专利名称:脉冲电压产生电路、放电电路以及使用这些电路的发光分析装置的制作方法
技术领域:
本发明涉及一种适用于产生火花放电的情况等的脉冲电压产生电路、使用该脉冲电压产生电路的放电电路、以及使用该放电电路的发光分析装置。
背景技术:
在发光分析装置中,使试料(金属试料)蒸发、气化,生成等离子体,对该等离子体的激发光进行分光,通过测量光强度进行试料的组分分析。为了使试料蒸发、气化,需要在对电极-试料电极之间由图11所示那样的脉冲电压产生电路施加高电压,使由火花放电所产生的大电流在对电极-试料电极之间流动。通过大电流的放电,使金属试料的表面的原子蒸发,同时通过放电等离子体激发这些原子。由于被激发的原子以各自的元素所固有的线光谱发光,将该光导入至分光器,通过测量特定的波长的光的强度,能够确定等离子体中存在的元素的量。通过同时测量多个波长的光,能够判明等离子体中的各种元素的量,由该信息确定构成金属试料的元素的组成。以往的发光分析装置中,充电电源(主放电电源)和脉冲电压产生电路(点火电路)与被形成于对电极-试料电极之间的放电间隙连接,形成主放电电流路径。在充电电源(主放电电源)中,电容被充电至数百V,在放电间隙处放电开始后,供给用于形成大电流的火花放电的能量。在这样的发光分析装置中,通过实验了解到,对电极-试料电极之间的放电电流的上升越陡峭,其分析性能就会越提高。脉冲电压产生电路的回扫变压器1的 2次线圈电感越小,对电极-试料电极之间的放电电流的上升则变得越陡峭。因此,发光分析装置所使用的脉冲电压产生电路的回扫变压器1的2次线圈的电感需要尽可能小。为了产生高电压脉冲,回扫变压器1的1次线圈的卷数比2次线圈的卷数小,所以回扫变压器1 的1次线圈的电感Lp变得更小。在线圈的电感非常小的回扫变压器1中,需要使用相对磁导率小的磁性体,只要不使用使1次线圈和2次线圈的耦合变得充分大的绕线方法,漏感将变大。又,由于脉冲电压产生电路所使用的回扫变压器1是产生高电压的变压器,需要在1次线圈和2次线圈之间确保充分的绝缘,即使用心钻研绕线方法使漏感变小,但终究会有极限。因此,在回扫方式的脉冲电压产生电路(转换器)中,关断了开关元件时,由于积蓄于回扫变压器1的漏感的能量,在回扫变压器1的1次线圈的两端产生浪涌电压,因此, 在以往的脉冲电压产生电路中,如图11所示,在回扫变压器1的1次侧配置有缓冲电路22, 来将浪涌电压抑制在开关元件的耐压以下。图11的缓冲电路22位于处在回扫变压器1的 1次侧的开关元件(图示省略)的附近,保护开关元件免受在回扫变压器1的1次线圈的两端产生的浪涌电压的影响。相对于回扫变压器1的1次线圈并列地连接有电容C和二极管 D的串联电路,进一步,连接有与电容C并列的电阻R。在1次侧产生的浪涌电压超过二极管D的扩散电位(上升电压)时,二极管D导通,通过电容C钳制浪涌电压。进一步,在电阻R处转换为热量从而浪涌的振幅逐渐衰减。
在图11所示的脉冲电压产生电路中,设1次漏感为L1, 2次漏感为L2,励磁电流为 Im时,被缓冲电路22回收的能量为ε SUNB = (LJL2) Im2/2 ……⑴。设回扫变压器1的耦合系数为k,回扫变压器1的一次电感为Lp,L1 = L2=(I-Ii)Lp……O)时,有ε·= (l-k)LpIm2 ……(3)。由于供给到回扫变压器1的能量ε ΙΝ为ε ΙΝ = LpIffl2/2……G)因此,如果忽略电路的损失的话,回扫变压器1的能量传递效率β为β = 1- ε SNUB/ ε ΙΝ = 2k_l ……(5)由于脉冲电压产生电路所使用的回扫变压器1的耦合系数k为0. 7 0. 8,因此, 如图10所示,使用缓冲电路22时的能量传递效率β只有40 60%。
发明内容
本发明的目的在于提供一种能够使能量传递效率提高、且使输出峰值电压提高的脉冲电压产生电路,使用该脉冲电压产生电路的放电电路、以及使用该放电电路的发光分析装置。本发明的第1形态为一种脉冲电压产生电路,包括具有1次线圈、2次线圈的变压器;与所述1次线圈并联的缓冲电容;向所述1次线圈供给励磁电流的励磁电容;插入在该励磁电容向所述1次线圈供给所述励磁电流的励磁电流路径中的开关元件;以及与所述2次线圈并联的负载电容,调整所述缓冲电容的容量、所述负载电容的容量、所述2次线圈的寄生容量、所述1次线圈的电感、所述变压器的励磁电感、所述2次线圈的相对于所述 1次线圈的线圈比之间的关系,使得在所述开关元件的关断后,所述负载电容的两端之间的电压的首次的峰值比第2次以后的峰值中的任一个值都大。根据第1形态所涉及的脉冲电压产生电路,通过与变压器的1次线圈并列地连接容量值最优化的缓冲电容,能够提供一种从浪涌电压保护开关元件,且提高能量传递效率, 输出峰值电压高的脉冲电压产生电路。本发明的第2形态为一种放电电路,包括产生用于使放电开始的高电压的脉冲电压产生电路;向放电间隙供给维持放电的电压的充电电源;以及对所述充电电源以及所述脉冲电压产生电路的充电电压、充电以及导通的时机进行控制的驱动控制装置,所述脉冲电压产生电路包括具有1次线圈、2次线圈的变压器;与所述1次线圈并联的缓冲电容; 向所述1次线圈供给励磁电流的励磁电容;插入在该励磁电容向所述1次线圈供给所述励磁电流的励磁电流路径中的开关元件;以及与所述2次线圈并联的负载电容。进一步该第 2形态所涉及的放电电路调整所述缓冲电容的容量、所述负载电容的容量、所述2次线圈的寄生容量、所述1次线圈的电感、所述变压器的励磁电感、所述2次线圈的相对于所述1次线圈的线圈比之间的关系,使得在所述开关元件的关断后,所述负载电容的两端之间的电压的首次的峰值比第2次以后的峰值中的任一个值都大。根据第2形态所涉及的脉冲电压产生电路,通过与变压器的1次线圈并列地连接容量值最优化的缓冲电容,能够从浪涌电压保护开关元件,且提高能量传递效率,产生输出峰值电压高的脉冲电压,使放电间隙的放电的放电电流的上升变得陡峭。本发明的第3形态为一种发光分析装置,包括试料电极和对电极所形成的放电间隙;产生用于使得在所述放电间隙开始放电的高电压的脉冲电压产生电路;向所述放电间隙供给维持放电的电压的充电电源;以及对所述充电电源以及所述脉冲电压产生电路的充电电压、充电以及导通的时机进行控制的驱动控制装置,所述发光分析装置使所述试料电极的试料蒸发、气化,生成等离子体,对该等离子体的激发光进行分光,测量光强度从而进行所述试料的组分分析。进一步,该第3形态所涉及的发光分析装置,所述脉冲电压产生电路包括具有1次线圈、2次线圈的变压器;与所述1次线圈并联的缓冲电容;向所述1 次线圈供给励磁电流的励磁电容;插入在该励磁电容向所述1次线圈供给所述励磁电流的励磁电流路径中的开关元件;以及与所述2次线圈并联的负载电容,调整所述缓冲电容的容量、所述负载电容的容量、所述2次线圈的寄生容量、所述1次线圈的电感、所述变压器的励磁电感、所述2次线圈的相对于所述1次线圈的线圈比之间的关系,使得在所述开关元件的关断后,所述负载电容的两端之间的电压的首次的峰值比第2次以后的峰值中的任一个值都大。根据第3形态所涉及的发光分析装置,通过与变压器的1次线圈并列地连接容量值最优化的缓冲电容,能够从浪涌电压保护开关元件,且提高能量传递效率,产生输出峰值电压高的脉冲电压,由此,使放电间隙的放电的放电电流的上升变得陡峭,提高分析性能。
图1是对本发明的实施形态所涉及的发光分析装置的放电电路的构成进行说明的电路图。图2是用于对本发明的实施形态所涉及的脉冲电压产生电路的动作进行说明的以变压器为中心的等价电路。图3是示出本发明的实施形态所涉及的脉冲电压产生电路的2次线圈等价电压以及2次线圈等价电流的波形的一个实例的图。图4是示出本发明的实施形态所涉及的脉冲电压产生电路的1次线圈等价电压以及1次线圈等价电流的波形的一个实例的图。图5是示出本发明的实施形态所涉及的脉冲电压产生电路的1次线圈等价电流以及2次线圈等价电流的波形的一个实例的图。图6是示出在本发明的实施形态所涉及的脉冲电压产生电路中,从开关元件被关断开始,到2次线圈等价电流首次变为0的时间和到1次线圈电流第2次变为0的时间相等时的波形的一个实例的图。图7是示出对本发明的实施形态所涉及的脉冲电压产生电路的1次线圈电压、1次线圈电流、2次线圈等价电压以及2次线圈等价电流进行模拟实验的结果的图。图8是示出在与图7不同的电路参数的情况下,对本发明的实施形态所涉及的脉冲电压产生电路的1次线圈电压、1次线圈电流、2次线圈等价电压以及2次线圈等价电流进行模拟实验的结果的图。图9是示出本发明的实施形态所涉及的脉冲电压产生电路的初期励磁电流Itl =340A时,在耦合系数k = 0. 5 0. 9的范围内的、相对于具有5种容量值(C1 = 33nF、27nF、 22nF、20. 5843nFU8nF)的缓冲电容的2次线圈等价电压的峰值、以及能量传递效率的表。图10是示出将本发明的实施形态所涉及的脉冲电压产生电路的缓冲电容的容量 C1 = 20. 5843nF时的能量传递效率与使用以往技术的缓冲电路的情况进行比较的图。图11是对以往的脉冲电压产生电路所使用的代表性的RCD缓冲电容进行说明的电路图。
具体实施例方式接着,参照附图对本发明的实施形态进行说明。在以下的附图的记载中,相同或者类似的部分用相同或者类似的符号标记。需要注意的是,附图是示意性的,平面尺寸、时间轴等与现实的有所不同。因此,具体的平面尺寸、时间轴等应该斟酌以下的说明来判断。又, 附图相互之间包含有彼此的尺寸关系、比率不同的部分的情况也自不必说。又,以下所示的实施形态例示了用于将本发明的技术上的思想具体化的电路、方法,本发明的技术上的思想并不是将电路元件、构成部件的配置等限定为以下形态。本发明的技术上的思想,在权利要求书所述的技术上的范围内能够进行各种变更。(放电电路的构成)如图1所示,本发明的实施形态所涉及的发光分析装置的放电电路包括试料电极(金属试料)42和对电极(放电电极)41所形成的放电间隙01、42);用于使得在该放电间隙01、42)开始放电的脉冲电压产生电路(点火电路)2 ;向放电间隙01、42)供给维持放电的电压的充电电源(主放电电源)33;对充电电源33的充电电压、以及脉冲电压产生电路2的充电和导通的时机等进行控制的驱动控制装置32。具体来说,如图1所示,在脉冲电压产生电路2的两个输出端子之间,连接有放电间隙(41、4幻和输出电容7所形成的串联电路,形成主放电电流的路径。S卩,主放电电流路径由脉冲电压产生电路2的一方的输出端子、与该一方的输出端子连接的对电极41、以及连接在该对电极41与脉冲电压产生电路2的另一个输出端子之间的输出电容7所形成。通过充电电源33,输出电容7被充电至数千V,在试料电极42和对电极41之间的放电间隙(41、42)开始放电时,用于形成大电流的火花放电的能量经由脉冲电压产生电路2由输出电容7供给。脉冲电压产生电路2包括具有1次线圈、以及磁性的耦合与1次线圈极性相反的2次线圈的变压器(以下称为“回扫变压器”)1 ;与1次线圈并联的缓冲电容21 ;向1次线圈供给励磁电流的励磁电容3 ;插入在该励磁电容3向1次线圈供给励磁电流的励磁电流路径上的开关元件6;以及与2次线圈并联的负载电容4。在图1中,虽然示出了 MOS场效应晶体管(FET)作为开关元件6,但开关元件6并不限于M0SFET,绝缘栅双极型晶体管 (IGBT)、结型FET、静电感应晶体管(SIT)、双极型晶体管(BJT)、静电感应(Si)晶闸管、GTO 晶闸管等也可适用。与励磁电容3并联有励磁电源装置31以便向励磁电容3供给电压。通过使开关元件6处于导通状态,励磁电流从预先被充电了的励磁电容3向1次线圈流动,对1次线圈进行励磁。此时,在放电间隙01、42),充电电源33的被充电至电容的电压通过回扫变压器1的2次线圈被施加,由于在1次线圈和2次线圈相位反转,因此励磁电流在1次侧流动时,在2次侧电流不流动,在放电间隙Gl、42)的放电未开始。即,在开关元件6导通的状态下励磁电流仅在1次线圈流动,能量被积蓄在回扫变压器1的芯处,在2次线圈侧未进行电力的传递。规定的电流在1次线圈流动时,通过关断开关元件6,使其处于遮断状态,从而磁场消失,1次线圈和2次线圈的电压的极性反转,积蓄于回扫变压器1的芯的能量被释放, 在2次线圈侧产生电压。在本发明的实施形态所涉及的脉冲电压产生电路2中,积蓄于回扫变压器1的芯的磁能使2次线圈产生IOkV以上的感应电压,负载电容4以及2次线圈寄生电容Cs被充电,产生高电压,击穿试料电极42和对电极41之间间隙的绝缘,开始放电。虽然省略了图示,但本发明的实施形态所涉及的发光分析装置还具有分光器。一旦在放电间隙(41、42)开始放电,从充电电源33通过回扫变压器1的2次线圈向放电间隙 (41,42)供给能量,放电电流急速增加,在放电间隙01、42)形成高能量的火花放电。此时, 试料电极(金属试料)42的表面的局部变为高温,构成试料的原子开始蒸发。蒸发的原子通过等离子体中的电子被激发。于是,被激发的原子回复到稳定状态时,发出相当于该能量差的波长的光。由于各元素存在固有的能级,因此光的波长也形成元素固有的线谱。高效率地将该等离子体中的发光导入分光器,分别对于多个元素的每一个同时测量元素固有的光的强度。各自的波长的光强度并不是简单地与元素的组成比成比例。然而,由于与各种元素的量大致成比例,通过预先求出发光强度和元素的量的关系,将发光强度换算成元素的量,能够确定元素组成。为了避免发光分析中的试料表面状态的变化,试料电极42和对电极41所形成的放电间隙(41、42)通常由稀有气体等充满。试料电极42和对电极41以数mm左右的间隔配置,不会由于数百V的电压的施加而开始放电。脉冲电压产生电路2被用于,通过将在回扫变压器1的2次线圈产生的20kV左右的高电压施加于对电极41上,从而击穿绝缘。设置在图1的结点m和结点N2之间的缓冲电容21是基于以下目的而设置的,即, 在放电间隙Gl、42)开始放电时,保护开关元件6免受作为在1次线圈产生的感应电动势的浪涌电压的影响。本发明的实施形态所涉及的发光分析装置的放电电路中,缓冲电容21 的容量C1被设定成使脉冲电压产生电路2的输出电压最大的值。S卩,对缓冲电容21的容量C1、负载电容4的容量Q、2次线圈的寄生电容Cs、l次线圈的电感Lp、回扫变压器1的励磁电感Lm、2次线圈的相对于1次线圈的线圈比η的关系进行调整,使得在关断开关元件6 之后,负载电容4的两端之间的电压(输出电压)的首次的峰值比第2次以后的峰值中的任一个值都大。具体来说,将2次线圈寄生电容Cs以及负载电容4所形成的等价负载容量换算成1次侧的值为C2 = n2(Cs+CL)(参照图2的等价电路),如果本发明的实施形态所涉及的脉冲电压产生电路2的缓冲电容21的容量C1选择如下式(6)那样的值的话,C1 = C2(-A+(A2-4)1/2)/2……(6)在关断开关元件6之后,负载电容4 的两端之间的输出电压的首次的峰值将比第2次以后的峰值中的任一个值都大。在此,A为缓冲系数算出常数,利用回扫变压器1的耦合系数k = Lm/Lp,A被表示为A= (10k/3)2-82/9......(7)。利用该缓冲系数算出常数A,设定缓冲系数B为B = (-A+ (A2-4)1/2) /2......(8),如果以缓冲系数算出常数A的无理函数定义的话,则
C1 = B · C2......(9),缓冲电容的容量C1为,对将负载电容的容量Q和2次线圈的寄生电容Cs换算成变压器的1次侧的值C2 = n2(Cs+CL)乘以缓冲系数B所得的值。利用缓冲系数B的话,耦合系数k为k = ((70B2+100B+30+ ((70B2+100B+30) 2_3600B (B+l)2) 1/2) /200B)-1 ......(10)。例如,Lp = 75nH时,满足式(10)的耦合系数k的值为0. 756,Cs = 23pF,Cl = 7pF,η = 40时,C2 = 48nF。因此,通过式(6)可知,将缓冲电容21的容量C1设定为C1 = 20. 5843较为良好(参照图9以及图10)。(等价电路)对于在本发明的实施形态所涉及的脉冲电压产生电路2中,如果将缓冲电容21的容量C1的值设定为式(6)所示的值,能够以高效率传递能量这一情况,用图2所示的等价电路进行说明。图2是将图1所示的本发明的实施形态所涉及的发光分析装置的放电电路中,从连接于结点W和结点N2之间的缓冲电容21以及回扫变压器1的1次线圈,到连接于结点 N5和结点N6之间的负载电容4以及回扫变压器1的2次线圈为止的电路换算成回扫变压器1的1次侧的等价电路。如图1所说明的那样,回扫变压器1的1次线圈与2次线圈的线圈比为1 n,在图2所示的等价电路中,忽略铜损以及铁损。在图2中,如果设缓冲电容21的容量为C1,1次线圈漏感为L1,励磁电感为Lm,则将2次线圈漏感Ls换算成1次侧的漏感被表示为L2 = Ls/n2,如在图1的说明中已经叙述的那样,将2次线圈寄生电容Cs以及负载电容4所形成的等价负载容量换算成1次侧的值被表示为C2 = n2(Cs+Cj。如图2所示,设缓冲电容21的两端结点N2、m之间的电压为V1,从结点N2流向结点W的电流为h。同样,设负载电容4的两端结点N6、结点N5之间的电压为v2,从结点N6 流向结点N5的电流为i2,设缓冲电容21的电荷为Q1,负载电容4的电荷为q2。又,设从励磁电感Lm的两端的结点N3向结点N4的方向流动的电流为im。设回扫变压器1的1次线圈电感为Lp的话,在图2所示的等价电路中,Lp = L1+!^以下,为了使电路的说明变得容易, T^r L^ 1^2 °(1次线圈电压、1次线圈电流、2次线圈等价电压以及2次线圈等价电流)利用图2的等价电路,导出施加于缓冲电容21的两端的1次线圈电压V1和1次线圈电流I1、以及施加于等价容量C2两端的2次线圈等价电压V2和2次线圈等价电流i2。在图2的等价电路中,初期条件为,在时间t = 0时,Q1 = q2 = 0......(11)I1 = dq^dt = I0......(12)i2 = dq2/dt = 0......(13)在电流h、i2、im之间,以下的关系成立Lmdim/dt = -Udi1Zdt- f !,dt/C,……(14)Lmdim/dt = -L1Cli2Zdt- f i2dt/C2......(15)im = I^i2……(16)将式(16)代入式(14)、(15)的话,有
(L1^L1)Cli1Alt+ / “dt/Q =-Lmdi2/dt ......(17)(L1^L1)Cli2Alt+ / i2dt/C2 =-LmCli1Alt ......(18),在此,设I1 = dqi/dt、i2 = dq2/dt,用 q” q2 表示式(17)、(18)的话,有(L^L1) Cl2qiZdt^q1ZC1 = -Lmd2q2/dt2 ...... (19)(LJL1) d2q2/dt2+q2/C2 = -Lm^q1Zdt2 ......(20)。由式(19)、00)有q2 = C2 ((LJL1) 2/Lm-Lm) d2Ql/dt2+ (LjL1) C2qZlmC1 ……Ql)。将式代入式(19)中并整理的话,则d'qi/dt'+ad'qi/dt'+bq! = 0 ......(22)但是,a = (LJL1) (C^C2)/C1C2((LjL1)2_Lm2) ...... (23)b = Izt1C2 ((LJL1) 2-Lm2)……(24)。同样,由式(19)、00),关于(12有d4q2/dt4+ad2q2/dt2+bq2 = 0 ......(25)。解微分方程式02)的话,Q1使用常数A1、Bp D1、E1表示成Q1 = A1Cos ω ^+B1Sin ω ^+D1Cos ω ^+E1Sin ω 2t ......(26)但是,Q1 = ((a-(a2-4b)1/2)/2)1/2 ……(27)ω2 = ((a+ (a2_4b)1/2)/2)1/2 ……(28)。同样地解式05)的微分方程式的话,Q2用常数A2、B2, D2、E2表示成q2 = A2Cos ω ^+B2Sin ω ^+D2Cos ω 2t+E2sin ω 2t ......(29)根据式O)的初期条件,t = O时,qi = q2 = O。Ql、q2各自具有两个频率成分,无论哪个频率成分都在t = O时为0,所以有A1 = D1 = OjA2 = D2 = O。因此,有qi = Β^ ηω^+Ε^ ηω^ ......(30)q2 = B2Sin c^t+Epin ω 2t ......(31)。根据式(12)的初期条件,在t = O时,I1 = dq^dt = B1 ω ^E1 ω2 = I0 ......(32)同样,根据式(13)的初期条件,在t = O时,i2 = dq2/dt = B2 ω ^E2 ω2 = O ......(33)。将式(32), (33)代入式(30)、(31)中,消去常数Ε” E2,有q! = B1Sin ω J+((I0-B1 (O1)/co2)sin ω 2t ......(34)q2 = B2Sin ω ^+B2 (ω j/ ω 2) sin ω 2t......(35)。在此,根据式(14)、(15)下式成立LlA2GilZAt^GilZCl = L1Cl2 q2/dt2+q2/C2 ......(36)将式(34)、(35)代入式(36)中,有-L1 (B1 ω ^sin ω J+ ω 2 (I0-B1 ω j) sin ω 2t) + (B1Sin ω ((I0-B1 ω》/ ω 2) sin ω 2t) /
C1 = -L1 (B2 ω J2Sin ω ^+B2 ω j ω 2sin ω 2t) + (B2sin ω ^+B2 (ω j/ ω 2) sin ω 2t) /C2......
(37)。在式(37)中,由于Sincolt的系数相等,有
B2 = B1 (L1 ω /-!/C1) / (L1 ω /-!/C2) ......(38)。同样,在式(37)中,由于sin ω 2t的系数相等,有(L1 ω j ω2-ω JC1 ω2)B1 = (L1 ω j ω2-ω JC2 ω2)B2+ (L1 ω「l/Q ω2) I0......(39)。根据式(38)、(39)求出B1,有B1 = (L1 ω (L1 ω 22-l/C2) I0/ ((L1 ω ^-!/C2) (L1 ω /-!/C1) - (L1 ω ^-!/C1) (L1G^2-IZC2)) CO1 ......(40)。根据式(38)、00)求出B2,有B2 = (L1 ω /-!/C1) (L1 ω 22-l/Q I0/ ((L1 ω ^-!/C2) (L1 ω /-!/C1) - (L1 ω /-!/C1) 0^/-1/(^))(^ ……(41)。另外,有I0-B1 ω i = - (L1 ω ^-!/C1) (L1 ω 22~1/Q I0/ ((L1 ω ^-!/C2) (L1 ω 22~l/Q - (L1 ω /-1/ C1) (LlCo22-l/C2)) ……(42)因此,1次线圈电压V1,根据式(34) “40)、(42)为V1 = (X1ZC1 = (B1Sin ω (I0-B1 ω ^ ω 2) sin ω 2t) /C1 = (L1 ω/-l/Q (L1 ω 22-1/ C2) I0Sin ω ^/C1 ω : ((L1 ω ^-l/Q (L1 ω /-!/C1) - (L1 ω J-l/C》(L1 ω 22_1/C2)) _ (L1 ω /-1/ C1) (L1 ω 22-l/C2) I0Sin ω ^/C1 ω 2 ((L1 ω /-l/Q (L1 ω /-l/Q) - (L1 ω /-1/Q) (L1 ω 22_1/C2)) ……G3)。2次线圈等价电压ν2,根据式(35), (41)为V2 = q2/C2 = B2ZC2 (sin ω ω lSin ω 2t/ ω 2) = (L1 ω ^-!/C1) (Li ω/-!/C1) I0 (sin ω ω lSin ω 2t/ ω 2) /C2 ω 丄((L1 ω ^-!/C2) (L1 ω /—l/Q) - (L1 ω /—l/Q) (L1 ω 22-l/C2)) ……G4)。1次线圈电流根据式(34)、(40)、(42)为i J = dqi/dt = B! ω lCο s ω jt + (10_Β! ω J cο s ω 21 = ( (L1C1 ω 22-1) (L1C2 ω 22-1) cos ω jt - (L1C1 ω J2-I) (L1C2 ω 22-1) cos ω 2t) cos ω 2tl0/ ((L1C1 ω 22-1) (L1C2 ω /-1) - (L1C1 ω /-1) (L1C2 ω 22-1)) ......(45)。2次线圈等价电流i2,根据式(35), (41)为i2 = dq2/dt = B2 ω j (cos ω jt-cos ω 2t) = (L1C1 ω 1) (L1C1 ω 22-1) (cos ω it-cos ω 2t) I0/ ((L1C1 ω 22-l) (L1C2 ω /-1) - (L1C1 ω /-1) (L1C2 ω 22-1)) ......(46)。(能量传递效率的最大化条件)作为点火电路的脉冲电压产生电路2输出高电压,使试料对电极之间的绝缘被击穿。尤其是,使用于发光分析装置的点火电路中,通过实验了解到,放电电流的上升越陡峭, 其分析性能就会越提高。因此,关断开关元件后,首次成为峰值的电压值为最大的那样的设计为最优设计。如式G4)、(46)所示,2次线圈等价电压v2、2次线圈等价电流i2具有两个频率成分ω” ω2,例如,成为图3那样的波形。在此,2次线圈等价电压V2变为极大、或者极小时,由于dv2/dt = dq2/C2dt = 0,2次线圈等价电流变为i2 = dq2/dt。由图3可知,2次线圈等价电压V2首次变为极大是在关断开关元件之后2次线圈等价电流i2首次变为0之时。另一方面,1次线圈电压Vl、l次线圈电流由式G3)、(45) 表示,例如成为图4那样的波形,同样地,当1次线圈电压vl变为极大或者极小时,1次线圈电流变为I1 = 0。所以,如果满足下述的两个条件(甲)(乙)的话,2次线圈等价电压v2变为峰值时,供给到回扫变压器1的全部能量被传递给输出,因此,产生最大的输出峰值电压(甲)从关断开关元件到2次线圈等价电流i2首次变为0的时间,与到1次线圈电流I1第2次变为0的时间相等。(乙)1次线圈电压V1的极小值Vib为0。即,流经缓冲电容21以及负载电容4的电流一起变为0,缓冲电容21的电压变为 0时,输出电压变为最大。以下,对条件(甲)进行说明。设2次线圈等价电流i2变为0的时间为tp,根据式(46),有cos ω Jp = cosco2tp ......(47)根据式07)以下的两式成立"itp = ω 2^+211! π ......(48)ω Jp = - ω 2tp+2n2 π ......(49)只是,ηι、η2 = 0,1,2……。根据式08),有tp = 2η! π / (ω1-ω2) (Πι = 0,1,2, ......)......(50)。根据式09)有tp = 2η2 π / (ω^ω;,) (η2 = 0,1,2, ......)......(51)。求得的tp为从关断开关元件开始到2次线圈等价电流i2首次变为0为止的时间。 由于由式(51)表示的时间tp比由式(50)表示的时间tp小,因此设式(51)中 =1,有tp = 2π /(ω^ω2) ......(52)另夕卜,t = tp时,I1 = 0,因此,根据式05)有B1 ω lC0S ω Jp+ (I0-B1 ω》cos ω 2tp = 0 ......(53)由于I。兴0,根据式07)、(53)有cosc^tp = cosco2tp = 0 ......(54)根据式(54)以下的两式成立。0^=(211^+1)31/2 ......(55)co2tp = (2m2+l) π/2 ......(56)但是mi、m2 = 0,1,2,……。根据式(55)、(56),有tp = (2m!+!) π /2ω1 ......(57)tp = (2m2+l) π/2ω2 ......(58)但是,mi、m2 = 0,1,2,……。根据式07)、08),由于O1 < ω2,满足式(54)的最小时间tp为tp = π /2ω2。此时的电流ip i2的波形的例如图5所示。使条件(甲)满足,需要使电流i”i2的波形如图6所示的波形的样子,使时间tp 为第2小的值。因此,时间tp为式(57)中Hi1 = O的值或者式(58)中m2 = 1的值中的任一个。即,有tp = π/2(^ 或者 tp = 3 π/2ω2 ......(59)。因此,根据式(52)、(59),条件(甲)的成立只限于ω2 = 3ω1 ......(60)时。
接着,为了使回扫变压器1以条件(甲)动作而确定缓冲电容21的容量Cp将式 (27), (28)代入式(60)并整理,有9a = IOOb ......(61)。将式(23)、(24)代入式(61)并整理,有C1WdXC^C2 = O ......(62)但是,d = (18 (LJL1) 2C2-IOOLmC2 ((LjL1) 2/Lm_Lm)) /9 (LjL1)2... (63)。根据式(62),求C1 > 0的解的话,能够得到C1 = C2 (-d+ (d2-4C22) 1/2) /2 ......(64)。式(62)所示的关于C1的2次方程式,如式(64)所表示那样C1具有解的条件为, d2 ^ 4C22,即d ^ 2C2 ......(65)或者,D 彡 _2C2 ......(66)。将式(63)代入式(65)并整理,有(L^L1)2 < Lm2 ……(67)然而,该条件并不成立。另一方面,将式(6 代入式(66)并整理,有Lm < 0. 8 (LJL1) ...... (68)S卩,条件(甲)的成立仅限于耦合系数k为0.8以下的情况。在式(64)中设A = d/C2的话,将得到式(6),因此式(64)是与式(6)等价的式子。又,在图2所示的等价电路中,Lp = L1+^, k = Lm/Lp,因此将式(63)代入A = d/C2的话,能够得到式(7)的缓冲系数算出常数A。最后,求出使回扫变压器1以条件(甲)动作时的2次线圈等价电压V2的峰值V2P、 以及1次线圈电压V1的谷值V1B。将式(59)、(60)代入式04)中的话,则2次线圈等价电压V2的峰值V2p为V2P = 4B2/3C2 ......(69)将式(59)、(60)代入式(43)中的话,则1次线圈电压V1的谷值Vib为,Vib = B1-I0Z^gj1 ......(70)。根据式(70),满足条件(乙)的情况为Vib = B1-I0Z^co1 = O ......(71)。由以上内容可知,本发明的实施形态所涉及的脉冲电压产生电路2中,缓冲电容 21具有由作为式(62)的2次方程式的解的式(64)所规定的容量值C1,且在回扫变压器1 的常数满足式(71)的情况下,回扫变压器1的传递效率β变为最大。另外,1次线圈电压V1首次变为峰值的时刻为2次线圈等价电流I1首次变为0的时刻。设该时间为、的话,根据式(45),有B1 CO1Cos (ω J1)+ (I0-B1 ω J cos (ω A1) = 0 ......(72)。将式(60)代入式(72),有B1 CO1C0s (ω J1)+ (I0-B1 ω J cos (3 ω J1) = 0 ......(73)。在此,根据三角函数的倍角公式,有
cos (3 ω ^1) = 4cos3 (ω ^1) -3cos (ω ^1) ......(74)。将式(74)代入式(73)并整理,有(4 (I0-B1 ω》cos2 (ω ^1) +4Bi ω「31。)cos (ω ^1) = 0 ... (75)在此,由cos (ω ^1)乒 0,有 cos (ω 山)=((SI0^B1 Q1)/Gl0IB1 ω》)1/2 ...... (76)t! = cos"1 ((SI0^B1 Q1)/ (41,,-46! ω )1/2/ ω ……(77)。根据sin (ω ^1) = (1-cos2 (ω ltl))1/2 ......(78)有Sin(Q^1) = (I0/(41^ ω ^)172 ……(79)。在此,根据三角函数的倍角公式,有sin (3 ω ^1) = -4sin3 (ω ^1) +3sin (ω ^1) ......(80)。将式(79)代入式(80),有sin (3 ω 山)=Ol0IB1 ω (I0/ Gl0IB1 ω )1/2/ (I0-B1 ω... (81)。
将式(60)代入式03),1次线圈电压V1为V1 = (B1Sin(ω ^) + (I0-B1 ω》sin(3 ω ^)/ω2)C1 ......(82)将式(80)、(81)代入式(82)并整理,1次线圈电压V1的峰值Vip为Vip = I0 (I0/ (I0-B1 ω ) 1/2/3 ω……(83)。(理论式的验证)为了验证如以上那样导出的、示出本发明的实施形态所涉及的脉冲电压产生电路 2的1次线圈电压Vl、l次线圈电流i”2次线圈等价电压V2以及2次线圈等价电流i2等的理论式G3) (83),与通过Cadence公司的电路模拟器PSpice (注册商标)得到的模拟实验结果进行了比较。首先,作为具体例,对于一次电感Lp为75nH,2次线圈容量Cs为23pF,负载容量Q 为7pF,线圈比η为40的回扫变压器1,根据本发明的设计方法求出最优动作条件。根据计算结果,在 Lm = 56. 7nH, L1 = L2 = 18. 3nH, k = 0. 756,C1 = 20. 5843nF, C2 = 48nF 的情况下,2次线圈等价电压V2为峰值时,V1 = I1 = i2 = 0,忽略由线路等引起的损失的话,理论上能量传递效率β为最大的100%。图7是在以上的条件下,将图2所示的等价电路用于模拟实验模型而进行的模拟实验的模拟实验结果。四边形(口)表示施加于缓冲电容21 的电压V1,菱形( )表示施加于等价负载容量C2的电压V2,倒三角形(V)表示流经缓冲电容21的电流三角形(Δ)表示流经负载电容4的电流i2。在2次线圈等价电压V2 变为峰值时,V1 = I1 = i2 = 0,模拟实验结果与理论相吻合。图 8 为设 Lm = 45nH, L1 = L2 = 30nH, k = 0. 6,C1 = 20. 5843nF, C2 = 48nF 时,进行同样的模拟实验时的模拟实验结果。同样,2次线圈等价电压V2变为峰值时,V1 = I1 = i2 = 0,与理论相吻合。图7、图8所示的图表的纵轴为任意单位,波形的形状都一致。另外,设k = 0. 75,Lm = 56. 25nH,L1 = 18. 75nH,进行初期励磁电流 I0 = 340A 时的2次线圈等价电压V2的峰值以及峰值到达时间的比较。2次线圈等价电压V2的峰值,理论计算值为424. 80V,模拟实验结果为424. 80V,峰值到达时间,理论计算值为106. 08nsec,模拟实验结果为106. (Mnsec。1次线圈等价电压V1的峰值,理论计算值为447. 86V,模拟实验结果为448. 10V,峰值到达时间,理论计算值为41. 16nSec,模拟实验结果为41. 13nSec。 理论计算值和模拟实验结果都大致吻合。(输出特性和能量传递效率)图9的表是示出初期励磁电流Itl = 340A时,在耦合系数k = 0. 5 0. 9的范围内的、相对于具有5种容量值(C1 = 33nF、27nF、22nF、20. 5843nF、18nF)的缓冲电容21的2 次线圈等价电压V2的峰值、以及能量传递效率β。从图9所示的表可知,缓冲电容21为利用式(6)或者与式(6)等价的式(64)算出的容量C1 = 20. 5843nF时,传递效率β变为最大。记载于图9所示的表的2次线圈等价电压V2的括弧内的数值为回扫变压器1的输出电压值vQUT。设回扫变压器1的卷数比为n,输出电压值Vqut由Vqut = nX V2p算出。能量传递效率β为,向回扫变压器1的投入能量ε ΙΝ中贡献给输出电压ν·的能量ε OUT的比率,由式(84)定义。β = 100 ε ουτ/ ε ΙΝ ……(84)但是,
权利要求
1.一种脉冲电压产生电路,其特征在于,包括 具有ι次线圈、2次线圈的变压器;与所述1次线圈并联的缓冲电容; 向所述1次线圈供给励磁电流的励磁电容;插入在该励磁电容向所述1次线圈供给所述励磁电流的励磁电流路径中的开关元件;以及与所述2次线圈并联的负载电容,调整所述缓冲电容的容量、所述负载电容的容量、所述2次线圈的寄生容量、所述1次线圈的电感、所述变压器的励磁电感、所述2次线圈的相对于所述1次线圈的线圈比之间的关系,使得在所述开关元件的关断后,所述负载电容的两端之间的电压的首次的峰值比第2 次以后的峰值中的任一个值都大。
2.如权利要求1所述的脉冲电压产生电路,其特征在于,所述缓冲电容的容量为,对于将所述负载电容的容量和所述2次线圈的寄生容量换算成所述变压器的1次侧的值乘以缓冲系数所得的值。
3.如权利要求2所述的脉冲电压产生电路,其特征在于,在以耦合系数k的2次多项式表示缓冲系数算出常数A的情况下,所述缓冲系数为所述缓冲系数算出常数A的无理函数, 所述耦合系数k由励磁电感的相对于1次线圈的电感的比来定义。
4.如权利要求3所述的脉冲电压产生电路,其特征在于, 所述缓冲系数算出常数为A= (10k/3)2-82/9,所述缓冲系数为(-A+(A2-4)"2)/2。
5.一种放电电路,其特征在于,包括产生用于使放电开始的高电压的脉冲电压产生电路; 向放电间隙供给维持放电的电压的充电电源;以及对所述充电电源的充电电压、以及所述脉冲电压产生电路的充电和导通的时机进行控制的驱动控制装置,所述脉冲电压产生电路包括 具有1次线圈、2次线圈的变压器; 与所述1次线圈并联的缓冲电容; 向所述1次线圈供给励磁电流的励磁电容;插入在该励磁电容向所述1次线圈供给所述励磁电流的励磁电流路径中的开关元件;以及与所述2次线圈并联的负载电容,调整所述缓冲电容的容量、所述负载电容的容量、所述2次线圈的寄生容量、所述1次线圈的电感、所述变压器的励磁电感、所述2次线圈的相对于所述1次线圈的线圈比之间的关系,使得在所述开关元件的关断后,所述负载电容的两端之间的电压的首次的峰值比第2 次以后的峰值中的任一个值都大。
6.如权利要求5所述的放电电路,其特征在于,所述缓冲电容的容量为,对于将所述负载电容的容量和所述2次线圈的寄生容量换算成所述变压器的1次侧的值乘以缓冲系数所得的值。
7.如权利要求6所述的放电电路,其特征在于,在以耦合系数k的2次多项式表示缓冲系数算出常数A的情况下,所述缓冲系数为所述缓冲系数算出常数A的无理函数,所述耦合系数k由励磁电感的相对于1次线圈的电感的比来定义。
8.如权利要求7所述的放电电路,其特征在于, 所述缓冲系数算出常数为A= (10k/3)2-82/9, 所述缓冲系数为(-A+(A2-4)"2)/2。
9.一种发光分析装置,其特征在于,包括 试料电极和对电极所形成的放电间隙;产生用于使得在所述放电间隙开始放电的高电压的脉冲电压产生电路; 向所述放电间隙供给维持放电的电压的充电电源;以及对所述充电电源的充电电压、以及所述脉冲电压产生电路的充电和导通的时机进行控制的驱动控制装置,所述发光分析装置使所述试料电极的试料蒸发、气化,生成等离子体,对该等离子体的激发光进行分光,测量光强度从而进行所述试料的组分分析, 所述脉冲电压产生电路包括 具有1次线圈、2次线圈的变压器; 与所述1次线圈并联的缓冲电容; 向所述1次线圈供给励磁电流的励磁电容;插入在该励磁电容向所述1次线圈供给所述励磁电流的励磁电流路径中的开关元件;以及与所述2次线圈并联的负载电容,调整所述缓冲电容的容量、所述负载电容的容量、所述2次线圈的寄生容量、所述1次线圈的电感、所述变压器的励磁电感、所述2次线圈的相对于所述1次线圈的线圈比之间的关系,使得在所述开关元件的关断后,所述负载电容的两端之间的电压的首次的峰值比第2 次以后的峰值中的任一个值都大。
10.如权利要求9所述的发光分析装置,其特征在于,所述缓冲电容的容量为,对于将所述负载电容的容量和所述2次线圈的寄生容量换算成所述变压器的1次侧的值乘以缓冲系数所得的值。
11.如权利要求10所述的发光分析装置,其特征在于,在以耦合系数k的2次多项式表示缓冲系数算出常数A的情况下,所述缓冲系数为所述缓冲系数算出常数A的无理函数,所述耦合系数k由励磁电感的相对于1次线圈的电感的比来定义。
12.如权利要求11所述的发光分析装置,其特征在于, 所述缓冲系数算出常数为A= (10k/3)2-82/9,所述缓冲系数为(-A+(A2-4)"2)/2。
全文摘要
本发明涉及一种脉冲电压产生电路,包括具有1次线圈、2次线圈的变压器(1);与1次线圈并联的缓冲电容(21);向1次线圈供给励磁电流的励磁电容(3);插入在该励磁电容(3)向1次线圈供给励磁电流的励磁电流路径中的开关元件(6);以及与2次线圈并联的负载电容(4)。调整缓冲电容(21)的容量、负载电容(4)的容量、2次线圈的寄生容量、1次线圈的电感、变压器(1)的励磁电感、变压器(1)的线圈比之间的关系,使得在开关元件(6)的关断后,负载电容(4)的两端之间的电压的首次的峰值比第2次以后的峰值中的任一个值都大。
文档编号G01N21/67GK102577078SQ20098016208
公开日2012年7月11日 申请日期2009年10月23日 优先权日2009年10月23日
发明者土生俊也 申请人:株式会社岛津制作所