叶面积指数自动观测系统及其方法

文档序号:5884956阅读:286来源:国知局
专利名称:叶面积指数自动观测系统及其方法
技术领域
本发明涉及农业观测领域,更具体的,涉及叶面积指数自动观测系统及其方法。
背景技术
叶面积指数(LAI,Leaf Area hdex)作为最基本和常用的农业生态环境参数之一,已经在植物生态学、森林学和农业估算产量等领域成为重要的指标之一。目前温度、湿度、土壤水分等参数都有现成的传感器,但是还没有叶面积指数传感器,这是由于叶面积指数测量的特殊性造成的。一般来说,在不损坏作物的条件下很难直接测量叶面积指数,如果用间接测量方法,则需要解决采样的代表性问题,自动区分叶片和背景,并且对叶倾角以及相互遮挡等干扰因素进行纠正。因为这些难点,现有的间接测量叶面积指数的仪器都需要人工操作,还不能做到完全自动化。目前尚没有叶面积指数自动观测系统。

发明内容
针对上述问题,本发明提出了一种叶面积指数自动观测系统及其方法,从而在有限的成本的前提下解决全自动测量叶面积指数的难题。所述叶面积指数自动观测系统,包括叶面积指数自动观测服务器,包括二值图像生成模块、参数提取模块、叶面积指数计算模块,其中二值图像生成模块用于把数据采集装置获取的作物冠层数字图像分类成二值图像,所述参数提取模块用于从二值图像提取间隙率、间隙尺寸、聚集指数,所述叶面积指数计算模块用于根据提取的信息参数计算叶面积指数;数据采集装置,包括用于供电的太阳能智能发电系统,采集作物数字图像的摄像头传感器、用于传输数据的数传模块、以及用于接收采集的数据并通过输出模块传输到所述叶面积指数自动观测服务器的数据采集板。所述叶面积指数自动观测方法,包括把数据采集装置获取的作物冠层数字图像分类成二值图像;从二值图像提取间隙率、间隙尺寸、聚集指数;根据提取的信息参数计算叶面积指数。本发明的叶面积指数自动观测系统是为从数字图像提取农作物叶面积指数而设计,它实现了叶面积指数间接测量方法。相比于已有类似的系统如CAN EYE、CIMES-FISHEYE 等,这两个系统都是针对鱼眼相机而设计,本发明的系统是为普通相机数码图像处理而设计,同时本发现提供了 3种自动分类方法,可以满足野外复杂条件下的图像分类。3种分类方法都是独立提出,经实验验证分类精度可靠。本发明的系统主要包括二值图像生成模块、 参数提取模块和叶面积指数计算模块。图像分类通常是将作物冠层数码图像分为土壤背景和绿色植被两类。改进的K-均值分类方法先将图像自动分为多类,然后根据各类波段均值进行阈值处理,合并为绿色植被和土壤及背景两类。自动阈值分类综合利用RGB和HSL彩色空间,给出4种波段阈值组合方法。分块阈值分类针对玉米叶片较宽大的图像或者其他叶片比较宽大的作物原图像进行分块处理,分块后原图像变成均勻的图斑,然后利用波段阈值进行二值化,分类结果更加准确。从二值图像可以统计间隙率、间隙尺寸分布曲线和聚集指数等信息,利用这些信息可以进行更深入的分析,从而计算出叶面积指数。


图1是本发明的叶面积指数自动观测系统的结构示意图;图2是本发明叶面积指数自动观测系统的数据采集装置的安装示意图;图3是本发明叶面积指数自动观测系统的数据采集板的电路图;图4是本发明叶面积指数自动观测方法的流程图;图5是本发明所采用的RGB彩色空间和HSL彩色空间的示意图;图6是本发明的二值图像生成模块的示意图;图7是本发明的采集的原始图像的示例;图8是所示原始图像经过本发明的分类后生成的二值图像的示例;图9是本发明的间隙尺寸分布的示意图;图10是玉米叶面积指数提取结果的示例。
具体实施例方式下面结合附图和具体实施方式
对本发明作进一步详细的说明。图1为本发明的叶面积指数自动观测系统的结构示意图,由图可见,本发明的面积指数自动观测系统包括数据采集装置和叶面积指数观测服务器。数据采集装置位于待观测的农田中,其观测的数据通过网络传送给远程的叶面积指数计算装置,由叶面积指数观测服务器计算得出叶面积指数。在实际中,数据采集装置安装在支撑杆上,支撑杆上端具有朝一侧的支撑杆臂,支撑杆臂离地面高度优选的为3米。当然,也可以根据检测的农作物的高度来调节支撑杆臂的设定高度。所述数据采集装置包括太阳能智能发电系统、数据采集板、摄像头传感器、温湿度传感器、GPS传感器、数传模块。其中,太阳能智能发电系统由太阳能板、蓄电池与充电控制单元构成;蓄电池用于为所述数据采集装置供电;充电控制单元用于控制太阳能板为蓄电池充电。所述太阳能板白天接受太阳光的辐射,将光能转换成电能,并在充电控制单元的作用下向蓄电池8充电, 同时,当太阳能充足时,由太阳能板直接给所述的装置供电。例如太阳能板提供电压上限值为19V,当太阳能板电压超过蓄电池电压时候,将自动给蓄电池供电;太阳能充足时,由太阳能板给所述数据采集装置供电;太阳能不足时,由蓄电池给所述数据采集装置供电; 当蓄电池低于IOV时,所述数据采集装置自动休眠,以保护蓄电池的寿命,直到太阳能智能发电系统下次启动时候,太阳能板给蓄电池充电超过IOV0其中,采用两个摄像头传感器,其固定在支撑杆臂外端头上,观测角度分别为垂直向下(天顶角0度)和倾斜57. 7度,视场60度。摄像头传感器定时拍摄,采集作物冠层数字图像信息,并传输至数据采集板。摄像头传感器采用的是500万高清数字摄像头,分辨率为32(^240 2596*1944,摄像头传感器采集时的分辨率可根据需要设置。摄像头传感器自动识别环境光线强度,光线不足时将在拍摄时候开启闪光灯,模块正常工作需要12V供电,通过串口与数据采集板通信,只有在接收到拍摄命令时开启电源开关,从而节省电源。拍摄的时间可以根据相关的参数设置,一天最多可以拍摄12次,系统根据设定时间拍摄图片。例如每天早上7:00和下午16:00自动拍摄两次;在遭遇阴雨天气时根据情况选择可用时间点数据。一天当中采集四幅图像,从四幅图像选择数据质量较高的图像用于分类并且可以利用两个角度图像结果取平均,最终输出一个叶面积指数值。摄像头传感器拍摄的图像存储在信号采集板的存储器中,若存储器容量不足或是其他故障,图片将不会存储。若在预定时间(例如1分半钟,其中半分钟是摄像头上电直到稳定需要的时间)内摄像头都无法正常工作,将停止拍摄任务。其中,温湿度传感器用于采集温度、湿度信息并传输给数据采集板,温湿度传感器焊接在数据采集板上。例如可以采用shtlO数字传感器,其工作电压3. 3V,只在采样时才对其供电。其中,GPS传感器用于自动修正数据采集板的RTC实时时钟,记录坐标,在每天的零点开启,其余时间处于关闭状态,GPS传感器焊接在数据采集板上。可以设定GPS传感器在每天的零点开启,寻找卫星,并在找到卫星后给数据采集板进行时间校正,并将系统所处的经纬度记录下来,随图片数据一起通过如下所述的数传模块传输给远程的叶面积指数观测服务器。其中,数传模块连接于数据采集板上,在数据采集板附近,用于将数据采集板的数据信息(包括存储器中的数据,采集的温湿度和系统电压、经纬度信息)传输到远程的叶面积指数计算装置。数传模块可以利用现有的无线网络或有线网络进行数据传输。数传模块可以选择2. 4G模块、铱星数传模块、无线电模块和GPRS模块。本说明书以GPRS模块为例描述本发明,本领域技术人员能够在本发明的教导下想到其他的替换实施方式。手机通用分组无线服务技术(GPRQ能够实现数据无线传输,采用3. 8V供电,每次在拍摄任务完成时开启,也可进行在每个小时整点开启并登陆,这在GPRS网络信号不好的情况,可以保证顺利的连接上网络,保证数据的远程传输。数传模块连接远程服务器后传输数据采集板上的存储器中的数据,数据传输完自动关闭模块电源。其中,数据采集板用于采集上述各部件采集的信息,并通过数传模块与远程的叶面积指数观测服务器进行数据传输。数据采集板包括微控制器和存诸器,更具体而言,微控制器用于采集温湿度传感器采集的信息、摄像头传感器输出的作物冠层数字图像信息、太阳能智能发电系统发送的电压信息、GPS传感器采集的时间校正信息,并且还用于控制太阳能智能发电系统、摄像头传感器、温湿度传感器、GPS传感器和数传模块的开启。存诸器用于存储微控制器采集的信息。其中,储存器可以选用IG的nandflash,采集的信息保存在 nandflash中,也可以从nandflash读取已保存的信息,若信息读取后,将自动删除,以供后面新的信息存储。数据采集板装在一个密封箱里,防止受到天气影响。密封箱固定连接在支撑杆中部。图2显示了所述数据采集装置的安装使用图。图3显示了数据采集板的电路图。本发明的叶面积指数自动观测系统还包括叶面积指数观测服务器,其通过互联网与所述数据采集装置通信,所述叶面积指数观测服务器包括二值图像生成模块、参数提取模块、叶面积指数计算模块。二值图像生成模块用于把数据采集装置获取的作物冠层数字
7图像分类成二值图像。所述参数提取模块用于从二值图像提取间隙率、间隙尺寸、聚集指数等参数。叶面积指数计算模块用于根据提取的信息参数计算叶面积指数。下面参照图4详细描述所述叶面积指数观测服务器的工作过程。本发明的方法利用了数字图像处理中的RGB和HSL彩色空间,图5分别显示了这两个彩色空间的示意图。在RGB彩色空间中可以将真彩色图像分解为红R、绿G和蓝B三个分量,各分量的取值为0-255,(0,0,0)代表黑色、(255,255,255)代表白色、(255,0,0)代表红色、(0,255,0)代表绿色、(0,0,255)代表蓝色。本发明的分类依据就是作物叶片为绿色,通过提取绿色像元就可以区分绿色植被和背景。在HSL彩色空间中可以将真彩色图像分解为色度H、饱和度S和亮度L三个分量, H取值为0-360度,S取值0-1,L取值为0-1。本发明的分类依据是作物叶片为绿色,对应的H取值范围为60-180,其取值还可能受到成像条件的影响,所以用户可以根据图像质量进行阈值设置或者选择推荐的阈值。1、分类生成二值图像在该过程中,由二值图像生成模块用于把数据采集装置获取的作物冠层数字图像分类成二值图像。图像分类通常是将作物冠层数码图像分为土壤背景和绿色植被两类。实验表明, 由于作物种类不同,或者是作物生长阶段不同,所用的图像分类方法也不相同,没有一种普适的分类方法。例如,在华北地区主要作物是冬小麦和玉米,冬小麦收割后秸秆多留在田里,土壤和秸秆混合增加了分类的复杂度。针对冬小麦和玉米应该选用不同的分类方法,对于玉米在不同的生长阶段也需要更换分类方法。对此,本发明提供了三种分类方法改进的 K-均值分类、自动阈值分类、分块阈值分类。分别由图6中所示的二值图像生成模块中的改进的K-均值分类模块、自动阈值分类模块和分块阈值分类模块实现。第一实施例改进的K-均值分类方法该方法由二值图像生成模块中的改进的K-均值分类模块实现。改进的K-均值分类方法使用了聚类分析方法,需要在数据中选定所需的分类个数,随机的查找聚类中心位置,然后迭代的重新配置他们,直到达到最优化的分类。改进的 K-均值分类方法先根据选定的分类个数自动分为多类,然后根据各类波段均值进行阈值处理,合并为绿色植被和土壤及背景两类。改进方法的处理流程为1)计算图像数据空间上均勻分布的K个初始类别均值;2)计算像元到每个初始类别的距离,用最短距离方法把它们聚集到最近的类中;3)每次迭代重新计算类别的均值,并且用新的类别均值对像元进行再分类;4)迭代步骤2 3直至满足既定的条件,如果限定了误差阈值,当每一类在一次迭代中类别发生变化的像元数小于阈值时迭代终止。达到误差阈值或者达到最大迭代此时分类都将结束;5)相比于原始算法,改进的K均值分类统计分类终止时各类在RGB彩色空间的均值,如果满足G > 1 且6 > B的类别被合并为一类,代表绿色叶片,剩下的类别被合并为土壤背景类,通过这个步骤最终实现图像的二值化。第二实施例自动阈值分类方法该方法由二值图像生成模块中的自动阈值分类模块实现。
为冬小麦和玉米叶片较小的图像,提供四种波段阈值分类方法。R、G、B分别代表 RGB彩色空间的红、绿、蓝三个波段,它们的取值范围均为0-255,H代表HSL彩色空间中的色度,它的取值范围为0° -360°,,分类的原理是通过设置R、G、B和H四个变量的范围来区分绿色叶片和土壤背景,因此定义四个阈值tl、t2、t3、t4用于设置R、G、B和H四个变量的范围,在各方法中四个阈值限定的变量不固定,仅仅是给四个变量赋值之用。下面四种方法提供了推荐的阈值,在应用中需要根据图像情况选择合适的分类方法。方法1 (tl < H < t2)或(R > t3 和 G > t3 和 B > t3) tl = 60、t2 = 180、t3 = 200在方法1中,条件1,60 <H< 180,正好对应绿色叶片在HSL色彩空间中H分量的范围;条件2,(R > 200和G > 200和B > 200)对应图像中比较亮的叶片部分,两个条件取并集可以得到较高精度的分类结果。方法2 (G > R+tl 禾口 G > B+t2)或(R > t3 和 G > t3 和 B > t3) tl = 0、t2 = 0、t3 = 200在方法2中,条件1,(G > R和G > B)正好对应绿色叶片在RGB色彩空间中R、G、 B三个分量的特点;条件2,(R > 200和G > t200和B > 200)对应图像中比较亮的叶片部分,两个条件取并集可以得到较高精度的分类结果。方法3 (tl < H < t2)禾口(G > R+t3 和 G > B+t4) tl = 60、t2 = 180、t3 = 0、t4 =0在方法3中,条件1,60 < H < 180正好对应绿色叶片在HSL色彩空间中H分量的范围;条件2,(G > R+t3和G > B+t4)对应图像中比较亮的叶片部分,通常t4设定为0值, 用户可以根据图像质量自行设定阈值,保持了灵活性。方法4 (G > R+tl 禾口 G > B+t2) or ((R-G) < t3) or (R > t4 禾口 G > t4 禾口 B > t4) tl = 0、t2 = 0、t3 = 10、t4 = 200与方法2相比,方法4增加了判据((R-G) < t3),这主要是针对图像中的叶片耀斑而设计的,经实验发现叶片耀斑的在RGB彩色空间中的R和G分量满足这样的条件,用户可以根据图像质量设定阈值。第三实施例分块阈值分类方法该方法由二值图像生成模块中的分块阈值分类模块实现。优选地,对玉米叶片较宽大的图像或者其他叶片比较宽大的作物原图像进行分块处理,原图像变成均勻的图斑分类结果更加准确,然后利用波段阈值进行二值化。分块直径决定分块图斑的大小,用户需根据图像进行设定。这种方法的处理流程为1)图像分割,图像分割需要用户输入分割块的直径和迭代次数,分割完成后图像生成均勻的图斑,在图斑边界往往存在未赋值的像元。分割后图像更加均勻,分类更加精确。2)未赋值像元合并,计算未赋值像元邻域内均值作为该像元的值。3)阈值分类延用第二种分类方法,推荐的阈值条件为(G > R+tl 禾口 G > B+t2)或((R-G) < t3)或(R > t4 和 G > t4 和 B > t4) tl = 0、t2 = 0、t3 = 10、t4 = 200
通过以上三种分类方法,可以把作物冠层数字图像分为土壤背景和绿色植被两类,转换成二值图像。图7为接收到的原始玉米冠层图像,图8为分类之后得到的二值图像,其中白色代表绿色玉米,黑色代表土壤空隙。对照图7和8可以看出原始玉米冠层图像被精确的分为玉米和土壤背景两类,值得指出的是在华北平原采用秸秆还田的种植方式,秸秆和土壤混杂的背景增加了分类的复杂度,实验表明本发明提出的分类方法精度能够满足应用要求。优选地,在分类生成二值图像之前,还包括预处理步骤,对接收到的原始图像数据进行图像处理,包括图像裁剪,纠正相片的几何变形和光照非均勻等。 2、提取间隙率、间隙尺寸、聚集指数。由参数提取模块针对生成的二值图像提取间隙率、间隙尺寸、聚集指数。本发明的提取间隙率、间隙尺寸、聚集指数的方法与后面叶面积指数的计算方法有密切联系。本发明的叶面积指数计算方法包括两种方法改进的Lang&Xiang方法和改进的 Chen&Chilar 方法。Lang&Xiang叶面积指数(LAILX)方法参见“A. R. G. Lang,项月琴.从太阳直接辐射透过率推算非连续冠层的叶面积指数,[M]农业生态环境研究,气象出版社”。其从理论上和经验上讨论了冠层中存在大空隙情况下叶面积指数的推算问题。解决的关键是在整个测量路径上分段求间隙率。该理论假定在分段路径上叶片服从泊松分布,如果统计区变为面,则分段路径转化为单元格。本发明对Lang&Xiang方法进行了改进,自动确定图像分割单元的尺寸,需要输入观测天顶角。Lang&Xiang理论假定在分段路径上叶片服从泊松分布,Chen等认为这一假设在实际中不能完全满足,同时认为统计空隙尺寸对于叶面积指数估算精度的提高很有意义。 因此提出了 Chen&Chilar叶面积指数(LAICC)方法,其基于植被冠层间隙尺寸分析理论提高了叶面积指数光学仪器测量精度。基于这套理论Chen发明了 TRAC仪器,理论上它可以用于测量非均勻冠层的叶面积指数(见“JingM.Chen,JosefChilar, Plant canopy gap-size analysis theory for improving opticalmeasurements of leaf-area index, [J],Applied Optics, 1995,34 (27),6211-6222”),实际应用中多用于森林叶面积指数的测量。自然界中的植被冠层多是聚集的,在相同的叶面积指数条件下,聚集的冠层比随机分布的冠层更可能出现大尺寸空隙,或者可以认为对于随机分布的冠层存在一个可能出现的最大空隙尺寸,那么超过这个尺寸的空隙就认为是由聚集效应造成的。这些大尺寸的空隙增大了冠层间隙率,并影响了叶面积指数的间接测量。现在的问题转化为确定随机冠层出现的最大空隙尺寸。本发明的方法对去除大尺寸间隙的方法进行优化,提出了改进的 Chen&Chilar叶面积指数方法。间隙率(gap fraction)是太阳直射光透过植被冠层到达地面的概率。在数码图像中为一定统计区域内黑色像元(土壤和背景)的比例。对于后面所述的改进Lang&Xiang 叶面积指数计算需要间隙率信息。将图像分割为小的单元格,统计每个单元格的间隙率。从二值图像的数据特点看,利用正方形窗口统计整幅图像在各单元格的间隙率比较合理。二值图像中绿色叶片的取值为255,土壤背景的取值为0,从二值图像统计间隙率的公式为
权利要求
1.一种叶面积指数自动观测系统,包括叶面积指数自动观测服务器,包括二值图像生成模块、参数提取模块、叶面积指数计算模块,其中二值图像生成模块用于把数据采集装置获取的作物冠层数字图像分类成二值图像,所述参数提取模块用于从二值图像提取间隙率、间隙尺寸、聚集指数,所述叶面积指数计算模块用于根据提取的信息参数计算叶面积指数;数据采集装置,包括用于供电的太阳能智能发电系统,采集作物数字图像的摄像头传感器、用于传输数据的数传模块、以及用于接收采集的数据并通过输出模块传输到所述叶面积指数自动观测服务器的数据采集板。
2.根据权利要求1所述的叶面积指数自动观测系统,其中所述二值图像生成模块包括改进的K-均值分类模块,所述K-均值分类模块根据选定的分类个数自动分为多类,然后根据各类波段均值进行阈值处理,合并为绿色植被和土壤及背景两类,从而转为二值图像。
3.根据权利要求1所述的叶面积指数自动观测系统,其中所述二值图像生成模块包括自动阈值分类模块,所述自动阈值分类模块根据对RGB彩色空间的红、绿、蓝三个波段和 HSL彩色空间中的色度设定阈值,来将图像分类为绿色植被和土壤及背景两类从而转为二值图像。
4.根据权利要求1所述的叶面积指数自动观测系统,其中所述二值图像生成模块包括分块阈值分类模块,所述分块阈值分类模块将原图像变成均勻的图斑分类,然后利用波段阈值将图像分类为绿色植被和土壤及背景两类从而转为二值图像。
5.根据权利要求2-4中任意一项所述的叶面积指数自动观测系统,其中,基于改进的 Lang&Xiang方法,所述参数提取模块确定小区面积ΔΑ,在每一种统计小区面积下按单元格统计每个小区的间隙率已砠(9),其中ΔΑ取值为AL的整数倍且小于图像面积,AL表示叶片平均投影面积或者叶片平均宽度。
6.根据权利要求5所述的叶面积指数自动观测系统,其中基于改进的Lang&Xiang方法,所述参数提取模块将所有统计小区的间隙率的平均值取对数除以所有小区间隙率的对数的平均值,来计算得到所述聚集指数
7.根据权利要求6所述的叶面积指数自动观测系统,其中基于改进的Lang&Xiang方法,所述叶面积指数计算模块根据如下公式计算中叶面积指数
8.根据权利要求2-4中任意一项所述的叶面积指数自动观测系统,其中基于改进的 Chen&Chilar方法,所述参数提取模块统计数码图像中一行内连续黑色像元的像素数,统计所有的图像行,然后对相同尺寸的空隙出现的次数进行加和,并求出每一种尺寸空隙在整幅图像中出现的频率,将所有的间隙尺寸由大到小排序并将其各自的频率加和构建图像的间隙尺寸分布曲线FmU),λ代表间隙尺寸。
9.根据权利要求8所述的叶面积指数自动观测系统,其中,基于改进的Chen&Chilar方法,所述参数提取模块根据获得的间隙尺寸在图像统计并构建间隙尺寸分布曲线后,曲线上间隙尺寸为0时的值即为间隙率Fm(O),其等价于Ρ( θ )。
10.根据权利要求9所述的叶面积指数自动观测系统,其中基于改进的Chen&Chilar 方法,所述参数提取模块利用误差分析方法确定Wp和迭代终止的条件,构建去除大尺寸间隙的间隙尺寸分布曲线Fmr(λ)代表间隙尺寸,在曲线上间隙尺寸为0时的值为模拟随机冠层的间隙率Fm(0),结合已计算出的所述间隙率Fm(O)来计算所述聚集指数
11.根据权利要求10所述的叶面积指数自动观测系统,其中基于改进的Chen&Chilar 方法,所述叶面积指数计算模块根据如下公式计算中叶面积指数
12.—种叶面积指数自动观测方法,包括把数据采集装置获取的作物冠层数字图像分类成二值图像;从二值图像提取间隙率、间隙尺寸、聚集指数;根据提取的信息参数计算叶面积指数。
13.根据权利要求12所述的叶面积指数自动观测方法,其中分类方法包括K-均值分类方法,所述K-均值分类方法根据选定的分类个数自动分为多类,然后根据各类波段均值进行阈值处理,合并为绿色植被和土壤及背景两类,从而转为二值图像。
14.根据权利要求12所述的叶面积指数自动观测方法,其中分类方法包括自动阈值分类方法,所述自动阈值分类方法根据对RGB彩色空间的红、绿、蓝三个波段和HSL彩色空间中的色度设定阈值,来将图像分类为绿色植被和土壤及背景两类从而转为二值图像。
15.根据权利要求12所述的叶面积指数自动观测方法,其中分类方法包括分块阈值分类方法,所述分块阈值分类方法将原图像变成均勻的图斑分类,然后利用波段阈值将图像分类为绿色植被和土壤及背景两类从而转为二值图像。
16.根据权利要求13-15中任意一项所述的叶面积指数自动观测方法,基于改进的 Lang&Xiang方法确定小区面积△ A,在每一种统计小区面积下按单元格统计每个小区的间隙率Ρ。ε11(θ),其中ΔΑ取值为AL的整数倍且小于图像面积,AL表示叶片平均投影面积或者叶片平均宽度。
17.根据权利要求16所述的叶面积指数自动观测方法,基于改进的Lang&Xiang方法, 将所有统计小区的间隙率的平均值取对数除以所有小区间隙率的对数的平均值,来计算得到所述聚集指数
18.根据权利要求17所述的叶面积指数自动观测方法,其中基于改进的Lang&Xiang方法,根据如下公式计算所述叶面积指数
19.根据权利要求13-15中任意一项所述的叶面积指数自动观测方法,其中,基于改进的Chen&Chilar方法,统计数码图像中一行内连续黑色像元的像素数,统计所有的图像行, 然后对相同尺寸的空隙出现的次数进行加和,并求出每一种尺寸空隙在整幅图像中出现的频率,将所有的间隙尺寸由大到小排序并将其各自的频率加和构建图像的间隙尺寸分布曲 ^Fffl(A), λ代表间隙尺寸。
20.根据权利要求19所述的叶面积指数自动观测方法,其中基于改进的Chen&Chilar 方法,根据获得的间隙尺寸在图像统计并构建间隙尺寸分布曲线后,曲线上间隙尺寸为0 时的值即为间隙率Fm(O),其等价于Ρ( θ )。
21.根据权利要求20所述的叶面积指数自动观测方法,其中基于改进的Chen&Chilar方法,利用误差分析确定Wp和迭代终止的条件,构建去除大尺寸间隙的间隙尺寸分布曲线Fmr(A), λ代表间隙尺寸,在曲线上间隙尺寸为0时的值为模拟随机冠层的间隙率F (0),结合已计算出的所述间隙率Fm(O)来计算所述聚集指数
22.根据权利要求21所述的叶面积指数自动观测方法,其中基于改进的Chen&Chilar 方法,根据如下公式计算中叶面积指数
全文摘要
一种叶面积指数自动观测系统及其方法,所述系统包括数据采集装置;以及叶面积指数自动观测服务器,其包括二值图像生成模块、参数提取模块、叶面积指数计算模块,其中二值图像生成模块用于把数据采集装置获取的作物冠层数字图像分类成二值图像,所述参数提取模块用于从二值图像提取间隙率、间隙尺寸、聚集指数参数,所述叶面积指数计算模块用于根据提取的信息参数计算叶面积指数。本发明的系统实现了叶面积指数间接测量方法。相比于现有技术,本发明可用于野外远程获取图片,满足野外复杂条件下的图像分类,分类精度可靠,分类结果更加准确。从二值图像统计间隙率、间隙尺寸和聚集指数等信息,可以进行更深入的分析,计算出叶面积指数。
文档编号G01B11/28GK102538717SQ201010614389
公开日2012年7月4日 申请日期2010年12月30日 优先权日2010年12月30日
发明者严科, 刘强, 夏江周, 李秀红, 杨细方, 程晓 申请人:北京师范大学, 北京极奥纬博信息科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1