与在呼气期间从气管导管16排出的高速压力射流笔直地。在这点上,流阻塞器64具体适于分散压力射流并且促使在患者端26的测压孔44b处大致匀速穿过流量传感器10的相对较大的截面区域。这样,流阻塞器64利于呼出流的精确测量。 尤其参照图1,流量传感器10可以包括一对部件54,部件54被定尺寸且被配置为接合形成在流量传感器10的外侧的压力管连接器52的相应的一对开口。每一压力管连接器52流体地连接至设置在限流器38的轴向相对两端上的相应的测压孔44a、 44b。如以下更详细示出的,测量通过限流器38的测压孔44a、 44b的压差。 依靠从部件54延伸出的一对压力管,压力测量可以供给至压力转换器或其它压力变换装置。如现有技术中公知的,压力转换器能够用于判定流量,诸如利用查找表。流量信息用于生成代表在测压孔44a、 44b处压力测量的电信号。该电信号可以用于根据患者激发的吸气和呼气而在适合的时间循环或激活机械呼吸器12 (未示出)及呼气阀/PEEP阀(未示出)。 图1中以10示出的流量传感器10具有呼吸器端24及患者端26。呼吸器端24诸如经由三通部件(未示出)而流体地连接至呼吸器12。流量传感器10可以并入三通部件中,或可以设置为流体地连接至三通部件的单独的元件,该元件流体地连接至三通部件的邻近患者的一端上。在这点上,流量传感器10可以适于与授权给DeVries等的美国专利6102038中公开的机械通风系统一起使用,该专利的全部内容通过引用清楚地合并在此。流量传感器10的患者端26可以诸如经由图1及图2所示的接合器70/气管导管16而流体地连接至患者气道示出。可选的,流量传感器IO可以并入三通部件中,诸如在DeVries文献中所公开的类型。例如,诸如通过注塑成型可以使流量传感器10及三通部件形成为一个整体结构。 流量传感器10大致配置为细长的中空的管状构件18,管状构件18具有贯穿其中的内腔20。内腔20包括内表面28并且限定了贯穿内腔20的纵向轴或中心轴22。可以在呼吸器端24处在内腔20中设置导流板56。导流板56通常包括多个叶片58,叶片58被定尺寸且被配置为通过最小化或校直进入呼吸器端24中的非轴向流来减少气动噪声。如之前所述,机械呼吸器12可以被配置为产生偏流,该偏流从机械呼吸器12流入三通部件,在三通部件中产生显著的旋转。 如之前所述,偏流可以为在非轴向上进入呼吸器端24的螺旋形的旋流。如果没有导流板56,非轴向偏流将在交叉流向上撞击呼吸器端24的测压孔44a,这导致不准确的压差测量。重要的是,导流板56具体被定尺寸且被配置为减少或最小化进入内腔20的呼吸器端24的斜流或涡流,以使气流当到达限流器38时被轴向调直。
参照图3,可以看出,流阻塞器64设置在内腔20内而邻近限流器38的患者端26。如之前所述,流阻塞器64优选地设置有空气动力学的截面形状。如图9最佳所示的,流阻塞器64还优选地定位为与从气管导管16排出的压力射流大致一致。流阻塞器64促使匀速穿过患者端26的测压孔44b以允许对来自患者的呼气流的精确压力测量。 参照图4a至图8,管状构件18的内腔20可以包括在呼吸器端26与患者端24之间的颈部36。可以看出,颈部36的截面面积小于在呼吸器端24和/或患者端26处的截面面积。此处应指出的是,尽管管状构件18示出并描述为大致圆柱状或中空的管状构件18,但管状构件18可以被设置为各种不同的可选形状及构造。例如,内腔20可以设置有椭圆形或方形或其它形状的截面形状。但是,内腔20的圆形截面形状被认为是提供了通过流量传感器的良好的流动特性并且增强了限流器38处的压力测量。 限流器38完全设置在颈部36中并且将颈部36分成两部分。在这点上,限流器38相对于中心轴22横向安装。限流器38优选地配置为使在限流器38的下游侧产生的紊流最小。可以理解的是,限流器38的上游及下游端的参照是基于气流的方向。例如,对于进入呼吸器端24的气流,上游侧靠近呼吸器端,而限流器38的下游侧靠近患者端26。 相反,对于进入患者端26的气流诸如来自气管导管16的气流,限流器38的上游端设置为邻近患者端26,而限流器38的下游端设置为邻近呼吸器端24。有利地,流量传感器10有效的测量在两个方向上(即双向)的气流。限流器38的上游端为高压端而下游端为低压端。上游端及下游端之间的压差可以基于流速的平方与压差之间公知关系而与流量相关,或压差凭经验得到。 参照图4a及图4b,限流器38包括位于限流器38相对两端上的一对测压孔44a、 44b。每一测压孔44a、 44b被限定为沿限流器38的轴向相对的两端形成的大致开口的孔或槽。测压孔44a、 44b通过相应的一对液道48流体地连接至管状构件18的外壁上的一对外部压力孔50。如图7所示,液道48从测压孔44a、 44b向上延伸至压力孔50,此处部件54使测压孔44a、 44b处的压力流体地连通至压力转换 器。如图4b最佳所示的,测压孔44a、 44b中的每一个限定了孔高度 46,孔高度46优选地关于中心轴22对称设置并且还优选地等于或小 于流阻塞器64的阻塞器高度66。主要参照图5,为了使气流中的扰动最小,限流器38优 选地具有空气动力学形状。例如,限流器38优选地设置为诸如菱形、 椭圆形或其它适合的截面形状的长方形形状,以最小化气流的紊流的 产生,气流的紊流的产生会降低压力测量的精确度以及增加气流的阻 力。 参照图2、图3、图4b及图6,示出了设置在呼吸器端 24处的内腔20中的导流板56。可以看出,导流板56包括从中心轴22 径向向外延伸的多个叶片58。每个叶片58可以与中心轴22大致轴向 对齐。叶片58从中心轴22径向向外延伸至内腔20的内表面。导流板 56优选地被定尺寸且被配置为使测压孔44a、 44b处的非轴向流最小。 在这点上,导流板56校直进入流量传感器10的斜流(angular flow) 或涡流。 导流板56具体适于使限流器38处的交叉流最小,否则 会导致不准确的压差测量。虽然显示为八个叶片58,但是导流板56可 以包括任意数量的叶片58。例如,导流板56可以包括一对完全相对的 叶片58,其共同将呼吸器端24处的内腔分成两部分。可选的,导流板 56可以包括四个叶片58,其优选地被定向为彼此成直角(即90° )。 更优选地,如图中示出的,导流板56示出包括八个叶片58,其中每一 个叶片58相对于彼此以等角度间隔。 尤其参照图4b,内腔20可以包括位置邻近导流板56的 维形部30,其中内腔20沿从呼吸器端24向颈部36的方向径向向内逐 渐变细。在这点上,进入呼吸器端24的气流随着其朝向颈部36流动 而被压縮。锥形部30可以为设置在内腔20的末端之间的单一锥形部, 或者锥形部30可以包括逐渐变陡斜的第一锥形部32及第二锥形部34。 在图4b最佳所示的一个实施例中,第一锥形部32可以 具有由附图标记e,指示的大到大约2。的半角(即,相对于中心轴22)。 第二锥形部34从第一锥形部32轴向向内设置并且优选地具有由附图
12标记02指示的在大约12。与大约16°之间(相对于中心轴22)的半 角。为了避免气流的扰动,第一锥形部32及第二锥形部34与颈部36 之间的过渡优选地用平滑的倒圆,而气流的扰动会引起噪声产生的旋 涡流或紊流。 每一叶片58优选地包括形成在径向内侧(即沿着中心轴 22)并且与呼吸器端24反向的槽口 60。槽口 60的结构可以是大致位 于内腔20的第二锥形部34的区域中并且允许通过除去任何压差(即 叶片与叶片之间)而解除在任一叶片58通道上的局部高压。在这点上, 卸压阀62减少了气动噪声量及测压孔44a、 44b区域中交叉流的量以 提高压力测量精确度。 依然参照图4b,示出了插在患者端26及限流器38之间 的流阻塞器64。流阻塞器64横向于中心轴22安装,但是从轴向观察 时其定向为与限流器38垂直。流阻塞器64将内腔20分成两部分并且 优选地在横向方向上具有空气动力学截面形状。此形状优选地具有以 中心轴22排列的长宽比。空气动力学截面形状可以为图中所示出的菱 形或其它可选的形状。例如,流阻塞器64可以设置有水滴状轴向截面, 其中水滴状的前缘面向患者端26而水滴状的后缘面向呼吸器端24。 进一步考虑的是,当沿着轴向观察时,流阻塞器64及限 流器38彼此对齐。但是,更优选的关系为图中所示出的,其中当沿着 轴向观察时,流阻塞器64被定向为与限流器38垂直或正交。这种配 置已经证明是可以促使通过内腔20的截面的流速更均匀。 尤其参照图4b及图9,流阻塞器64限定了阻塞器高度 66。阻塞器高度66优选地至少等于每一测压孔44a、 44b的孔高度46, 以使如图9所示从气管导管16排出的压力射流被分散成更均匀的速度 轮廓,而不是高速压力射流直接撞击在测压孔44a、 44b上。如之前所 述,测压孔44a、 44b上的高速压力射流会导致不准确的流量测量。还 可以考虑的是,阻塞器高度66可以大于测压孔44a、 44b的孔高度46。 主要参照图8,示出了流量传感器10在患者端26处的轴 向截面图,并且示出了形成在患者端26处的用于与标准尺寸接合器70 接合的环状槽68。如之前所述,这种接合器70可以是通常可获得的用 于将各种尺寸的患者导管(即气管导管16)连接至流量传感器10的气道接合器70。如图4b所示,接合器70包括圆柱状延伸部72,延伸部 72被定尺寸且被配置为摩擦接合环状槽68。 在操作中,在患者吸气的吸气相期间,如图10最佳所示 的,来自机械呼吸器12的气流(例如,偏流)进入呼吸器端24。偏流 可能包括由从机械呼吸器至三通部件的弯曲的流径而引起的气动噪 声,诸如振动、紊流或不对称流。来自机械呼吸器12的气流穿过从中 心轴22径向向外延伸的叶片58。如之前所述,叶片58优选地被定尺寸且被配置为校直测 压孔44a、 44b处的非轴向流以确保精确的压力测量。由叶片58中的 槽口 60共同形成了卸压阀62,卸压阀62具体被定尺寸且被配置为在 气流到达限流器38之前除去叶片58之间的任何压差或使压差均衡。 然后气流经由诸如图4a所示出的气管导管16流至患者示出。 在呼气相期间,如图9所示,呼出气体以高压力射流从 气管导管16中排出。高压力射流进入流量传感器10的患者端26,然 后流阻塞器64引起气流的分散。流阻塞器64优选地其高度至少等于 限流器38上的每一测压孔44a、 44b的孔高度46,以最小化或消除来 自气管导管16的压力射流直接撞击在测压孔44a、 44b上。阻塞器高 度66与孔高度46之间的几何关系防止了人为的高流量测量。反而,流阻塞器64促进了从患者端26流出并离开呼吸 器端的气流穿过内腔20的测压孔44a、 44b的均匀速度轮廓。有利地, 流阻塞器64允许流量传感器10的减少了患者接口的无效腔的配置。 如之前所述,在机械呼吸器中尤其不期望存在过多的无效腔。通过示例提供了上述示出,但是不对本发明进行限制。 考虑到上述公开,本领域的技术人员可以在此处公开的本发明的范围 及精神内做出变化。而且,此处公开的实施例的各种特征可以单独使 用,或者以不同的方式彼此结合,而并不局限于此处示出的特定的结 合方式。因此,权利要求的范围并不受所示出的实施例的限制。
权利要求
1、一种双向流量传感器,用于测定流经其的气流的压力,所述流量传感器包括中空的管状构件,其具有呼吸器端及患者端并且限定了具有中心轴的内腔,所述内腔包括设置在所述呼吸器端与患者端之间的颈部;限流器,其将所述颈部分成两部分并且包括一对测压孔,每一测压孔限定了孔高度;及流阻塞器,其设置在所述患者端并且被配置为促使在所述测压孔处匀速穿过所述内腔。
2、 根据权利要求1所述的流量传感器,其中当在轴向上观察时, 所述流阻塞器被定向为与所述限流器垂直。
3、 根据权利要求1所述的流量传感器,其中每一测压孔的孔高度 关于所述中心轴对称。
4、 根据权利要求1所述的流量传感器,其中所述流阻塞器具有菱 形轴向截面。
5、 根据权利要求1所述的流量传感器,其中所述流阻塞器具有水 滴状轴向截面。
6、 根据权利要求1所述的流量传感器,其中所述限流器具有长方 形轴向截面。
7、 根据权利要求6所述的流量传感器,其中所述限流器具有菱形 轴向截面。
8、 根据权利要求1所述的流量传感器,其中所述流阻塞器限定了 阻塞器高度,所述阻塞器高度被定尺寸且被配置为所述阻塞器高度不 小于所述孔高度。
9、 根据权利要求1所述的流量传感器,其中所述流量传感器并入 三通部件中。
10、 一种双向流量传感器,用于测定流经其的气流的压力,所述 流量传感器包括中空的管状构件,其具有呼吸器端及患者端并且限定了具有中心 轴的内腔,所述内腔包括设置在所述呼吸器端与所述患者端之间的颈 部;限流器,其将所述颈部分成两部分并且包括一对测压孔,每一测 压孔限定了孔高度;及导流板,其设置在所述内腔中位于所述呼吸器端并且包括多个叶 片,所述导流板被定尺寸且被配置为使得在所述测压孔处的非轴向流 最小化。
11、 根据权利要求IO所述的流量传感器,其中所述叶片径向定向。
12、 根据权利要求ll所述的流量传感器,其中所述导流板包括相 对于彼此等角度设置的多达八个所述叶片。
13、 根据权利要求10所述的流量传感器,其中每一叶片包括位于其径向内侧的槽口以使所述槽口共同限定了卸压。
14、 根据权利要求10所述的流量传感器,其中所述内腔包括锥形部,所述锥形部的位置邻近所述导流板并且沿着从所述呼吸器端向所 述患者端的方向径向向内逐渐变细。
15、 根据权利要求10所述的流量传感器,其中每一测压孔的孔高 度关于中心轴对称。
16、 根据权利要求10所述的流量传感器,其适于与机械呼吸器一 起使用,并被配置为使得气动噪声被维持在小于大约0.1公升每分钟(LPM)。
17、 根据权利要求10所述的流量传感器,其中所述流量传感器并 入三通部件中。
全文摘要
本发明公开了一种双向流量传感器,其适于减少在测定流经流量传感器的气流的压力期间的气动噪声。此流量传感器包括具有设置在呼吸器端与患者端之间的颈部的中空管状构件。限流器设置在颈部中并且适于测量气流的压差。导流板安装在呼吸器端并且适于使设置在限流器相对两端的测压孔处的非轴向流最小。患者端包括流阻塞器,流阻塞器被配置为在呼出流从患者端流至呼吸器端期间促使测压孔处的气流匀速。此流量传感器使气动噪声减小到小于0.1LPM以允许精确的患者流量测量以及以0.2LPM的流量触发吸气相及呼气相。
文档编号G01F1/34GK101666664SQ20091013039
公开日2010年3月10日 申请日期2009年4月8日 优先权日2008年4月8日
发明者托德·W·阿勒姆, 约瑟夫·西波隆, 马尔科姆·R·威廉斯 申请人:卡迪纳尔健康203公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1