专利名称:基于光学的感测装置的制作方法
基于光学的感测装置本申请是2001年2月沈日提交的、申请号为99810090. 0、题为“基于光学的感测
装置”的中国专利申请的分案申请。本发明为1999年5月5日提出的美国专利申请09/304,831及1998年8月沈日提出的美国专利申请09/140,747的部分继续,其公开的全部内容在此并入作为参考,如同在此全部列出。发明的背景1、发明的领域本发明涉及电光学感测装置,用于在液态或气态介质中检测分析物的存在或浓度。更具体地说,本发明涉及(但在所有的情况不必局限于)基于光学的感测装置,其特征为完全自我容纳,具有平滑且磨圆的长椭圆形、卵形、或椭圆形形状(例如,豆形或医药胶囊形)、以及格外细密的尺寸,这使得该装置可植入于人体,以原地检测各种分析物。背景技术:
美国专利5,517,313,所公开的内容在此并入作为参考,该专利叙述了一种基于萤光的感测装置,其包含指示剂分子与感光元件,例如,光检测器。广义言之,在本发明的技术领域范围内,指示剂为其一种或更多种光学特性受分析物的局部存在影响的分子。在依照美国专利5,517,313的装置中,一种光源,例如,发光二极管(“LED”),至少部分位于一层含萤光指示剂分子的材料内,或者,至少部分位于导波层内,使得由源(source)发射的辐射(光)撞击指示剂分子并使得指示剂分子发萤光。高通滤光器使指示剂分子发射的萤光到达感光元件(光检测器)同时过滤掉来自光源的散射光。美国专利5,517,313的所述装置中所用的指示剂分子的萤光因分析物的局部存在而被调制,即,衰退或增强。例如,络合物三(4,7-二苯基-1,10-菲咯啉)钌(II)高氯酸盐的桔红色萤光因氧的局部存在而淬灭。因此,此络合物可有利地在氧传感器中作为指示剂分子。其萤光性质受各种其它分析物影响的指示剂分子是公知的。此外,其吸收程度受分析物的存在或浓度影响的吸收光的指示剂分子也为公知的。例如,参见美国专利5,512,对6,所公开的内容在此并入作为参考,该专利揭示了其光谱反应因多羟基化合物例如糖的存在而衰退的组合物。然而,据信,这种吸收光的指示剂分子以往尚未被用于如美国专利5,517,313所教示的传感器构造,或这里所教示的传感器构造。在美国专利5,517,313所述的传感器中,含指示剂分子的材料对分析物为可渗透的。因此,分析物可从周围试验介质扩散至材料中,因而影响指示剂分子的萤光。光源、含指示剂分子基质材料、高通滤光器、及光检测器如此地构型,以致于指示剂分子发射的萤光冲击光检测器,使其产生电信号,该电信号表示周围介质中分析物的浓度。美国专利5,517,313所述的感测装置在美国专利5,517,313所述的现有技术的基础上有显著的改善。然而,其仍然需要使传感器在极重要的环境-人体中检测各种分析物。 此外,在本领域已实现进一步的精加工,此精加工形成更小和更有效的装置。发明的概要
通常,根据本发明的一个方面,传感器为完全自我容纳(totally self-contained),具有辐射源(例如,LED)且具有感光元件(例如,光检测器),辐射源和感光元件均完全地嵌入作为导波器的透光传感器主体内。指示剂分子位于传感器主体的外表面上,例如,直接涂敷于其上或固定在聚合物基质层内。在辐射源发射辐射时,由于由传感器主体与周围介质(聚合物基质或存在分析物的介质)的界面内反射,因此,大部分的辐射在传感器主体内反射。在辐射冲击传感器主体与周围介质的界面时,其与传感器主体的表面上所固定的指示剂分子交互作用。指示剂分子发射的辐射(即,在萤光指示剂分子的情形下为萤光)或由源发射且未被指示剂分子吸收(例如,在吸收光指示剂分子的情形下) 的辐射由于内反射而完全在整个传感器主体内反射。内反射的辐射撞击感光元件,以产生信号,该信号表示分析物的存在和/或浓度。依照本发明的这一方面,构成传感器的元件可使辐射源通过外部装置,例如,电磁波,超音波,或红外线,或者完全内部装置,例如,使用放射发光或微电池,微发电机,压电之类的元件而供给能量。传感器还具有传送信号的元件,所传送的信号表示内反射光或其它辐射,由此内反射辐射的程度决定分析物的浓度。这些元件可为与电力接收感应器分离的感应器,或相同感应器既用来接收电力产生的电磁能量又传送载信息的电磁信号波。依照本发明的另一方面,构成传感器,以利于其在人类活体的皮下使用。关于此点,依照本发明的这个方面,传感器大约为豆或医药冷胶囊的大小与形状。此外,传感器较佳为具有传感器/组织界面层,该界面层防止疤组织的形成或通过促进载分析物血液系统的向内生长而克服疤组织的形成。已发现依照本发明这一方面的传感器形状本身提供有益的光学性质,因此可构成用于人体以外的传感器,即,无界面层和/或具有引入和引出传感器的电引线。依照本发明的另一方面,构成具有吸收光(或吸收辐射)的指示剂分子的传感器, 这些指示剂分子吸收由源产生的辐射。吸收的程度作为分析物浓度的函数而改变。由测量内反射辐射的量,决定分析物的量。依照本发明的另一方面的传感器利用介质的密度与其折射率之间的关系测量分析物浓度。分析物浓度改变时,传感器所暴露的介质的密度改变,因此周围介质的折射率也改变。周围介质的折射率改变时,内反射的光(或者相反地,通过传感器/介质的界面)的量也改变,而且,照明的改变可由传感器内的感光性元件测量且与局部周围分析物浓度有关。依照本发明的又一方面,提供一种传感器,其包括(a)至少一个分析物感测指示剂通道(channel),其如上所述而操作;及(b)至少一个附加通道作为光学参考通道。光学参考通道最好(a)对指示剂分子(即,分析物感测指示剂通道的指示剂分子)的一种或多种光学特性进行测量,所述的光学特性不受或通常不受分析物的存在或浓度影响;和/或 (b)对不受或通常不受分析物的存在或浓度影响的第二控制指示剂分子的光学特性进行测量。在本发明的领域中,不受分析物的存在或浓度影响或通常不受影响的指示剂分子在此广义地称为控制指示剂分子。例如,可使用光学参考通道补偿或修正传感器组成固有的元件操作的变化或转移,传感器外部的环境条件,或其组合。例如,光学参考通道可用于补偿或修正以下因素感应的内变量传感器的辐射源的老化;影响感光元件的性能或敏感度的变化;指示剂分子的退化;传感器主体、指示剂基质层等的辐射透光率的变化;其它传感器元件的变化等。在其它的实例中,光学参考通道也可用于补偿或修正与分析物的存在或浓度无关而影响指示剂分子的光学特性或视光学特性的环境因素(例如,传感器外部因素)。关于这一点,示范性的外部因素包括温度高低;PH大小;存在的周围光;传感器施加的介质的反射率或浊度;等等。下面结合附图对本发明作详细说明,从这些说明中可以进一步了解以上及其它方面的特性与优点。附图的简要说明从下面对本发明的详细说明及附图中,本发明的这些及其它方面将会更加明显, 其以实例的方式给出并且是非限制性的,附图中
图1为依照本发明基于萤光的传感器的示意切面图;图2为图1所示的基于萤光的传感器的示试图,表示传感器的导波性质;图3为图1中圆圈部分的详细图,表示传感器主体内的内反射与传感器/或组织界面层的较佳构造;图4为类似图2的示试图,表示传感器主体内由内辐射源产生的辐射及外部指示剂分子发射的萤光而产生的反射;图5为示试图,表示依照本发明的传感器在人类的使用;图6为辐射发光源的示意切面图;图7a与7b概略地表示依照本发明的另一方面,以吸收光指示剂分子为主的传感器的操作;图8为基质层的实施例的化学式,其中基质层的聚合大分子大约每4个单体含一个侧接胺基;图9表示依照本发明的基质层的交联与搀杂链段(segment);图10表示依照本发明的对葡萄糖敏感的、吸收调制的指示剂分子,2,3' - 二羟基硼-4-羟基-偶氮苯(“硼酸红”);图11表示依照本发明的对葡萄糖敏感的、吸收调制的指示剂分子的附加实施例;图12叙述键联指示剂分子与搀杂单体AEMA的标准Marmich反应;图13a与1 为示试图,表示依照本发明的另一方面,以折射率为主的传感器的工作原理;图14a为依照本发明的另一个实施例的传感器的上视图,其加入参考通道与正常指示剂通道;图14b为图14a所示的传感器的侧视图;图Hc为类似图1 所示的经修改的传感器的部分侧视图,其包含参考通道与指示齐 通道;图14d为本发明的另一个实施例的正视图,其加入类似Hc所示的参考通道与指示齐 通道;图14e为以图14d所示的箭头A-A的方向所取的横切面图,装置示于外部物件之内;图14f为以图14d所示的箭头B-B的方向所取的横切面图,装置示于外部物件之内;图15a为依照本发明的另一个实施例的传感器的上视图,其加入参考通道与指示齐 通道;图15b为图15a所示的传感器的侧视图。图15c为类似图1 所示的经修改的传感器的部分侧视图,其包括参考通道与指示齐 通道;图16a为依照本发明的另一个实施例的传感器的上视图,其加入参考通道与指示齐 通道;图16b为图16a所示的传感器的侧视图;图17a为依照本发明的另一个实施例的传感器的侧视图,其在具有内胶囊与外套筒的传感器构造中加入参考通道与指示剂通道;图17b为图17a所示的传感器的上视图;图17c为依照本发明的另一个实施例的传感器的侧视图,其在具有内胶囊与外套筒的传感器构造中加入参考通道与指示剂通道;图17d为图17c所示的传感器的上视图;图17e为依照本发明的另一个实施例的传感器的侧视图,其在具有内胶囊与外套筒的传感器构造中加入参考通道与指示剂通道;图17f为图17e所示的传感器的上视图;图18a为依照本发明的实施例的传感器的侧视图,其具有内胶囊与外套筒而无参考通道;图18b为图18a所示的传感器的上视图;图19a_19j为各种可能的套筒构造的侧视图,表示各种包装配置与套筒结构;图20a_20b分别表示本发明的另一个实施例的上视图与侧视图,其包括含感测薄膜的可移动膜及图21为y轴的光吸收(例如,光学密度)相对χ轴的激发波长(例如,从辐射源发射)的图表(仅为了示意的目的而提供,为了方便起见,由美国专利5,137,833的图10 翻印,其在此并入作为参考),该图表表示吸收不基于分析物浓度而改变的等吸光点(即, 波长)。图22(A)为依照本发明的另一个实施例的上视图,其具有遮蔽套筒(遮蔽套筒部分地去除)。图22⑶为图22㈧所示的传感器的横切面侧视图。图22(C)为图22⑶所示的一部分的放大图。图22(D)为依照本发明的另一个实施例的传感器的横切面侧视图。图23(A)为依照本发明的另一个实施例的传感器的横切面侧视图,其具有以两个方向发射辐射的LED辐射源。图23⑶为图23㈧所示的一部分的放大图。图23(C)为沿图23㈧的箭头23 (C)-23 (C)所取的横切面侧视图。图23(D)为示意侧视图,表示安装于反射杯内的常用LED晶片。图24(A)为依照图23㈧所示实施例的一个描述性实例,表示来自LED两侧的发光的说明图表。图M(B)为表示安装在平坦表面上的现有LED的发光的说明图表。图25(A)为传感器的另一个实施例的横切面侧视图,其具有从辐射源的上与下侧发射的辐射(省略传感器薄膜)。图25(B)为图25(A)所示的实施例的横切面侧视图,传感器薄膜位于传感器上图沈为传感器的另一个实施例的横切面侧视图,其具有光学透明基片。图27(A)为在图27(B)中沿线27_27所取的传感器的另一个实施例的横切面侧视图,其具有外部加热元件,以抑制传感器的冷凝。图27⑶为图27㈧所示的传感器的上视图。图27(C)为表示图27㈧的传感器元件的分解正视图。图^(A)和^(B)表示在图27(A)_27(C)所示的实施例中,在部分气体压力下阶跃变化的实际测试数据。发明的详细说明基于光学的初始传感器依照本发明的一个方面,一种基于光学的传感器(“传感器”)10如图1所示,其基于萤光指示剂分子的萤光工作。传感器10具有其主要元件传感器主体12 ;涂敷于传感器主体12的外表面上的基质层14 ;萤光指示剂分子16分布于全部的层;发射辐射的辐射源 18,例如,LED,其包括与指示剂分子交互作用的波长范围的辐射(这里简称为“在与指示剂分子交互作用的波长的辐射”),即,在基于萤光的传感器的情况下,造成指示剂分子16发萤光的波长;及感光元件20,例如,光检测器,在基于萤光的传感器的情况下,其对指示剂分子16发射的萤光为敏感的,以致于对萤光响应而产生信号,该信号表示指示剂分子的萤光程度。在最简单的实施例中,指示剂分子16可仅涂敷于传感器主体的表面上。然而,在较佳实施例中,指示剂分子含于基质层14内,其包含依照本技术领域公知的方法制备且如以下所解释涂敷在传感器主体的表面上的生物相容聚合物基质。适合的生物相容基质材料, 其必须对分析物为可渗透的,包括甲基丙烯酸酯与水凝胶,其可有利地为选择性地可渗透的一特别是对分析物一即,其实现分子量阻断功能。传感器12有利地由适合的光学可传送聚合物材料形成,其折射率充分地不同于使用传感器的介质的折射率,使得聚合物作为光学导波器。较佳的材料为丙烯基片料,如聚甲基丙烯酸甲酯,聚甲基丙烯酸羟丙酯等,及聚碳酸酯,如以商标Lexan 销售的聚碳酸酯。这种材料可使装置使用的辐射一辐射源18产生的辐射(例如,在辐射源为LED的实施例的适合波长的光),及在基于萤光的实施例中,指示剂分子发射的萤光一经过。如图 2所示,辐射(例如,光)由辐射源18发射而且(至少一些)在传感器主体12的表面内反射,例如,在位置22处,因而在传感器主体12的内部全部来回“反弹”。已发现从传感器主体与周围介质的界面反射的光可与涂敷于表面上(不论是直接涂敷于其上或含于基质内)的指示剂分子交互作用,例如,激发涂敷于表面上的萤光指示剂分子的萤光。此外,以相对正交界面测量太小而无法反射的角度撞击界面的光通过界面且激发萤光指示剂分子的萤光。光(或其它辐射)及界面与指示剂分子间的交互作用的其它模式也已发现为有用的,其视传感器的构造及应用而定。其它模式包括短暂激发与表面等离子体激元共振型激发。
如图3与4所示,至少一些萤光指示剂分子16发射的光直接或被基质层14的最外层表面反射(关于传感器主体1 后,进入传感器主体12,如区域30所示。此萤光观然后在整个传感器主体12内反射,非常类似辐射源18发射的辐射,而且如同辐射源发射的辐射,一些将以太小而无法反射的角度撞击传感器主体与周围介质间的界面且从传感器主体折回。如图4所示,由辐射源18发射的辐射,及对于基于萤光的传感器,萤光指示剂分子16 发射的萤光之内反射撞击感光元件20,这敏感于这种内发光的程度。如图1所进一步示出的,传感器10也可包括在传感器主体的外表面与基质层14 之间,形成在传感器主体12的末端上的反射涂层32,以使萤光指示剂分子发射的辐射和/ 或光之内反射最大或增强。例如,反射涂层可由涂料或由金属化材料(只要此金属化物不阻碍遥控测定信号出入传感器的传送,如以下所述)形成。仍如图1所进一步示出的,光学滤光器34较佳地提供在感光元件(光检测器)20 的光敏感表面上。如由现有技术所公知的那样,这种滤光器防止或实质上降低源18产生的辐射量对感光元件20的光敏感表面的冲击。同时,滤光器使萤光指示剂分子发射的萤光通过以撞击检测器的感光区域。如此大为降低光检测器信号的“噪音”,其归因为来自源18的入射辐射。特别地,根据本发明的一个方面是传感器10的应用得到发展一虽然绝非其所适合的唯一应用一测量人体内的各种生物分析物,例如,葡萄糖,氧,毒素,医学或其它药物, 荷尔蒙,及其它新陈代谢分析物。基质层14与指示剂分子16的特定组合物可视使用传感器检测的特定分析物和/或使用传感器检测分析物(即,在血液或在皮下组织)而改变。然而,两个固定的要求为基质层14利于指示剂分子对分析物的暴露,以及指示剂分子的光学特性(例如,萤光指示剂分子的萤光程度)为指示剂分子所暴露的特定分析物浓度的函数。为了利于在人体内的原地使用,传感器10以平滑,长椭圆或圆形的形状形成。有利地,其具有大约为豆或医学明胶胶囊的大小与形状,即,其长度L约为500微米至约0. 5 英寸的数量级及直径D约为300微米至约0. 3英寸的数量级,通常全部为平滑,磨圆表面。 这种构形使传感器10可植入至人体内,S卩,皮肤内或至皮下组织中(包括器官或血管中), 而传感器不影响重要的身体功能或造成过度的疼痛或不舒适。此外,应了解,很简单,植入物意味着刺激源,置于人(或任何其它动物)体内的任何植入物一甚至包含“生物相容”材料的植入一会在植入物所插入的器官内造成某种程度的“外来身体反应”。在人体内植入传感器10的情况下,“外来身体反应”最常见的为纤维变性封包,即,疤组织的形成。葡萄糖--依照本发明的传感器预期用于检测的主要分析物--可具有其被此纤维变性封包阻碍的扩散或运输速率。甚至非常小的分子氧(O2)也可具有其被此纤维变性封包阻碍的扩散或运输速率。其仅因为形成纤维变性封包(疤组织) 的细胞本性上相当稠密或具有不同于正常组织的新陈代谢特征。为了克服将指示剂分子暴露于生物分析物的这种可能阻碍或延迟,有两种主要的解决方法。依照一种方法,其或为最简单的方法,传感器/组织界面层一在指示剂分子直接在传感器主体的表面上移动时,在传感器主体12上和/或指示剂分子本身,或在指示剂分子含于其中时,在基质层14的表面上一由造成形成极少或可接受程度的纤维变性封包的材料制备。两个在文献中叙述为具有此特征的此种材料的实例为W. L. Gore公司的Preclude Periocardial Membrane,以及共价地组合亲水物的聚异丁烯,如Kennedy的 "Tailoring Polymers for Biological Uses”, Chemtech, 1994 年 2 月,第 24-31 页所沭。或者,由许多层特殊生物相容材料组成的传感器/组织界面层可提供于传感器上。例如,如图3所示,传感器/组织界面层36可包括三个次层36a,36b,与36c。促进组织向内生长的次层36a较佳为由可使毛细管37穿透至其中的生物相容材料制造,甚至如纤维变性细胞39 (疤组织)累积于其上。Gore — Tex Vascular Graft材料(ePTFE),已使用许多年的Dacron (PET)Vascular Graft材料,以及由高密度聚乙烯制造的MEDPOR Biomaterial (POREX Surgical公司的产品)为其基本组合物,孔度(pore size),及孔结构促进组织与血管向内生长至组织内生长层的材料的实例。另一方面,次层36b较佳为具有远小于组织向内生长次层36a的孔度(小于5微米)以防止组织内生长的生物相容层。目前制造次层36b的较佳材料为W. L. Gore公司的 Preclude Periocardial Membrane (以前称为 GORE-TEX Surgical Membrane),其包括膨胀的聚四氟乙烯(ePTFE)。第三层36c作为分子筛,S卩,其提供分子量阻断功能,排除如免疫球蛋白,蛋白质, 与葡萄糖蛋白的分子,同时使感兴趣的分析物通过至指示剂分子(直接涂敷于传感器主体 12之上或在基质层14内移动)。许多公知的纤维素类型薄膜,例如,用于肾透析过滤离心之类,可用于分子量阻断层36c。虽然在如图3所示,传感器/组织界面层36包括第三层,分子量阻断层36c,但是, 应了解,可选择制造基质层14的聚合物,例如,甲基丙烯酸酯或水合亲水性丙基使得其实现分子量阻断功能而无需分开的次层36c。然而,推荐使用两个次层36a与36b,外层36a 促进组织向内生长及内层36b防止组织向内生长,因为内层36b作为外层36a与分子量阻断层(不论是分别提供或基质层14本身)之间的附加屏障(或“预滤器”)。如此降低分子量阻断层被如免疫球蛋白,细胞外基质蛋白质,脂等的大分子阻塞或污染的可能性,因而使感兴趣的分析物接触指示剂分子的速度最大、效率最高。(对于用于活体试验的传感器, 分析物暴露经过时间必须相当短,即,指示剂分子直接暴露的分析物的浓度达到稳定状态所花费的时间量必须相当短,即,在2至5分钟之间)构成传感器/组织界面层的生物相容材料的各种组合与排列对熟悉医学植入技术的人来说是显而易见的。最后,关于传感器/组织界面层,除了防止负面反应,据信,界面层增强来自基质层14的最外层表面且进入传感器主体12中的光的反射(不论是来自萤光指示剂分子还是来自辐射源18)。依照本发明的传感器的又一方面,其可为完全自我容纳。换言之,在具体实施例中,传感器以这样的的方式构成,以致于无电引线引入或引出传感器主体而给传感器提供能量(例如,用于驱动源18)或从传感器传送信号。而是,依照本发明的这一方面的传感器包括完全嵌于或封包于传感器主体12内的电源40 (图1),以及也完全嵌于或封包于传感器主体12内的传送器42 (图1)。(然而,已发现传感器10的形状本身提供优异的光学性质,因此,将引线引入/引出传感器主体内/外而提供能量和/或传送信号的传感器的实施例也在本发明的范围内。)在较佳实施例中,电源40为感应器,如同传送器42。因此,在传感器植入至体内时,例如,在皮肤50与皮下组织52之间,如图5所示,传感器可通过将传感器暴露于,例如,接近传感器安置的位于适当设计仪器(未示出)的感应器线圈56所产生的电磁辐射场M 而充电一即,造成辐射源发射与指示剂分子16交互作用的辐射。类似地,作为感应器的传送器42产生电磁场58,其表示撞击感光元件的光的程度及分析物的存在或浓度。场58组成可被外部接收器60检测的信号。例如,此信号可为50兆赫兹载体的振辐调制信号,频率调制信号,数位信号,或本领域的普通技术人员公知的任何其它类型的电磁波信号。或者,对所有的摇控测定可使用信号线圈及信号感应器。在本实施例中,线圈56 在一个频率产生电磁波M,以在感应器40中感应电流,其将辐射源18充电;感光元件20所感测的内反射光的量由相同的感应器40作为调制的电磁波发送,该电磁波在线圈56感应电流。此调制波由以感光元件20对流经感应器40并且作为检测光的函数的电流进行调制而产生,而且由测量线圈56的产生感应电流而检测。或者,系统可设计为在发电模式与信号传送模式之间切换(以快速的顺序)。这些与其它摇控测定体系对本领域的普通技术人员来说是公知的,因为此技术相当常用于,例如,关于具有植入积体电路晶片的“聪明卡”,其可波动而通过传感器以进入建筑物,有时称为无线频率证验。其它用于驱动辐射源18的自我容纳电源包括微电池;压电(其在暴露于如超音波的机械能量时产生电压);微发电机;声(例如,超音波)发电机;及光电电池,其可因光 (红外线)通过皮肤50而充电。至于另一个取代LED的替代品,可使用放射发光光源。如图6所示,此放射发光光源包括具有放射性同位素82 (例如,氚)含于其中的密封的光学传送容器80 (例如,圆柱形,球形,或立方形)。放射性同位素放射β粒子,其撞击涂敷在容器80的内表面上的中间发光团分子84,因而造成中间发光团分子发射光。虽然β粒子太微弱而无法通过容器的壁,但中间发光体分子发射的光确可通过,因而利用与指示剂分子交互作用的光一类似LED-来照明传感器。此种放射发光的产生,及类似的光产生,在本技术领域为公知的。 例如,参见美国专利4,677,008,所公开的内容在此并入作为参考,及Chuang与Arnold的文章"Radioluminescent Light Source for Optical Oxygen Sensors,,,69 Analytical Chemistry,第10期,1899-1903页,1997年5月15日,所公开的内容在此并入作为参考。作为另一个LED的替代品,传感器可使用如美国专利5,281, 825所展示的电发光灯。关于图1所示的其它元件,也有利地设置温度传感器64与选用的信号放大器66。 温度传感器64测量周围组织与指示剂分子环境的局部周围温度,并且将此信息提供给控制逻辑电路(未示出)。例如,控制逻辑电路修正萤光程度与分析物浓度程度,因而修正输出信号受温度影响的变化。放大器66为相当简单的增量电路,其将光检测器20产生的信号放大。为了制造依照本发明的传感器,传感器的各种元件与电路组装在预切割的0. 2英寸乘0.4英寸的陶瓷(例如,氧化铝)基片70上。基片厚度为0.020英寸。所有的电路元件为,例如,Digi-Key公司,Garrett公司,与其它公司的标准表面安装元件。元件使用标准银导电性环氧基,如Ablebond的Ablebond_84,连接至基片。其次,高通滤光器可通过涂敷两-部分(two-part)高通滤光器环氧基而安装在感光元件上,高通滤光器环氧基通常为CVI Laser公司与其它公司的产品。滤光器的厚度使用 Rainin Micropipettor精确分配而控制。依据制造者的指示,高通滤光器环氧基以125°C在烤箱中固化2小时。类似地,如果需要,低通滤光器可以以相同的方法用商业可得的低通环氧基配方涂敷于放射源(LED)上。光学滤光器的习惯配方可由将所需吸收光谱的染料加入Epotek环氧基中而制备。适合的搀杂物浓度可通过相对来自光谱光度计的UV-Vis扫描的透光率监测波长,直到得到所需的光谱性质而测定。此习惯配制的环氧基可类似地固化。 也可使用预制的玻璃,聚合物,或涂敷滤光器,而且简单地使用一般的光学匹配粘着剂粘附到感光元件或装置上。具有光学滤光器的电路板(如果安装及固化)然后使用,例如,Lilly第4号两-部分明胶胶囊封包成模。其它明胶胶囊也可作用。空胶囊的较长的“半部”向上置于架中。加入许多滴适合传感器主体材料的光学透明封装物(potting)以充填胶囊至其体积的大约一半。预先组装了电路的基片末端插入胶囊中及光学封装物中,光学封装物填塞电路板元件周围的小空间中以帮助排除空气,因此防止在完成后的传感器装置中形成气泡。使用微滴管加入附加的光学封装物,直到在胶囊向上直立时高度达到胶囊顶部。部分的元件然后由将胶囊(以架支撑)置于钟罩真空下,及使之在真空下静置,直到在胶囊内观察到的任何气泡散逸而进一步脱气。组装后的组件从真空中移去并用附加的光学封装物“封顶”,使表面张力充填明胶胶囊至其周围一半以上而形成类似相对端的磨圆,半球圆顶形。胶囊然后置于UV光下固化数小时,固化时间视UV源的强度而定。或可使用热固化及催化剂固化,视封装材料而定。继而在60°C下对组件进行二次UV固化12小时,或依据制造者的指示进行固化,以便完全得到固化。明胶模然后由将封包元件浸于水中数小时以溶解明胶,而从传感器主体上去除。 在这个时期换水及清洗数次有助于从表面去除全部的明胶。胶囊然后风干(或在60°C的烤箱中干燥)以制备涂层。一旦传感器主体完全干燥,就涂敷指示剂分子。指示剂分子可使用此技术领域公知的技术直接固定于传感器主体的表面上,或者其可含于涂敷于中央主体上的基质层溶液内(可依照此技术领域公知的方法制备含萤光指示剂分子的基质层溶液;含吸收光指示剂分子的基质层溶液可如下所述而制备)。一种以基质层涂敷传感器的方便方法为将细线 (例如,32支)固定于封包电路的一端以制造悬垂物。其可使用相同的UV固化光学封装材料完成。约一至二微升的光学封装物置于控制线的一端。封包的电路置于UV灯前,UV灯关闭。光学封装物于顶端的线接触胶囊末端并且开灯。少量的光学封装“粘着剂,”立即固化,因而将线端连接至胶囊。胶囊现在可方便地浸入基质层溶液(在适合之处,及分别的指示剂分子溶液)中并且以线悬垂而固化。从而可在传感器完成组装后简单地拉开而将其去除。一旦指示剂分子坚固地粘合于传感器主体的表面,不论是直接粘合于其上还是粘合在基质层中,则通过将传感器主体插在材料的预形成管状套筒中,并且使用热或环氧基密封各端,而构成传感器/组织界面层,或者,如果需要,传感器/组织界面层材料由在材料纵向地卷起而且使用热或环氧基密封纵向缝与端缝而成为片形。虽然至此叙述依照本发明的传感器10的实施例具有一辐射源IS(LED)与感光元件20 (光检测器),因而可检测单一分析物、其它的组织和组分,例如,可提供两种或更多种不同类型的指示剂分子,以分别感测两种或更多种分析物的存在或浓度,及在陶瓷基片70 上提供两种或更多种感光元件,其分别具有本身的传送器42。各感光元件具有其本身的滤光器34,其设计为使来自各指示剂分子的光通过。类似地,可发展“二通道”实施例,以测量二个不同感测体系的分析物浓度。在本实施例中,例如,一些指示剂分子为萤光指示剂分子而其余的指示剂分子为辐射吸收指示剂分子(如以下所述)。提供两个分别的感光元件,其各具有本身适合的滤光器一一个测量萤光指示剂分子发射的萤光及一个测量源产生且在整个传感器反射的辐射,及一些辐射吸收指示剂分子的吸收。此外,可使用其它类型的感光元件,例如,光阻器,光电晶体管,发光二极管,光敏达林顿放大器,光电池,正绝缘负发光二极管,大面积发光二极管,雪崩发光二极管,电荷耦合装置等。此外,虽然以上已叙述的依照本发明的传感器主要以指示剂分子的萤光为主而作用,本发明并不局限于此。依照本发明的另一方面,本发明的传感器构造可基于光吸收指示剂分子的光吸收特征而操作。依照本发明的这一方面的传感器可使用如以上参考的美国专利5,517,313所示的传感器构造,较佳的是,其使用如上所述的豆或医学明胶胶囊构造。如图7a与7b所示,依照本发明的这一方面的传感器110并未暴露于任何分析物时,光吸收指示剂分子116(其较佳为固定在基质层114中)吸收由辐射源产生的特定量的辐射(光)119,辐射(光)119在特定波长范围内并离开传感器主体,而且未吸收的辐射121 反射回到传感器主体中。在传感器110暴露于分析物,使得吸收光的指示剂分子116暴露于分析物分子117时,指示剂分子吸收光的性质受到影响。例如,如图7b所示,指示剂分子 116的吸收光能力降低,使得光121反射回到传感器主体12中的强度增加。如上所述,传感器主体内光的程度由感光元件(未示出)测量。应了解,以光吸收指示剂分子为主的传感器必须通过测定各种公知浓度的各种感兴趣分析物的发光强度程度而校正。此外,进一步了解,因为测量的辐射(光)为源本身发射的辐射,如果辐射源具有非常宽的发射外形且光吸收指示剂分子具有非常窄的吸收波长范围,则高通,低通,或带通滤光器可提供于感光元件上以使仅此范围的辐射波长被感光元件感测。光吸收性质受各种分析物影响的指示剂分子在本技术领域为公知的。(然而,如上所示,据信,此光吸收指示剂分子尚未关于如这里或美国专利5,517,313所教示的传感器构造而使用。)例如,美国专利5,512,246揭示吸收光的能力如葡萄糖的局部浓度的函数而改变光吸收指示剂分子。特别地,葡萄糖的局部浓度增加时,指示剂分子在515纳米的波长吸收光的能力降低。因此,如果此指示剂分子关于在所公开的内容的豆或冷胶囊形传感器构造而使用,光在此波长内的发光程度增加,局部葡萄糖浓度程度然后可由在此波长的发光程度决定。可反应其它分析物的光吸收指示剂分子在本技术领域为公知的,例如,如酚酞所例示,其根据PH值的变化而改变颜色。如同以萤光指示剂分子为主的传感器的情形,使用光吸收指示剂分子的传感器可使指示剂分子直接配置在传感器主体的表面上。然而,较佳为,指示剂分子固定在基质层 114内,如图7a与7b所示。基质层114可通过各种有机单体的低密度聚合而制造,其包括甲基丙烯酸羟乙酯 (HEMA)。HEMA通常可从如宾州Warrington的Polykiences公司,及密苏里州Louis的 Sigma公司购得,而且可通过将单体加热或暴露于紫外线而聚合,正如本技术领域所广为公知及了解的那样。
在较佳实施例中,光吸收指示剂分子116通过使HEMA与搀杂单体,例如,甲基-丙烯酸胺乙酯(AEMA)反应而固定于基质层114内。在聚合时,AEMA将侧接胺基引入基质层114中。在基质层114的制造中,也可使用AEMA以外的单体,其包括甲基丙烯酸胺丙酯 (APMA)及在胺基与其余单体之间具有不同侧接基及不同碳链长度的其它商业可得单体。除了含第一胺基的单体(例如,AEMA)外,含第二胺基的单体也可用于形成基质层114。或者, 胺基以外的侧接交联基也可用于将指示剂分子116共价地键联至基质层114的聚合物材料。替代侧接交联基的实例包括氢硫基(-SH),羧基(COOH),醛^OH),羟基(OH),氰基(CN), 醚,及环氧基。虽然可使用一定范围的搀杂比例,以固定指示剂分子116,约1 4至约1 20的 AEMA对HEMA搀杂比例较佳。提供基质层114,以在基质层114的全部聚合大分子中,使每三个HEMA残基按化学计量具有一个侧接胺基。如图8的化学式所示。基质层114的聚合物材料可以用本技术领域公知的标准交联方法交联,在较佳实施例中,其包括一种使用二官能基聚(乙二醇)(η) 二甲基丙烯酸酯作为交联基的方法。 交联基可在单体的起初配制时依据标准实际(practice)加入。此种及其它交联基来自 PolySciences公司(Warrington,宾州)。虽然变量(η)的范围为1至超过1000,但在本发明的较佳实施例中,η = 1000,变量(η)可视基质层114所需的密度,多孔性,及亲水性性质而定。图9表示依照本发明的较佳实施例的基质层114的片段,其包括侧接胺基搀杂的单体(AEMA),NEMA主干,及二官能基交联基。基质层114对本发明提供了许多优点,这些优点包括可使分析物(例如,葡萄糖)接近光吸收指示剂分子116 ;将指示剂分子116因定,以防止其浙滤;维持本发明光学系统的安定性;使对所需分析物以外的外孔性基质的非特定粘合的量最低;限制大于所需分析物的分子的接近;及使多孔性基质材料支撑一种或更多种另外的生物相容界面层。基质层114也与传感器主体12光学相容,且可传送指示剂分子116的激发,发射,吸收度,或折射率波长。各种将指示剂分子116固定于基质层114内的方法叙述于文献中,而且范围为机械捕获至共价固定。例如,参见A.P.Turner的文章Biosensors,第85-99页,Oxford Science Publications,1987。在较佳实施例中,指示剂分子116为可共价地固定在基质层114内的对葡萄糖敏感的吸收度调制(absorbance-modulated)指示剂分子。在聚合时,指示剂分子116经第一胺侧接基共价地连接聚合物主干,而且其一起形成基质层114。此固定形式对各种在聚合物主干上使用不同类型的指示剂分子及不同侧接基的方法为可接受的。对葡萄糖敏感的吸收度调制指示剂分子的实例包括2,3' -二羟基硼-4-羟基偶氮苯(也称为“硼酸红”),如图 10所示。葡萄糖与指示剂分子116交互作用,如美国专利5,512,246所述。另一种类似地制备较佳指示剂分子116以用于本发明的方法如图11所示。如图10与11所示,将指示剂分子116固定于基质层114的较佳方法中,酚基的邻氢位置(在图10与11所示的指示剂分子中以“*”表示)使用Marmich反应而胺基烷化, 其在有机化学领域公知为在甲醛与胺的存在下,酮,酯,酚,与其它有机化合物的特定氢可缩合的反应,实行Marmich反应的试剂商业得自许多化学供应公司,其包括Pierce化学公司。一种将指示剂分子116键联至AEMA的标准Mannich反应如图12所示。由将AEMA与 HEMA共聚合至基质层114的聚合物主干中,指示剂分子116可键联至基质层114的聚合物材料及使得可接近分析物,例如,葡萄糖。指示剂分子116可以各种方法键联至基质层114的聚合物材料,其包括首先在与 HEMA共聚合之前将指示剂分子116耦合至AEMA。或者,可由首先将指示剂分子116固定在聚离胺酸的侧接胺基,而使用非共价的指示剂分子116的机械捕获。预固定的聚离胺酸/ 指示剂分子前体然后可在聚合之前与HEMA混合。在甲基丙烯酸酯的聚合之前,聚离胺酸/ 指示剂分子络合物在甲基丙烯酸酯基质内捕获,同时指示剂分子116维持共价地固定到聚离胺酸上。传感器110或可如上所述而构成。依照本发明的第三方面的传感器利用上述的豆或冷胶囊形构造(虽然并非局制于此构造)以利于基于配置传感器的介质的折射率变化(或封包传感器的基质的折射率变化,如果使用)而感测分析物的存在或浓度。通常,如果撞击界面的光的入射角(相对正交界面而测量)小于临界角θ。,则通过折射率为ηι的第一介质的光穿过第一介质与折射率为A的第二介质的界面;另一方面,以大于临界角的入射角撞击界面的光在第一介质内内反射。临界角θ c = sin—1 (Ii2Ai1)。因此,对于Ii1 >> n2使得(Ii2Ai1)趋近0且临界角趋近 0°的情形,光实际上在第一介质内完全内反射。反之,对于Ii1 = Ii2使得临界角=90°的情形,在第一介质内并无内反射而且所有的光穿过界面至第二介质中。这里描述传感器构造的说明中,上述原理如图13a及1 所示,在图13a中,传感器主体12的折射率!^实质上大于周围介质的折射率 。因此,源18产生的所有的内光一因为传感器主体的波长性质,此光具有由0°至90°的所有可能的入射角一以完全垂直以外的角度撞击界面,在传感器主体内内反射且被感光元件20感测。相对地,如图1 所示,其中折射率 等于传感器主体12的折射率,临界角为90° (即,正切传感器主体与周围介质间的介面),因此,源18产生的所有的光通过传感器主体12且未(或几乎未)被感光元件 20感测。可利用临界角与相对折射率间的关系决定传感器暴露的分析物的浓度,因为通常介质的折射率随介质的密度增加。例如,如果传感器主体封包于对感兴趣的分析物为选择性渗透(经大小排除,电荷排除,或渗透选择性)的薄膜(未示出)内,薄膜的密度随分析物扩散至其中而增加。其使更多光穿过传感器主体而且造成较少的光撞击感光元件。换言之,随增加的分析物浓度,内反射的程度降低,而且可测量此降低及对局部分析物浓度修正。应注意,一些生物材料,如蛋白质,荷尔蒙等,不溶于水中,因此不渗透薄膜。然而, 葡萄糖,盐与其它小分子量化合物为扩散至薄膜中的主要新陈代谢分析物,因此可使用于折射为主的传感器最有效地测量分析物。在基于折射的传感器的最基本的实施例中,不需使用周围薄膜。在改变浓度的唯一事项为感兴趣的分析物之处,可使用此基本实施例。例如,香槟或酒老化时,糖含量降低, 流体的密度因此及折射率也然。因此,依照本分明的这一方面的传感器可在处理时置于香槟瓶中或酒桶中,而且用于在酿制香槟或酒时测量糖含量。其它的可能应用为决定容器中的液体含量或决定燃油中的水份含量。
最后,虽然以上已叙述本发明的各方面的具体实施例,应了解,对本领域的普通技术人员来说,可以对这些实施例进行许多修改与变化。这些修改与变化视为在以下权利要求的范围内。本发明的附加实施例在本发明的其它实施例中,提供一种传感器,其包括(a)至少一种分析物感测指示剂通道,其如上所述而操作;及(b)至少一种附加通道作为光学参考通道。光学参考通道较佳为(a)测量不受分析物的存在或浓度影响或通常不受影响的指示剂分子(即,分析物感测指示剂通道的指示剂分子)的一种或更多种光学特性;和/或(b)测量不受分析物的存在或浓度影响或通常不受影响的第二控制指示剂分子的光学特性。例如,局部参考通道通常可以象指示剂通道那样操作。在本申请中,不受分析物的存在或浓度影响或通常不受影响的指示剂分子在此广义地称为控制指示剂分子。例如,可使用光学参考通道补偿或修正(1)传感器组成固有的元件操作的变化或转移;和/或( 传感器外部的环境条件。例如,光学参考通道可用于补偿或修正以下因素引起的内变量传感器的辐射源的老化;影响其感光元件的性能或敏感度的变化;指示剂分子的退化或改变;传感器主体,或指示剂基质层等的辐射传送率的变化;其它传感器元件的变化等,在其它的实例中,光学参考通道也可用于补偿或修正与分析物的存在或浓度无关而影响指示剂分子的光学特性或视光学特性的环境因素(例如,传感器外部因素)。 关于此点,例示的外部因素包括温度高低;PH大小;周围存在的光;传感器施加的介质的反射率或浊度等。在以下的说明中,类似的参考标号表示前面所述的实施例的类似部分,而且在适合之处,以上关于此类似部分所述的所有的替代与变化也用于任何以下的实施例。虽然可使用许多方法得到各个指示剂通道与参考通道读数,但在以下的段落中讨论一些示范性的方法。这些及其它方法可用于任何以下所述传感器的实施例,这所公开的内容是明显的。首先,指示剂薄膜(例如,如下述的薄膜14')可包括对特定分析物敏感的指示剂分子,例如,如对氧敏感的萤光指示剂分子,而且其含于分析物可渗透的材料内,同时参考薄膜(例如,如下述的薄膜14")可在分析物不可渗透的材料内包括相同的指示剂分子。 例如,在氧的情况下,指示剂薄膜可以氧自由穿越及接触指示剂分子的方式,具有含指示剂分子的氧可渗透基质(在实例中,硅橡胶可用于指示剂薄膜,其对氧为非常可渗透的)。结果,在参考通道得到的值的波动应实质上不归因于分析物(例如,氧)的存在或浓度,而是如上所述,归因于,例如,(1)传感器本身固有的变量或(2)外部环境因素。对分析物为实质上不可渗透的材料(即,用于参考通道)可包括,例如a)实质上防止元件穿透的材料(作为实例,参见以下讨论的美国专利3,612,866,其中参考通道涂以清漆)及b)渗透选择性薄膜,其中控制指示剂分子位于渗透选择性基质内,使得其使特定元件通过而阻止特定的其它元件,如特定的分析物(作为实例,基质可使带负电的分子通过而阻正带正电的分子)。其次,指示剂薄膜可包括对特定分析物敏感的指示剂分子,例如,如对葡萄糖分子敏感的萤光指示剂分子,而且含于分析物可渗透的材料内,而参考薄膜也可包括分析物不可渗透的材料,但是其不包括相同的指示剂分子,而是本质上实质上无法辨识分析物的控制指示剂分子。例如,在分析物为葡萄糖而且此葡萄糖在液体(例如,体液,如血液,血浆, 组织间流体等,或其它流体)内时,将控制指示剂分子置于此葡萄糖不可渗透的材料内将易于具有阻止如PH变化的其它因素的附加效果,使得上述的第一实例为不需要的。因此, 在第二基本方法中,分析物可穿透,但是在参考通道选择的控制指示剂分子选择为实质上无法辨识分析物。结果,参考通道测量的波动应实质上不归因于分析物的存在或浓度的变化,如下完成实质上无法辨识分析物的控制指示剂分子的一些描述性,非限制性实例。首先,参考1999年3月11日提出的美国专利申请09/265,979号,发明名称Detection of Analytes by Fluorescent Lanthanide Metal Chelate Complexes Containing Substituted Ligands,也为本受让人所有,其全部揭示在此并入作为参考(而且其为1998 年3月11日提出的美国专利申请09/037,960号的继续部分申请,其全部揭示在此并入作为参考),其公开了一种辨认元件,例如,硼酸,Η0-Β-0Η,其用于利于粘合(binding)在葡萄糖上。作为实例,试图省略或替换此辨认元件而制造实质上“无法辨识”葡萄糖的控制指示剂分子。特别地,09/037,960号申请叙述了具有萤光镧系金属钳合络合物的指示剂分子, 其具有式M (-Ch (-Rx)) γ其中M表示镧系金属离子;Ch表示钳合剂,其包含配位基,较佳为可包含任何一个或更多个二酮或其氮同系物,二羟基,羧基配位杂环,烯醇,巨双环穴状配体(即,笼型配位基),苯基磷酸,或聚胺基-聚羧酸的有机配位基。Ch的有机配位基也可包含任何一个或更多个氮,硫,与键联羧基的杂环。Ch的有机配位基可进一步包含任何一个或更多个烷属烃或烯属烃基,较佳为含1至10个碳原子,及芳族,碳环或杂环部分,其包括苄基,萘基,蒽基,菲基,或四醯(tetracyl)基。此外,一个或更多个错合M的钳合剂可为相同的或不同钳合剂的混合物(所谓的“混合配位基或第三钳合剂”)。R表示分析物特定辨认元件, 其一个或更多个结合至钳合络合物的一个或更多个配位基,但是不需要键联至钳合络合物的每个配位基,在较佳实施例中,R可为硼酸基或含硼酸基的化合物以检测葡萄糖或其它的顺-二醇化合物。X表示结合至各一个或更多个钳合剂的辨认元件R的数量,X可为0至8 的整数,而且在本发明的特定较佳实施例中,X = 0至4或X = 0至2。另外,结合至各个或更多个钳合剂的辨认元件R的数量可为相同或不同,其条件为对于一个或更多个钳合剂,X >0。Y表示错合M的钳合剂的数量,而且可为1至4的整数。在本发明的具体较佳实施例中,Y = 1,Y = 3或Y = 4。因此,在这些描述性情况下,为了制造实质上无法辨认分析物的控制指示剂分子,可省略辨认元件R或如上所述由本领域的普通技术人员改变。第三,另一种得到各个指示剂通道与参考通道读数的方法涉及利用在特定波长或频率(例如,在图21为了描述目的所示的非限制实例中,在约440纳米)具有等吸光点的指示剂分子。“等吸光点”包含,例如,吸收性与分析物的存在或浓度无关的点(即,实质上以特定的波长)。即,在辐射源发射一定频率范围的辐射之处,例如,光,在特定频率的光吸收度基于分析物的存在或浓度而改变,但是在等吸光点的光吸收度基本上保持恒定而与分析物存在或浓度无关。因此,在第三实例中,指示剂与参考通道包括具有特定等吸光点的指示剂分子(例如,相同的指示剂分子可用于各通道)。指示剂通道可包括在以下讨论的感光元件(例如,光检测器)20-1上的滤光器(例如,参见以下讨论的滤光器34),使得离开等吸光点的光被感光元件检测(例如,在图21中为约500nm)。另一方面,参考通道包括在以下讨论的感光元件(例如,光检测器)20-2上的滤光器(例如,34下方),使得等吸光波长的光穿透及被感光元件20-2检测。结果,参考通道的任何变化应大多与分析物存在或浓度无关,而且如以上所讨论,可作为参考。具有这种等吸光点的其它指示剂分子可基于手边的特定应用而使用。至于许多实例中的一些,参见许多其它公知的文献(a)M. Uttamial等人的 A Fiber-Qptic Carbon Dioxide Sensor for Fermentation MonitorinR,BIOTECHNOLOGY, 第19卷,第597-601页(1995年6月)(讨论用于CO2感测的羟基芘三磺酸(HPTS)(及 seminaphthorhodaf Iuor (SNARF))),其全部揭示在此并入作为参考;(b) A. Mi 11 s等人的 Flourescence Plastic Thin-film Sensor for Carbon Dioxide, ANALYST,第 118 卷,第 839-843 页(1993 年 7 月)(University College of Swansea,化学系,Singleton Park, Swansea UK)(讨论用于CO2感测的HPTS),其全部揭示在此并入作为参考;(c)美国专利 5,137,833 (表示约440nm具有等吸光点的葡萄糖指示剂,例如,参见5,137,833号专利的图 10,在此图21为该图的再现),其全部揭示在此并入作为参考。在使用具有等吸光点的指示剂分子时,同时许多辐射源(例如,LED)可视情况而改变,在特定的情况下有时较佳为利用多个辐射源(例如,LED)。例如,有时一个辐射源(例如,LED)无法在等吸光点附近提供充分的发光,使得希望包括附加的LED以在此波长提供充分的发光。视手边的特定应用而定,本发明的参考通道与指示剂通道可利用在此所述的及本技术领域公知的材料。许多在分析物检测时使用参考或对照的实例在本技术领域为公知的。例如,美国专利3,612,866,其全部揭示在此并入作为参考,该专利叙述了一种萤光氧传感器,其具有含如测量通道的相同指示剂化学的参考通道,除了参考通道涂以清漆以使之对氧为不可渗透的。美国专利4,861,727与5,190,729,其全部揭示也在此并入作为参考,该专利叙述了使用两种不同的以镧系为主指示剂化学的氧传感器,其以两个不同波长发射,以铽为主的指示剂以氧淬灭及以铕为主的指示剂几乎不受氧的影响。美国专利5,094,959,其全部揭示也在此并入作为参考,该专利叙述了一种氧传感器,其中单指示剂分子以特定波长照射,而且分子发射的萤光在两个对氧具有不同敏感度的不同发射光谱测量。特别地,使用对氧较不敏感的发射光谱作为参考以得到两个发射强度的比例。美因专利5,462,880与 5,728,422,其全部揭示也在此并入作为参考,该专利叙述了一种放射定量萤光氧感测法, 其使用一种实质上不受氧影响而且具有类似指示剂分子的光分解速率的参考分子。另外, Muller,B.等人的ANALYST,第121卷,第339-343页(1996年3月),其全部揭示在此并入作为参考,该专利叙述了一种用于溶解(X)2的萤光传感器,其中导引蓝色LED光源经过光纤耦合器至指示剂通道及至各个的参考光检测器,其检测LED光强度的变化。此外,美国专利4,580,059,其全部揭示在此并入作为参考,该专利叙述了一种基于萤光的传感器,其含参考光测量电池33以测量激发光源强度的变化一例如,参见第10 栏,第1行以下。此外,美国专利4,617,277,其全部揭示也在此并入作为参考,该专利叙述了一种用于二氧化碳,以吸收度为主的传感器,其中参考元件12反射来自源14的光至参考光电池,以决定何时测量元件10由于不可逆的色变而需要取代。
虽然讨论许多在此所述的实施例以参考萤光指示剂分子的用途,基于所公开的内容应易于了解,视手边的特定状况而定,这些所述实施例可修改以利用任何类型的指示剂分子或其结合。例如,薄膜14'与14"(以下讨论)均可包括光吸收指示剂分子,如以上所述的那样。至于另一个实例,在某些情况下,也可在一种指示剂或参考薄膜14'或14" 中使用萤光指示剂分子,而在另一个指示剂或参考薄膜14'或14"中使用光吸收指示剂分子;然而,在大部分的情况下,指示剂及参考薄膜14'与14"均使用类似的指示剂分子, 比如这里所述的。除了以上方法,还可使用许多其它的控制方法。例如,在各种其它的实施例中,控制通道可使用与指示剂通道中的指示剂分子完全无关的材料或物质。关于此点,例如,参考薄膜的材料可仅具有所需特征的一种或更多种,例如,反射率,温度,PH,和/或各种其它因素。显然地,在某些实施例中,参考薄膜可含无关的“化学”,但是可用于,例如,仅监测反射率(例如,其可用于评估LED是否变暗,或是,例如,薄膜表面是否在某方面受影响)。在本申请所揭示的任何实施例试图加入一个或更多个参考通道,以下讨论加入参考指示剂的传感器的许多较佳实施例。虽然以下实施例中的一些替代与变化叙述如下,但类似的参考标号表示前述实施例的类似部分,而且在适合之处,以上关于此类似部分所述的所有替代与变化也可用于任何以下的实施例。图14(A)_14(B)描述加入光学参考通道的传感器10的第一实施例。如图所示,传感器10较佳为包括传感器主体12 ;具有萤光指示剂分子分布于整个薄膜的指示剂薄膜 14';具有萤光控制指示剂分子分布于整个薄膜的参考薄膜14";辐射源18,例如,如类似以上所述的单个LED ;指示剂通道感光元件20-1,例如,类似以上所述的感光元件20 ;类似的参考通道感光元件20-2 ;电路基片70 (示意地表示安装示范性电路元件70i);电源40, 例如,如图所示的感应电力线圈;及传送器42,例如,所示的传送器线圈。这里所述的任何实施例中,例如,薄膜14'与14"可以用类似以上讨论的基质层14的任何实施例的材料制造,或可包含其内可含指示剂分子或指示剂分子可涂敷于其上的任何其它适合的材料。如果需要,薄膜14'与14"(和/或传感器主体)也可包括类似层36的任何实施例的传感器 /组织界面层,如以上所讨论的那样,所述的实施例也可包括许多附加的元件,例如,如图所示滤光器34(例如,以排除LED发射的光的波长或波长范围,如蓝色,及使萤光材料发射的光的波长或波长范围通过,如红色);挡板130(例如,以抑制从指示剂通道与参考通道发射的光的“串音”);围绕各感光元件的孔的罩(mask) 35;和/或温度传感器64 (例如,如上所述)O在操作时,传感器12可参考图1-13所示的实施例类似以上所述而操作。然而,得到两个分别的感测读数以提供a)指示剂读数(经包括指示剂薄膜14'与感光元件20-1 的通道);及b)参考读数(经包括参考薄膜14"与感光元件20-2的通道)。然后,例如, 使用参考读数提供更正确的传感器读数。图14(A)_14(B)所示装置的示范性操作如下。首先,电源40造成辐射源18,例如, LED,发射辐射。辐射经过传感器主体内且到达指示剂薄膜14'与参考薄膜14"(通常如箭头所示)。然后,这些各薄膜内的分子激发,例如,萤光,而且光自其发射(也如箭头所示) 且被各感光元件20-1与20-2接收,此操作本质上与参考上述实施例所述的一样,因此不再重复。为了排除或减少从薄膜14'与14"发射的光之间的“串音”,可包括挡板130。挡板较佳为对可影响感光元件的辐射为不可穿透的一例如,涂黑等。例如,以此方式,单一辐射源,例如,LED,可用于两个“通道”。虽然本领域的普通技术人员可基于所公开的内容以各种方式制造装置,一种制造图14(A)-14(B)所示装置的示范性方法如下。开始,提供易由许多销售者制造的氧化铝陶瓷基片作为电路基片70。此外,例如,可提供感应器作为电源40与传送器42。感应器与分离元件可电连接至基片,如使用常用的焊料或导电性环氧基。此外,其它电子元件可使用, 例如,导电性环氧基连接,如在较佳实例中得自Ablestick电子材料公司的ABLEB0ND84。 然后,元件可以细线结合以完成电路连接。较佳为提供硅发光二极管,例如,Advanced Photonics公司的编号150-20-002的产品,作为感光元件20_1与20_2,而且较佳为使用球焊(ball bonds)和导电性环氧基进行倒装。此外,基片中感光元件孔的边缘较佳为以黑色, 不透明且不导电材料遮盖,例如,Epoxy Technology公司的产品E320。光学滤光器材料,例如,CVI Laser公司的产品LP-595,较佳地置于发光二极管孔(例如,基片70内的孔切口) 以使来自辐射源的光衰退和/或使周围光衰退。使用的辐射源可为,例如,放射蓝色或紫外线带的光的LED。然后,此电路元件结构较佳为模塑至光学透明封包剂中。封包剂可帮助作为导波器且也可对电路提供环境保护。然后,指示剂与参考感测薄膜可连接至胶囊口袋内部(例如,胶囊周边的凹部内部)。此连接可由,例如,将口袋模塑至胶囊中然后将感测薄膜安置于其中,或由在封包前将指示剂薄膜置于模中,使得在封包时在薄膜附近形成口袋而完成。如图所示,其仅为构造的一个较佳方法,而且装置可以许多方式构成。此外,虽然这里所示的实施例仅具有两个通道(即,指示剂通道与参考通道),其它的实施例也可含多个指示剂和/或多个参考通道。试图以许多种方式修改图14(A)_14(B)所示的结构。例如,如图14(C)所示,可修改装置使得电路板70固定于如图所示的挠性电路(S卩,电缆),如经电引线或接点71。例如,其使电路自胶囊主体等(其仅一部分示于图14(C))延伸,例如(a)以将电力从外部电源传送至传感器;(b)将信号从传感器传送至外部接收器;和/或(c)用于其它目的。至于另一个实例,也如图14(C)所示,电路不需完全封包于豆内。关于此点,例如,如图所示,传感器10可包括外盖3'及封包导波部分12',其形成在,例如,感光元件及指示剂与参考薄膜间的描绘阴影区域。虽然不是最佳的,但传感器10的内部也可包括用于电路的穴,其含气体,例如,空气,或甚至液体或其它介质,所需波长的光,例如,质子,可以通过。较佳为,提供具有符合或接近指示剂与参考薄膜折射率的折射率的导波材料,以确定光从薄膜至感光元件的通过。在一个示范性的非限制性构造中,导波部分12'可由PMMA材料(即,聚(甲基丙烯酸甲酯))制造,电路板70可以由陶瓷材料制造,参考涂层14"可含Ru(钌)于环氧基中,指示剂涂层14'可含Ru于硅酮中,挡板130可以黑色环氧基片料制造,辐射源18可为LED,及外盖3'可以玻璃材料制造。图14D为类似图14(C)所示的传感器10的正视图,其以类似的标号表示类似的部分。图14(E)与14(F)表示图14(D)所示实施例的宽度方向与长度方向的横切面,装置插在介质B(例如,液体,气体等)中。如图14(F)所示,挠性电路或电缆70'可从介质B的外表面延长至远端电源,接收器或其它装置(未示出),如上所述。如图14(E)与14(F)所示, 传感器主体12可包括封包导波材料,如上所述,或导波材料可如图14(C)所示在区域12' 中,或如上所述使用另一种物质,虽然不是最佳的。
图15(A)_15⑶表示本发明的另外实施例,其类似于图14(A)_14(B)所述,其中提供辐射源18如两个分别的辐射源18-1与18-2,例如,LED,其支撑在座18m上。如图所示, LED 18-1导引至指示剂薄膜14',而LED 18_2导引至参考薄膜14"。如图所示,在此情况下,挡板130再度较佳为包括在LED之间。因为这里的实施例使用多个辐射源,例如,LED,辐射源18-1与18-2,例如,LED,可为相同的,例如,发射相同的光,或为不同的,视情况而定。在其中使用多个辐射源,例如,LED,的实施例中,较佳地作一定的考滤。在使用一个辐射源时,例如,LED,老化或其它因素同样地比较容易影响两个通道。然而,在使用多个辐射源时(例如,每通道为一个),辐射源的差异可形成通道间的一些差异。因此,在此情况下,希望a)采用对各通道提供类似辐射源(例如,LED)的步骤;和/或b)彼此校正辐射源(例如,LED)。例如,在由切成LED晶片的硅晶片形成LED时(例如,一般为具有约3_8 英寸直径的平坦、长方形晶片,其切成细微LED晶片的阵列),LED较佳为选自长方形晶片内的相邻LED,或较佳为以彼此在陈列的小距离内(例如,约半英寸之内,或更佳为约四分之一英寸内,或更佳为约八分之一英寸内,或更佳为约十六分之一英寸内)自晶片切割。以此方式,所选择LED晶片的品质彼此应较类似。此外,在使用多个其间不等的晶片时,较佳为起初在公知试验条件下进行LED晶片间的标准化校正,以确定任何差异。如在此所述,应了解在一些情形,提供多个辐射源(例如,LED)可具有特定的优点一至于一些实例a)多个源可利于在所需位置的发光;和/或b)在一些情况下,多个源可来回套节以减少通道间的串音,如以下所讨论的那样。例如,图15㈧-15(B)所示的装置可以如图14(A)_14(B)所示装置的相同方式使用。为了进一步减少从薄膜14'与14"发射的光之间的“串音”,取代或除了挡板130,也可操作两个辐射源18-1与18-2,例如,LED,以改变各LED间来回的放射。例如,可以将LED 18-1激励一会儿,然后将18-2激励一会儿等,在一个LED开启的短期间,另一个LED保持关闭。以此方式,可实质上减少串音。在另一个替代方式中,可改造装置以提供指示剂通道与参考通道的读取间的时间延迟(例如,指示剂薄膜可具有兆分之一秒的延迟,而参考薄模可具有纳秒延迟,或反之,使得由于辐射放射的时间差异而完成分别的通道读数)。图15(B)表示具有中心轴的LED,虽然图中每个中心轴与基片70的大致水平上表面成大约25度的角度θ,但这些角度可根据需要而选择,而且在一些实例中可在约0至90 度之间改变,视情况而定。例如,在一些较佳实施例中,角度θ为约60度或更小,或者约45 度或更小。试图以许多方式修改图15(Α)_15(Β)所示的结构,类似图14(Α)_14(Β)所示的实施例。例如,如图15(C)所示,也可进行如同图14(C)所示的修改,如(a)包括如图所示的挠性电路(例如,电缆),如经电引线或接点71 ;(b)提供具有完全封包内部,或具有部分封包内部的传感器10,其具有封包剂导波部分12'形成于其中;(c)其它等等。在一个示范性和非限制性的构造中,导波部分12'可由PMMA封包剂材料制造,电路板70可以陶瓷FR4 电路板制造,辐射源18可包括两个LED,座18m可为Cu (铜)LED座,及外盖3 ‘可以用玻璃材料制造。在一个较佳实施例中,如图所示,也在感光元件20-1与20-2上的滤光器34上提供低折射率层12"。装置再度基于所公开的内容以许多方式构成,而且以上仅为许多示范性构造之一。如图15(B)所示,指示剂薄膜14'及薄膜14"可在主体12表面的口袋等之内形成。或者,薄膜14'与14"也可形成于主体12表面上而非口袋等之内。然而,口袋等的使用可在使用时帮助保护薄膜14'与14"和/或防止薄膜从主体侧向外凸起(例如,如果传感器经套针管等插入病人中,例如,排除凸起有利于处理)。如上所述,传感器10也可在其上或部分其上(和/或在薄膜14'与14"上)包括,例如,以生物相容材料制造的传感器 /组织界面层36,例如,如在此所述的任何材料。图16(A)_16(B)表示一个本发明的附加实施例,其类似图15(A)_15⑶所示,其中提供辐射源18,如两个分别的辐射源18-1与18-2,例如,LED,其各支撑在电路板70的相反侧上的座18ml与18m2上。如图所示,LED18-1导引至指示剂薄膜14',而LED18-2导引至参考薄膜14"。以此方式,例如,电路板70可实际上如挡板而操作以减少或排除串音。如图15 (A)-15 (C)所示的实施例,角度θ可如所需而选择,而且较佳为约0至90度之间一而且在一些较佳实施例中小于约45度。图16(A),16 (B)所示的装置可以,例如,以如图15 (A)-15 (B)所示装置的相同方式使用。此外,图16 (A)-16⑶所示的实施例也可以如上关于图15 (A)-15⑶所示实施例所述的各种相同方式修改。如图所示,基片70的上与下表面也较佳地包括所示的遮盖区域35。 辐射源18-1及18-2是较佳地位于该遮盖区域35内。在图16 (A)-16 (B)所示的实施例中, 感光元件20-1与20-2各如薄膜14'与14"安装于电路板70的相同侧上,而在前例中,板 70具有切开区域,辐射,例如,光,经其通过至感光元件。此外,在图16 (A)-16 (B)所示的实施例中,滤光器材料;34较佳地提供在这些感光元件的顶部而非在此开口之内。应了解,这里的各种实例可由本领域的普通技术人员基于所公开的内容视情况而修改。至于实例,在前述实施例中的感光元件可以如图16(B)所示的方式安装于板70的顶部(例如,在板的一侧)图17(A)_17(F)表示多通道传感器的附加实施例,这些多通道传感器用下列部件制造(a)含感光元件等的内胶囊;及(b)具有感测薄膜的外套筒。参考图17 (A),图17㈧示出了传感器10,它具有在胶囊3 “内的电子元件。胶囊较佳为用玻璃制造,但是它可以用任何适合的材料制造,如以下所述。如果需要,胶囊也可用生物相容材料制造。至于另一个实例,可使用如明尼苏达州Paul的Electronic Animal Identification Capsules of Detron-Fearing公司的钠钙玻璃胶囊材料。较佳为,胶囊熔接密封。如图所示,套筒S较佳含指示剂薄膜14'与参考薄膜14"(例如,用于感测如葡萄糖之类的萤光薄膜)。电子电路可为如用于上述任何实施例的电路,在较佳构造中,电子电路包括利于将能量引至装置的元件;用于萤光色素的激发光源;用于光感测的装置;及用于经无线频率(RF)或被动感应摇控测定至外部读取器的信号转换。如上述的较佳实施例那样,在一个示范性构造中,整个传感器10设计为在病人的皮肤下皮下植入。利于将能量引入装置的元件较佳为包括感应线圈40,它利用外部磁场产生器而产生电路充电所需的电压与电流。感应线圈40可安装于,例如,陶瓷电路板70上或电路板末端(如图所示)。 或者,为了最佳地耦合外部磁场产生器,感应线圈可以以各种取向用于多个位置。辐射源18-1与18-2,例如,LED,较佳为安装在基片70上,以适当地用光子(如经箭头Al所示)激发指示剂薄膜14'与14"(例如,萤光色素区域)。如上所述,光子较佳地激发薄膜14'与14"以放出萤光(如经箭头A2所示),其各以感光元件20-1与20-2检测。此外,其它的元件可包括放大器IC 70A及各种被动元件70B,以提供放大与调制电路,将感光元件强度转换至摇控测定线圈上。仅作为示范性例子,制造此装置的一种较佳方法如下。首先,电子电路置于玻璃管 3"内,其起初开放左端E。较佳为,玻璃为硼硅酸盐玻璃,如在一个实施例中,Kimble Glass 公司的1型硼硅酸盐玻璃N51A。(在其它的实施例中可使用广泛种类的玻璃及其它材料)。 在电子电路置于玻璃管3"内之后,内部部分地充填封包剂导波材料12'至虚线所示的高度12L。如上所述,例如,封包剂导波材料可帮助将光A-I光学地耦合至薄膜表面14'与 14",及将萤光信号A-2光学地耦合回到感光元件20-1与20-2。可使用上述或此技术领域公知的任何光学适合的导波材料。如上,封包剂导波材料也可应用于玻璃管3"的全部内部,或在非较佳的实施例中,玻璃管可完全以空气或其它材料作为导波物而充填。在一些较佳实施例中,导波材料可包括一种或更多种以下的材料硅酮;GE RTV 615;PMMA;或光学粘着剂,如N0RLAND63。胶囊3"然后较佳为在末端E密封以封闭胶囊。较佳为,胶囊为在末端E用火焰密封的玻璃胶囊,以提供平滑磨圆端及提供熔接密封。较佳为,在密封胶囊之前,处理电子装置以去除水份。例如,装置可烘烤(例如,在约75°C或更高,约12小时)及可置于氮气气氛中,以便从装置与其元件上驱除任何残余的水份。然后,如果需要,在进行下一个安装步骤之前一例如,应用感测薄膜的步骤,组装的装置可充电及测试,以评估其操作力。在一个示范性构造中,特别是活体使用,图17(A)所示的长度1可为约10-15毫米长,而且更佳为约12. 5毫米长,而宽度h可为约2-3毫米宽,而且更佳为约2. 5毫米宽。在其它的较佳实施例中,传感器实质上可以较小一例如,参见上述的较佳大小范围(例如,约500微米至约 0. 5英寸长等)。然而,明显地,本发明可视情况以任何大小与形状制造。此实施例的优点为在上述组装过程后,感测薄膜14'与14"可在分离片上制造, 分离片置于传感器胶囊3"上,例如,滑动到传感器胶囊3"上。以此方式,薄膜制造步骤可有利地与电子和封包制造步骤分离。在较佳实施例中,套筒S以塑胶材料制造(例如,较佳为以聚乙烯,而且最佳为以医药级聚乙烯(例如,UHMWPE (超高分子量聚乙烯)制造)。套筒可视情况及传感器的特定用途由任何适合材料制造。例如,在传感器用于活体时,套筒可由生物相容材料构成一生物相容材料的一些另外的较佳,非限制性实例包括聚丙烯,PMMA,聚烯烃,聚砜,陶瓷,水凝胶,硅酮橡胶与玻璃。套筒S较佳为大小为使得套筒的内径可精确地符合胶囊的注射模制塑胶套筒。在组装在胶囊上时,套筒S较佳为具有足够的弹性以得到不易脱离胶囊3"的紧密机械符合。套筒S较佳为形成有孔,口袋,或穴H,以适应指示剂薄膜14'与14"(例如, 机械地捕获薄膜)。例如,萤光色素口袋H可在套筒中易于插入模塑。图19 (A)-19 (I)表示可用于各种实施例的许多孔等H在各种套筒S上的配置。值得注意的是,套筒S应设计为使得在安装于胶囊3〃上时,孔等可与各感光元件20-1与20-2完全对齐。图17 (A)-17 (B) 所示的装置较佳为具有如图19(E)所示构成的套筒一例如,具有孔H,其具有配置在感光元件的大部分表面上的椭圆形。或者,虽然如以上所讨论为非较佳的,但指示剂薄膜可在套筒的周围表面上形成(例如,由此向外凸起)而无需此口袋。使用外套筒S的另一个优点为可使用的材料(例如,如以上所讨论)可具有良好的医药级表面以用于皮下组织,其可在传感器为植入人体内(或在其它动物体内)的类型时,有利地帮助防止装置在病人活体内动作及移动。此外,此模塑套筒的自然分割线与边缘的粗度也可帮助防止此动作及移动。植入后动作及移动的防止在一些实施例中为非常重要的一例如,使得感应电力与摇控测定线圈可维持植入装置与外部读取器间的最佳调整。在其它的替代实施例中,套筒S也可挤制成管形(例如,图19(1)所示的圆柱形, 如以下所讨论的)并且适当的压缩应用于胶囊。此外,套筒S也可形成加热收缩在胶囊3" 上的管形。薄膜口袋H也可用模塑,切割,激光机,或激光钻床而形成于其中。此外,在一些设计中,可在套筒S的侧壁制造数千个小激光机制孔H。另一个使用薄膜套筒S的优点为在制造,处理,储存时,而且最重要地,在如一些较佳实施例所实行,经套针注射至皮下组织时,保护指示剂与参考薄膜的能力。如果表面并未适当地保护,经金属套针植入传感器时的机械力与动作可能损坏装置的外部。虽然己叙述许多示范性薄膜套筒S,本领域的普通技术人员关于以上可使用各种其它薄膜材料,大小,位置,几何设计,制造方法等。再度,本领域的普通技术人员也可改变传感器内的零件的配置。例如,图 17 (C)-17 (D)表示类似图17(A)-17(B)所示实施例的第二实施例,其中指示剂薄膜14'与参考薄膜14"在电路板70的相同侧,而且具有单一辐射源18,例如,LED-类似图14(A) — 14(C)所示的实施例。上述关于图14(A),14(C)及图17 (A)-17 (B)的所有可应用的改变都可应用于图17(C)-17(D)所示的实施例。至于另一个实例,图17 (E)-17 (F)表示类似图17(A)_17(C)所示实施例的另一个较佳实施例,其中指示剂薄膜14'与参考薄膜14"在电路板70的相同侧,但是具有两个辐射源18-1与18-2,例如,LED,类似图15 (A)-15 (C)所示的实施例,但是LED在所述的实例中分隔较远,上述关于图15 (A)-15 (C)及图17 (A)-17 (C)的所有可应用的改变都可应用于图17 (C)-17 (D)所示的实施例。虽然上述实施例包括一个指示剂通道及一个参考通道,如上所述,但是上述各种实施例可修改,以包括多个指示剂薄膜(例如,测量相同或不同的分析物)和/或多个参考薄膜(例如,测量相同或不同的光学性质)。此外,应注意,有关具有如图17 (A)-17 (F)所示二部分构造的传感器10的提供也可用于上述未使用此参考通道的基本传感器内-例如, 图18 (A)-18 (B)表示具有单个感光元件20与单个源18的实施例,如上参考图1_13所述, 其可用于得到感测读数而无需参考通道读数。虽然图18 (A)-18 (B)叙述为无参考指示,但应注意具有单个源和/或单个感光元件的装置在一些实施例中仍可用于提供分别的指示剂与参考读数,例如,如a)单个LED可改变不同频率的放射以改变指示剂与参考通道读数;b)在指示剂薄膜与参考薄膜具有不同辐射放射的频率特征的情况下,可改造在感光元件上的滤光器以改变此不同频率对感光元件的通过;c)在指示剂薄膜与参考薄膜具有不同辐射放射的时间特征的情况下,可改造装置以提供指示剂通道与参考通道的时间延迟读数(例如,指示剂通道可具有兆分之一秒延迟而参考通道具有纳秒延迟或反之);d)其它等等。如上所述,图19 (A)-19 (I)表示一些替代套筒S与口袋H设计的实例,应注意,图 17 (C)-17 (F)所示的装置较佳为包括如图19(E)所示的套筒S,其设计为使得口袋H可易于封齐各感光元件。此外,套筒设计可如图19(1)所示,其中套筒S形成两端开放而且可在胶囊上滑动的管。此外,也可使用多个套筒S(例如,各含一个薄膜),如图19(A)所示,其中两个套筒S可符合胶囊的相反端。在如图19(D),19(G)与19(H)所示的实施例中,其中口袋提供于套筒周边附近,套筒可应用于胶囊上而在感光元件在电路板70之一侧上时的具体实施例中无需将套筒与胶囊确实地定向(例如,在使用两个通道时,朝向套筒左侧的口袋可含参考薄膜而朝向右侧的口袋可含指示剂薄膜)。再度,其仅为示范性设计而且本领域的普通技术人员可完成许多其它的套筒和/或口袋设计。图19(J)表示本发明的另一个实施例,其中套筒S具有外环形凸缘F,环形凸缘F 较佳为形成以自然地(例如,在未偏误状态)从传感器的侧面向外横向延伸,如图所示。较佳为,凸缘F由可吸收或可生物降解的材料制造。例如,图19 (J)所示的实施例可用于希望防止移动的应用。例如,即使在预期连接组织随时间保持传感器于定位,此实施例可利于适当定位的维持,即使是在连接组织向内生长之前。即,环形凸缘可帮助防止传感器在其所应用或插入的介质内(例如,如在病人体内)的动作。在最佳实施例中,凸缘为挠性的且可弯曲(例如,在以箭头A的方向插入套针管TT时,至图19(J)的虚线所示的位置),使得传感器可插入病人体中,然而,在经套针管将传感器10插入病人体中然后抽出套针管TT之后,凸缘F回复至其原始形状(或几乎回复此形状)而且利用传感器维持在其适当的插入位置。 如图所示,凸缘F较佳为由可吸收或可生物降解的材料制造,使得在特定期间之后,凸缘F 降解一例如,使得传感器可a)易于去除;b)经其它方法维持定位(例如,经上述的毛细管向内生长);和/或c)其它原因。在替代实施例中,可提供多个凸缘F。在其它的替代实施例中,凸缘F可仅在传感器周围附近部分地延伸(相对于在其附近完全环状地)。图19(J) 所示的套筒S较佳为包括各指示剂与控制指示剂分子(例如,在口袋H的薄膜内),如上所述。然而,试图使环形凸缘F可提供于在所公开的内容的任何实施例的传感器附近,即使是在并未包括此套筒S之处。关于此点,为了类似的功能与目的,一个或更多个凸缘F (例如, 较佳为可生物降解)可固定于在此所述任何传感器的外部。虽然环形凸缘F表示为大致平坦的(例如,具有大致长方形横切面),凸缘F也可具有其它的横切面形状一例如,缝线材料带(较佳为可生物降解)可卷绕在传感器上。虽然凸缘F较佳为可如图所示向内及向外弯曲,但在具体实施例中,凸缘或带也可无此能力。试图部分地根据传感器的特定使用环境而选择具体的传感器构造(而且特别是传感器中指示剂薄膜14'与参考薄膜14"的具体位置)。值得注意的是,指示剂分子(即, 在指示剂薄膜中)及控制指示剂分子(即,参考薄膜)应暴露于实质上相同的环境(即,含被感测分析物的环境)中。因此,传感器上的薄膜位置部分地视使用方法而定。至于一些实例a)如果传感器以其纵向轴垂直溶液而安置,其中试验的属性可基于溶液内深度而改变(例如,在酒瓶内等),希望使用,例如,图16-17所示传感器构造之一,其中感光元件在类似的轴向位置但是在传感器的相反侧,使得薄膜14'与14"可以类似的垂直高度配置;而 b)例如,如果传感器以其轴大致平行病人的皮肤而皮下使用,希望使用,例如,图14(A)或 15(A)所示传感器之一。其它的因素中,应了解薄膜14'与14"(及含此薄膜的口袋H)的大小与位置也部分视所选择辐射源的视野而定,例如,LED。图20(A)_20(B)表示另一个实施例,其类似图17(C)_17(D)所示的实施例,除了套筒S被可去除膜F取代之夕卜。如图所示,膜F包括其上的指示剂薄膜14'与参考薄膜14〃。 如同套筒S,薄膜14'与14"较佳为形成于口袋内,但是虽然非较佳的,薄膜也可形成于膜表面上。如上所述,膜F可由如套筒S的相同类型的材料制造。膜F较佳为经膜材料本身的胶粘性或粘着性,或经不会显著地影响辐射(例如,光)进出指示剂薄膜的透光粘着剂(至于实例,如可用3M公司制造的POST-IT 纸张的粘着剂涂于膜F与胶囊3"之间),可去除地连接在胶囊上。如图所示,膜F大小较佳为大到足以在其在胶囊3"上的适当位置支撑指示剂薄膜14'与参考薄膜14"。如图所示,为了去除膜F,应拉角落C且膜F可以类似 BAND-AID 粘着绷带从人体皮肤上去除的方式去除。上述各种其它实施例也可修改,以包括膜F而不包括套筒S。此外,虽然表示长方形膜件F,但膜可视手边的情况以其它形状与形式构成。此外,也可使用多个膜F,例如,包括用于参考与指示剂薄膜的各个膜。因此,图20(A)_20(B)所示的实施例及其各种替代可具有许多类似于利用上述可去除套筒S的实施例可得到的益处。图22(A)_22(C)表示本发明的另一个实施例,其中遮蔽套筒S'形成在主体12附近。在本实施例中,构成套筒S'以提供对外部光的遮蔽,伴随如萤光葡萄糖传感器的传感器的两个问题涉及辐射源18发射以外的光。一个光源来自周围源,如日光与人造光。足够强度的光可能使传感器饱和,使之对于感测萤光为无用的。此外,大部分人造光源具有重要的AC(时间改变)元件;虽然可使用滤光技术以衰退此噪音源,但其仍可大大地降低得到的信号。另一种散布光源为传感器外部的材料的萤光放射。后者问题特别困难,因为生成的信号通常无法与指示剂萤光电子过滤。可使用图22 (A)-22 (C)所示的实施例来排除这些来自外部光干扰的影响。在一个较佳实施例中,套筒S'由实质上光学不透明的并且实质上非反射性的材料层形成,该材料层含多个小孔H,从其外表面延伸至薄膜14'与14"。在一个示范性实施例中,套筒S可以用黑色聚四氟乙烯管制造,例如,将它热收缩成主体12。套筒S'也可以用任何适合的材料形成。孔H较佳以一定的角度形成,以该角度分别横切,而且较佳为基本上正交由辐射源至薄膜14'与14"的光的传播RL方向(例如,参见角9工与θ2)。各孔H 的直径较佳为足够小,以便基本上防止光直接由辐射源18离开传感器,而且较佳为足够大以便使分析物扩散或透过至薄模14'与14"。孔H的数量较佳选择为使分析物能够相对未限制地扩散至薄膜中。因此,参见图22 (C),虽然一些周围光AL可经孔H进入传感器,但周围光的穿透应该已大为衰减。图22(D)表示另一个替代实施例,其中在外玻璃胶囊3"‘(其它的实施例可使用外玻璃套筒)内使用内玻璃胶囊3",两个胶囊间有指示剂薄膜14'与参考薄膜14",及激光机制孔h通过外胶囊,以使分析物(例如,葡萄糖)移动至指示剂薄14'中。基于所公开的内容,显然地,包括其它的内部元件(例如,类似图16(A)-16(B)所示),因此,此种元件不需参考图22(D)进一步描述或说明。图23(A)_23(C)表示本发明的另一个实施例,其中使用单个LED18激发指示剂薄膜14'的指示剂分子与参考薄膜14"的控制指示剂分子。一般而言,LEDs (例如,LED晶片)由在基片材料18_S上生长的半导体材料18_C 的结晶层(例如,取向生长)而制造。LED晶片可制成非常小一例如,半导体层的全部厚度可小于约10 μ m,或甚至小于约5 μ m,或甚至更薄。一般而言,其上形成半导体层的基片实质上较厚一例如,大于约50 μ m,或甚至大于约100 μ m,或甚至更厚。LEDs传统上用于从相对安装LED晶片的表面的LED顶侧18_A发射光(例如,反射杯表面)。如图23 (D)所示,LED晶片18 —般置于反射杯18-RC内,反射杯18-RC确保光的传送方向UD向上。如图23(D)所示,一个或更多个小电线18-W —般连接至晶片18的表面 18-A(例如,通过金接点)。此外,基片18-3—般为实质上透明的,使得半导体材料传送的光在基片内内反射及反射离开反射器18-RC,防止经过LED 18-B底部的传送。事实上,在本技术领域通常已考虑LED晶片仅用于从LED晶片的上表面18-A向外的光放射。然而,本发明人已发现,所制成的LED晶片18可有效地从LED晶片的顶侧18_A与底侧18-B发射光。在一个较佳实施例中,如图23(A)-23(C)所示,LED晶片18形成在实质上透明的基片上(适合的透明基片材料包括,例如,蓝宝石,碳化硅与其它适合的材料),其横越电路板70的上表面而安装(例如,如图所示在座18-m上)(较佳为,通常配置LED的上与下表面18-A与18-B以使指示剂与参考通道的照明最大和/或使传感器主体的内照明最大)。较佳为,也包括罩34以抑制指示剂通道与参考通道间的串音。以此方式,单个LED可有效地用于照明指示剂薄膜14'与参考薄膜14〃。图M(B) 示出了公知LED在传统地安装于不透明平坦表面上时的照明场的示意性实例。0度与180 度的角度与平坦LED晶片上表面平行,而90度为垂直的。如图所示,照明实质上仅来自LED 晶片的一侧一即,来自顶侧18-A。相对地,图M(A)示出了照明的一个实例,可经LED晶片18上的与下侧18-A与18-B而实现照明。在图对㈧中,图的右侧由0度至90度表示经LED的底侧18-B传送的光,而图的左侧由0度至-90度表示经LED的顶侧18-A传送的光。因此,如此实例所示,大量的光可实际上从LED的底侧18-B发射。在此情况下,更大量的光实际上从LED的底侧18-B发射,例如,这是因电线,电接点(例如,一般为一个或更多个金接点应用于LED晶片18的顶部),或LED晶片顶侧顶部的其它材料所造成的。图 24(A)所示的测量为使用新罕布夏州North Sutton的Labsphere公司的MODEL LED-1100 Gonometric分析仪进行的。用于图M(A)的LED为日本东京Nichia化学工业有限公司的 #NSHU550E LED。用于图24(B)的LED为北卡罗来纳州Durham的Cree Research公司的 C470-9 LED。在这些实施例中,其中光一般视为照射LED晶片的顶侧18-A与底测18_B而以单个LED来激发指示剂与控制指示剂分子,较佳为足量的光穿过LED之上与之下,以充分地照明两个通道。较佳为,从一侧传送的光量为从另一侧传送的光量的约6倍或更少,或更佳为约4倍或更少,或更佳为约2倍或更少,而且在更佳实施例中为大约相等。然而,照射LED 之上与之下的光量可视情况而大为改变。图25(A)_25(B)表示依照另一个实施例的传感器10。其具有a)传感器主体,其具有围绕传感器主体周边,含指示剂薄膜14的机制周边凹痕12C ;b)基片70,其具有在辐射源18 (例如,LED)下的孔或窗70H;及c)光学反射器D,其具有延伸至传感器主体周边的大致三角形横切面。此实施例类似图14 (A)-14 (B)所示。电元件与其它元件(未示出)类似以上所述,因此,不需再参考图25 (A) -25 (B)进行说明。在图25(A)_25(B)所示的实施例中,辐射源18经其顶侧与底侧18A与18_B发射辐射,如上述的实施例那样。箭头所示的辐射L在传感器主体内反射,如上述的实施例那样。如图所示,经窗或孔70H发射的辐射以这样一种方式在传感器主体内反射,以致于辐射源的顶侧与底侧的辐射用于检测。如图所示,传感器主体12较佳为包括辐射反射器D,其位置为使得通常从辐射源垂直(即,高于顶侧或低于底侧)发射的辐射被横向反射,以便分布与内反射更好和/或确保辐射导引至指示剂薄膜外部区域。虽然图25 (A)-25 (B)所示的实施例包括指示剂与控制通道,但本领域的普通技术人员基于所公开的内容应了解,在其它的实施例中可排除控制通道,和/或在适合之处,这里所述的关于其它实施例的任何其它修改也可应用于图25 (A)-25 (C)所示的实施例。图沈表示传感器10的另一个实施例,其具有实质上光学透明的电路基片70。实质上光学透明的电路基片70使辐射通过基片70。其利于激发辐射与放射辐射在传感器主体12全部的渗透,造成更多辐射被感光元件接收。结果,可增加信号检测区域(例如,由在感光元件的顶侧与底侧的信号捕获)以实质上增强了对信号的检测。较佳为,辐射源18以这样的方式安装在基片70上,以致于辐射也从辐射源底侧发射。因此,图沈所示的实施例通常类似图23 (A)-23 (C)所示,但除了辐射从辐射源18的顶侧与底侧发射之外。或者,辐射应可仅从顶侧或底侧之一传送。辐射源较佳为包括光学地耦合(例如,使用光学环氧基)至光学基片70的LED,以导引激发光至基片中。光学透明基片70可由,例如,蓝宝石,石英,碳化硅,CaN或其它可以金属化图形的无机基片材料制造。其它的有机聚合物也可用于制造基片。可支持印刷或蚀刻电路制造的任何实质上透明的材料可应用于此。也可使用基于所公开的内容对本领域的普通技术人员为明显的其它适合材料。在一个示范性但非限制性构造中,基片70以石英制造。许多销售者提供石英基片,因为此基片在电信工业的其它无关的应用中为有利的,如在高频应用。例如,MIC Technologies (Aerof lex 公司,明尼苏达州,North Andover,Turnpike 大街 797) 提供石英基片制造作为电路基片之选择。实质上光学透明的基片然后可以用本领域的普通技术人员公知的方法,使用标准混成电路连接法(例如,导电性环氧基,焊料,线焊,非导电性环氧基等)来连接零件。一旦连接所有的零件,则例如,全部电路可浸于单体溶液中,然后可使用聚合物反应,例如,引发热或辐射,使得可形成电路,该电路被封装,封闭,及密封在导波聚合物(例如,PMMA)内(即,如上所述)。如上所述,图沈所示的实施例较佳为包括可检测在顶侧与底侧导引的辐射的感光元件。一般而言,感光元件,仅可检测在顶侧导引的辐射。在较佳构造中,感光元件包括光阻器。光阻器通常用简单的化学淀积方法制成,该方法将感光化学材料置于电路内。在光子接触淀积材料的表面时,发生电阻的变化,而且电路因此作为入射光强度的函数改变其电阻。一般而言,光阻材料淀积在如陶瓷之类的不透明基片上,使产生的光阻装置仅在一个方向为敏感的,因为光无法从底侧(即,相邻基片之侧)穿透不透明的基片。在光阻检测器的常见应用中,此“单方向”构造为适合的。然而,在本发明的较佳实施例中,激发与放射光分散在整个装置中。在本发明的较佳实施例中,两个显著的目标为使来自激发源的,在指示剂薄膜入射的光量最大,及使被感光元件捕获的萤光信号光量最大。对于这些目标,不透明电路基片(如用陶瓷,聚酸亚胺,玻璃纤维等制造的)可阻止大量的光传播至整个装置,因此,可降低传感器的整体敏感度。另一方面,图26所示的实施例可大为促进这两个目标的实现。通过将检测器材料淀积在实质上透明基片上,基片可作为较大面积的捕获导波器,并因而可输送,例如,附加的萤光信号光至感光元件。此外,通过将辐射源,例如,LED,安装在实质上透明基片上,实质上从激发源放射的所有辐射,例如, 光,可更均勻地传播至整个装置,因此,更均勻地及以更高的电力效率导引至指示剂薄膜。当然,图沈所示的实施例不限于感光检测器,在适合之处也可使用其它的感光元件,例如,如发光二极管,晶体管,复合晶体管等。在感光元件的两侧接收辐射时,高通滤光器34A与34B较佳地提供在感光元件 20-1与20-2之上及之下,例如,以分离激发辐射与萤光放射辐射。如果需要,可使用高通滤光器对感光元件调整光谱选择性。高通滤光器可通过,例如,涂敷滤光环氧基,如CVI Laser 公司的产品,及其它如以上关于图1所示实施例所述的产品,而安装于感光元件的两侧。除了使用滤光器34A与34B外,感光元件还可使用改造,例如,调整,而对特定波长敏感的材料制造。因此,可调整感光元件以实质上感测,例如,萤光放射的辐射而非辐射源激发的辐射。关于此点,感光检测器可化学地调整,以实质上在特定波长上为敏感的,因而降低或排除了对分离滤光元件的需要。适合的材料为商业易得的。公知的装置为,例如, Silonex Inc. (2150ffard Ave ,Montreal ,Quebec,加拿大,H4M 1T7)所制造及销售的,其中根据硫化镉基料(与其它)内不同的搀杂物比例及混合比例进行调整,并使尖峰波长敏感度最佳化。虽然参考图沈的实施例而讨论,但这里所述“可调整的”感光元件也可有利地加入本发明的其它实施例所述的任何实施例中。图26所示的实施例较佳为如上述的实施例而操作,为了避免不必要的重复,关于此实施例,并未表示和/或未叙述图26所示的传感器元件,例如,电子元件等。注意,在适合之处,本领域的普通技术人员可以用这里所述的任何其它实施例的相同方式修改图26所示的实施例。图27(A)-27(C)表示传感器1000的其它实施例,其具有内部加热器。在所述的实例中,传感器1000不需包括完全嵌于导波器、胶囊等内部的电路基片。然而,试图使此实施例的加热器可用于在此所述的任何实施例,或任何其它适合的传感器外壳。在所述的实例中,传感器1000具有片状构造,其具有大致长方形结构,引线1110由此延伸。引线可用于提供电力、信号等进出传感器。图27(A)_27(C)所示的实施例加入许多独特的设计特征,例如,其在湿气中的分析物检测与测量具有特定的优点。在较佳但非限制性的实例中,所述的装置作为氧传感器。 示范性的应用包括但不限于人类或动物呼吸时的氧的吸气。吸气测量-例如,传感器在吸入时暴露于冷/干空气,而在呼出时暴露于温/湿呼气之处。所述的设计可以,例如,在所有温度与水蒸气(湿度)变化的情况下正确地测量氧含量。虽然所述的实例较佳为用于氧的测量,但可使用其它的实例以测量其它的分析物-例如,可使用对二氧化碳,其它的气体,或许多气体的测量敏感的薄膜。总之,在所述的实例中,传感器1000包括盖1200,其具有上壁1210与开口 1220及 4个相连的侧壁1230。盖的底部设计为符合基片700的顶部,以形成盒状封闭。如图所示, 基片700具有感光元件20-1与20-2,辐射源18与其它的电子元件(未示出),及安装于其上的加热元件1400。在所述的实施例中,加热元件1400延伸超越感光元件20-1与20_2。 加热元件具有切开开口 1410,以使来自源18的辐射通过至薄膜14-1与14-2,薄膜14_1与 14-2位于加热元件上较佳。如图所示,薄膜较佳为经盖1200的孔1220而暴露。加热元件、 传感器薄膜与基片之间的全部区域R较佳为含导波材料,如上述的实施例那样。加热元件1400可以用任何适合的材料(例如,热导电性材料),例如,如铜合金,其它的热导电金属等制造。加热元件1400可用任何具有适合热性质的材料制造。为了将加热元件1400加热,基片700较佳为其上包括多个将热转移至加热元件的热产生器710(例如,加热电阻或半导体电阻)。在所述的但非限制性的具体实例中,使用4个加热电阻710。热产生器710较佳为位于相邻(例如,接触或充分接近)加热元件1400,以将热转移至其上。例如,加热元件1400用于以下两个目的1)保持信号与参考薄膜14-1与14_2处于实质上相同的热平衡;和/或2)将薄膜14-1与14-2加热至高于被测量湿气的露点(dew point)温度。在人体呼吸监测的实例中,例如,此温度值可稍高于约37°C。在一个示范性构造中,本发明利用热电阻710与回馈热阻体711而使用约40°C的热设定点(thermal set point)。在一个示范性构造中,热电阻710包括4个平行的390欧姆1/2W表面安装电阻。 在替代实施例中,可使用其它数个热产生器710和/或其它类型的热产生器710(如筛电阻,厚膜电阻,加热带等)。此外,替代实施例可使用其它形式的温度控制。值得注意的是温度控制的方法使用一个或更多个热阻体,热电偶,RTD,和/或其它用于温度控制的固态温度测量装置。然而,较佳的实施例使用成本较低的热阻体711。将薄膜表面加热的一个值得注意的优点为传感器表面的水份冷凝的防止。在形成冷凝层时,冷凝层可造成传感器表面的光学散射及像差,其在使用,例如,以萤光辐度模式为主的测量时,实质上会降低测量的正确性。冷凝层也降低传感器的气态反应时间,因为改变了传感器表面的物质扩散性质。应注意,因为测量实质上不受幅度变化影响,因此通过测量萤光色素的时间延迟或相性质可提高传感器的正确性。然而,测量的时间延迟或相模式不减缓任何反应时间降级,因为其为基于传感器表面的扩散。本实施例也可提供其它值得注意的优点,在用于,例如,作为氧传感器及其它应用的较佳但非限制实施例中特别有益。特别地,本实施例(及在此所述的其它实施例)的重要优点为传感器相当快速地反应如氧与ω2的严格呼吸气体中阶跃变化的能力。使用本实施例可得100毫秒或更快(有些快达30-40毫秒)的反应速率,造成呼吸气体含量几乎即时测定(这里反应时间定义为在所讨论的气体分压阶跃变化的应用时,传感器由10%改变至90%稳定状态输出所需的时间)。例如,本实施例通过吸气与呼气的呼吸气体来观察及测量实质上即时波形与氧含量的能力具有重要的医学用途。具有此快速反应特征的呼吸气体传感器可,例如,结合流动或体积测量装置来测定呼吸气体的吸取与释放,实现严格医学参数的测量,如新陈代谢速率(卡路里消耗),基于Fick原理的间接卡路里输出(最先在1870年在Adolph Fick的理论中叙述),肺功能,及中风征兆。许多这些医学诊断测定需要呼气结束时的呼吸气体分压测量(称为潮未P02或潮末pC02含量)。因为正常呼气与下一呼吸的吸气间的时间量相当短,非常快速反应传感器对于测定尚未被来自以后下一呼吸的新鲜空气的吸气影响的潮末含量为重要的。除了使传感器具有对气体浓度变化为够快的反应时间,传感器也应具有同样快速地补偿吸气与呼气气体中温度与湿度程度变化的能力。在较佳实施例中,已如所述的那样,通过使用参考通道而具有上述能力。本发明的优点还在于,因其造成非侵入性地实行医学诊断步骤,而且无需目前本技术领域用于进行类似测定的昂贵分析仪器。图^(A)和^(B)表示在图27(A)_27(C)所示的实施例中,在部分气体压力下阶跃变化的实际测试数据。具体地说,图^(A)和观出)表示实际反应时间的确定,其中以本实施例的结构作为氧传感器的例子(但为非限定性的)。图观(A)表示阶跃变化为从环境空气(大约21%的氧气)到100%氧气时,对传感器反应时间的测量结果,(从分析物的较低浓度到较高浓度,传感器的反应时间通常称为“恢复时间”),其中,100%的氧气由一定压力的气缸供给。图^(B)表示阶跃变化为从100%的氮气到环境空气时,对传感器反应时间的测量结果,其中,100%的氮气由一定压力的气缸供给。在所示的但非限制性的实例中,恢复和反应时间大约分别为41. 2和32. 1毫秒(如图所示),用Tektronix Model TDS 两通道示波器测定。恢复和反应时间较佳为大约100毫秒以下,更佳为80毫秒以下,甚至更佳为60毫秒以下,在较佳实施例中的范围为40-80毫秒。在操作时,传感器1000如上述二通道实施例而操作,然而,在此实施例中,热产生器710给予加热元件1400热量,其依序作为散布器,将热量散布到传感器内及薄膜14-1与 14-2 内。盖1200较佳为由绝缘材料形成,例如,如塑胶之类的弹性物。以此方式,盖1200 可帮助保存热量及维持薄膜的温度。结果,加热器不需辛苦地作业或消耗太多电力而操作。 在所述的实施例中,薄膜14-1与14-2在如图27(A)所示的组装时,也较佳为置于孔1220 的上表面下的凹处,使得薄模不易接受外部因素或被损坏。盖1200可由,例如,注模或其它适合的方法制造。盖1200为选用的,而且可在一些情况下去除。然而,最好使用盖1200,因为它可有利地为加热元件1400提供绝缘性能,能够使用较小的加热元件,以及提高向感测薄膜和参考薄膜进行热分布的均勻性,特别是在含分析物的介质中的快速热变化和/或高流速的条件下。因此,盖较佳为安装在传感器上以有助于提高加热元件1400的性能和/或在薄膜表面导引气体。如图所示,传感器1000较佳为使用两个感光元件20-1与20-2。较佳为,感光元件 20-1检测来自指示剂通道薄膜14-1的氧信号萤光,而感光元件20-2检测来自参考通道薄膜14-2的信号。较佳为,参考通道薄膜14-2实质上不对氧敏感,但是对温度的敏感程度实质上与信号通道薄膜14-1相同。因为温度与水蒸气变化,因此,在该装置用于检测人类或其它动物的呼吸(即,吸气/呼气)的情况下,这是值得注意的特征。在此实施例中,指示剂与参考通道的温度平衡可由加热元件1400来维持。在所述的实例中,薄膜14-1与14-2各较佳为以实质上等厚的硼硅酸盐玻璃基片制造。因此,较佳为,薄膜14-1与14-2具有类似的热性质。感测气态或溶解氧或其它气体的较佳基质称为溶胶。气体或ormosil的无机聚合物载体基质,其中固定或捕获指示剂分子。这些材料与技术为公知的(例如,参见=McDonagh等人的“Tailoring of Sol-Gel Films for Optical Sensing of Oxygen in Gas and Aqueous Phase",Analytical Chemistrv,第 70 卷,第 1 期,1998 年 1 月 1 日,第 45-50 页;Lev. 0.的 “Organically Modified Sol-Gel Sensors”,Analytical Chemistry,第 67 卷,第 1 期,1995 年 1 月 1 日;MacCraith 等人的 "Development of a LED-based Fibre Optic Oxygen Sensor Using a SoI-GeI-Derived Coaiing”,SPIE,第 2293 卷,第 110-120 页(1994) ;Shahriari 等人的“Ormosil Thin Films for Chemical Sensing Platforms”。SPIE,第 3105 卷,第 50-51 页(1997) ;Krihak 等人的"Fiber Optic Oxygen Sensors Based on the Sol-Gel Coating Technique,,,SPIE,第观36卷,第105-115页(1996),其全部揭示都在此并入作为参考)。这些类型的薄膜可以用本技术领域公知的许多工艺而运用于适当的基片,如浸,刷,挤,丝织,垫印,蒸发淀积,喷墨印刷等。在适合之处,这些类型的薄膜也可有利地应用于这里所述的本发明的任何其它实施例。
37
较佳为,各薄膜因此由涂敷薄膜凝胶基质涂层的玻璃(例如,硼硅酸盐玻璃)基片形成,其在各薄膜中利用相同的基本化学。较佳为,参考薄膜14-2进一步处理以阻止氧扩散。在感测O2的实施例的实例中,较佳的指示剂分子包括,例如,三(4,7-二苯基-1,10-菲咯啉)钌(II)高氯酸盐分子,其讨论于美国专利5,517,313的第1栏,第17行,所公开的内容在此全部并入作为参考。试图使薄膜可包括许多上述本发明其它实施例中的其它材料。辐射源较佳为包括LED (例如,蓝色),其安装要使得光输出经区域R内的导波材料导波至指示剂和参考通道薄膜14-1与14-2。在示范性的实施例中,导波材料为Epoxy Technologies 301 ,虽然也可使用其它适合的材料,但这种材料具有良好的光学特性。较佳为,来自薄膜的萤光放射类似地导波至安装在基片700上的感光元件20-1与20-2。较佳为,对各感光元件提供光学滤光器34。如上所述,在示范性的实施例中,各光学滤光器34 可包括围绕感光元件的滤光环氧基,如CVI Laser公司的滤光树脂,例如,600nm阻断。如以上所讨论的那样,可使用其它适合的滤光器。光学滤光器34较佳地分离来自薄膜的萤光放射与辐射源18(例如,蓝色LED)的激发能量。基于以上说明应了解,最佳为,全部光学路径 (例如,区域R的导波材料及薄膜14-1与14-2之间等)折射率相匹配,使得发生最大光捕获与最小内反射损失。图27 (A)与27⑶表示激发源正中地位于感光元件20_1与20_2及指示剂与参考薄膜14-1与14-2之间,激发源18可另行安置,只要能对指示剂与参考薄膜14-1与14_2 提供适合的激发即可。如同在此所述的其它实施例,试图以许多方式修改图27(A)与27(B)所示的实施例。例如,加热元件可提供于未使用控制通道的实施例中,此外,如图所示,内加热器可应用于许多传感器构造内,以降低传感器周边的冷凝,特别是降低感测薄膜等周边的冷凝。此外,其它的实施例可包括其它公知的加热方法。例如,加热线圈,加热线等可分布于传感器内,较佳为至少部分邻近指示剂薄膜的位置。如上所述,虽然已叙述了本发明各方面的具体实施例,但本领域的普通技术人员对这些具体实施例作许多修改与变化。例如,上述实施例的各方面可应用或与上述其它实施例交换,其基于所公开的内容对本领域的普通技术人员来说为明显的;例如,可以使各实施例具有上述(或公知)的任何之一种或更多种指示剂分子,而且可改造以使用这里所揭示(或公知)的任何控制参考方法。至于另一个实例,应了解,本领域的普通技术人员可基于所公开的内容进行电子方面的各种修改等,例如,如各种元件可以做到IC晶片上,或可使用其它公知的修改或技术,同时维持本发明的一个或多个方面。此外,传感器通过外部装置来充电,和/或传感器与外部装置联络,外部装置可视情况而采用各种形式-例如,外部装置可包括安装于腕部的封闭物(例如,手表之类),其可与邻近病人腕部植入的传感器结合;安装于皮带或安装于裤子的封闭物(例如,类似常见的“寻呼机”),其可与邻近病人臀部或腰部植入的传感器结合;具有内部电子电路的毯 (例如,类似电毯),个人可躺在其上,其具有邻近毯的植入装置,例如,易于在病人睡觉时得到读数;可接近或携至临近传感器而安置的任何结构和/或携至邻近传感器的结构;或许多其它的结构与设计。此外,如上所述,许多实施例的传感器可用于许多应用与环境中-例如,在具有一种或更多种可感测分析物的任何环境中,例如,各种实施例可用于各种介质内——其包括气体(例如,空气和/或任何其它气体),液体,固体,其组件等。此外,这里所述的各种实施例容易用于各种应用及各种工业,例如,如医学工业(例如,在传感器插入,例如,病人或动物体内);食品工业(例如,如传感器插入液体(例如饮料,如酒、啤酒之类的酒精饮料,及非酒精饮料;以及各种其它的液体);乳霜;固体;等等);消费者产品工业(例如,这种感测能力适用之处);及上述及基于所公开的内容为明显的各种其它工业。
因此,应了解,本领域的普通技术人员可在以下权利要求的范围内进行各种应用、 修改和变化。
权利要求
1.一种基于光学的传感器,用于在介质中测定分析物的存在或浓度,所述的传感器包含;传感器主体,其具有外表面;基质层,设置在所述传感器主体的外表面上,所述分析物可以透过所述基质层,所述基质层包括荧光指示剂分子,其响应于辐射产生荧光,所述荧光的程度是所述指示剂分子所暴露其中的分析物的浓度的函数,所述基质层允许与所述指示剂分子交互的辐射进入其中;辐射源,其发射使得所述指示剂分子产生荧光的辐射,所述辐射源设置为使得发出的辐射由此从所述传感器主体穿入所述基质层,并使得所述指示剂分子发出荧光;以及感光元件,其感应所述指示剂分子发射的荧光并设置为探测这样发射的荧光,所述感光元件配置为提供响应信号,所述信号表示这样探测到的荧光的量以及因此表示所述分析物的存在或是浓度。
2.根据权利要求1所述的传感器,其中所述传感器具有长椭圆形、圆形,其具有约500 微米至约0. 5英寸的总长,以及约300微米至约0. 3英寸的直径,由此使得所述传感器可以设置在活人的体内而不会导致过量的或是难以忍受程度的不适。
3.一种基于光学的传感器,用于在介质中测定分析物的存在或浓度,所述的传感器包含;透光传感器主体,其用作波导,所述传感器主体具有外表面;荧光指示剂分子,设置在所述传感器主体的外表面,所述指示剂分子响应于辐射发射荧光,所述荧光的程度是所述指示剂分子暴露于其中的分析物的浓度的函数;辐射源,其发射辐射,所述辐射使得所述指示剂分子发出荧光,所述辐射源设置为使得由此发射的辐射照射到所述指示剂分子;以及感光元件,其设置为探测所述指示剂分子发射的荧光,所述感光元件配置为提供响应信号,所述信号表示这样探测到的荧光的量以及因此表示所述分析物的存在或是浓度;所述传感器还包括嵌入在所述传感器主体中的电源,所述电源为所述辐射源供电,以使得所述辐射源发射辐射。
4.根据权利要求3所述的传感器,还包括嵌在所述传感器主体内的传送器,所述传送器发射表示所述感光元件探测到的荧光的程度的信号。
5.根据权利要求4所述的传感器,其中所述嵌入的电源给所述辐射源和所述传送器供
6.根据权利要求3所述的传感器,其中所述电源包括感应器,通过将所述传感器暴露于所述传感器主体之外产生的电磁辐射场中,由此使得所述辐射源发射辐射。
7.一种基于光学的传感器,用于在介质中测定分析物的存在或浓度,所述的传感器包含;透光传感器主体,其用作波导,所述传感器主体具有外表面;荧光指示剂分子,设置在所述传感器主体的外表面,所述指示剂分子响应于辐射发射荧光,所述荧光的程度是所述指示剂分子暴露于其中的分析物的浓度的函数;辐射源,其发射辐射,所述辐射使得所述指示剂分子发射荧光,所述辐射源设置为使得由此发射的辐射照射到所述指示剂分子;以及感光元件,其设置为探测所述指示剂分子发射的荧光;所述传感器还包括嵌入在所述传感器主体中的传送器,所述传送器发射表示所述感光元件探测到的荧光程度以及因此表示所述分析物存在或是浓度的信号。
8.根据权利要求7所述的传感器,其中所述传送器包括感应器,所述感应器产生位于所述传感器主体外部的信号拾取设备可以探测到的电磁辐射场。
9.一种基于光学的传感器,用于在介质中测定分析物的存在或浓度,所述传感器包含;透光传感器主体,其用作波导,所述传感器主体具有外表面;辐射源,其发射辐射,所述辐射源嵌入在所述传感器主体内,使得所述源发射的辐射在所述传感器主体内传播;吸收辐射的指示剂分子,设置在所述传感器主体的外表面,所述指示剂分子吸收所述辐射源发射的辐射,所述吸收的程度随着所述指示剂分子所暴露于其中的分析物的浓度改变;以及感光元件,其响应于所述辐射源发射的辐射,所述感光元件嵌在所述传感器主体中;其中,所述源发射的辐射穿过所述传感器主体,穿过所述传感器主体的至少部分辐射在穿过所述传感器主体之前在所述传感器主体中内反射;其中所述指示剂分子吸收所述源发射的、穿过所述传感器主体的至少一部分辐射,以及传回所述传感器主体中的至少一部分非吸收辐射;以及其中传回到所述传感器主体中的至少部分未吸收辐射被所述感光元件探测到,所述感光元件探测到的至少部分未吸收辐射在照射到所述感光元件之前在所述传感器主体中内反射。
10.根据权利要求9所述的传感器,其中所述指示剂分子设置在涂敷在所述传感器主体外表面的基质层中,所述分析物可以透过所述基质层,所述基质层允许所述辐射源发射的辐射进入其中。
11.根据权利要求9所述的传感器,还包括滤光器,其允许所述指示剂分子吸收的波长的、所述源发射的辐射照射到所述感光元件,并且其基本上防止不是所述指示剂分子吸收的波长的、所述源发射的辐射照射到所述感光元件上。
12.根据权利要求9所述的传感器,还包括电源,其为所述辐射源提供能量,以使得所述辐射源发射辐射,所述电源嵌在所述传感器主体中。
13.根据权利要求12所述的传感器,其中所述电源包括感应器,且通过将传感器暴露于在所述传感器主体外部产生的电磁辐射场,从而使得所述辐射源发射辐射。
14.根据权利要求12所述的传感器,还包括嵌在所述传感器主体内的传送器,所述传送器从所述传感器主体内向所述传感器主体外部发射表示所述分析物浓度的信号。
15.根据权利要求14所述的传感器,其中所述嵌入的电源给所述辐射源和所述传送器提供能量。
16.根据权利要求9所述的传感器,还包括嵌在所述传感器主体内的传送器,所述传送器从所述传感器主体内向所述传感器主体外部发射表示该分析物浓度的信号。
17.根据权利要求16所述的传感器,其中所述传送器包括感应器,其产生位于所述传感器主体外部的信号拾取设备可以探测到的电磁辐射场。
18.根据权利要求9所述的传感器,其中所述传感器具有长椭圆形、圆形,由此使得所述传感器可以设置在活人的体内。
19.根据权利要求18所述的传感器,其中,所述传感器具有约500微米至约0.5英寸的总长,以及约300微米至约0. 3英寸的直径。
20.根据权利要求9所述的传感器,其中,所述指示剂分子的吸收程度作为葡萄糖的浓度的函数而改变。
21.根据权利要求9所述的传感器,还包括设置在所述指示剂分子上的组织/传感器界面层,所述分析物可以透过所述组织/传感器界面层。
22.根据权利要求21所述的传感器,其中所述组织/传感器界面层延迟伤疤组织或是纤维变性封包的形成。
23.根据权利要求21所述的传感器,其中所述的组织/传感器界面层包括一个次层,所述的次层促进其中的组织向内生长。
24.根据权利要求23所述的传感器,其中,所述组织向内生长包含血液系统形成。
25.根据权利要求21所述的传感器,其中,所述组织/传感器界面层包括一个分子筛次层,所述分子筛次层实现分子量阻断功能。
26.根据权利要求21所述的传感器,其中,所述组织/传感器界面层可选择性地渗透, 以使所述分析物接触所述的指示剂分子,同时防止细胞或大分子接触所述指示剂分子。
27.根据权利要求21所述的传感器,其中,所述组织/传感器界面层为生物相容性的。
28.根据权利要求9所述的传感器,还包括反射增强层,所述反射增强层设置在所述传感器主体的一部分外表面上,以增强所述源发射的辐射在所述传感器主体内的反射。
29.根据权利要求9所述的传感器,其中,所述辐射源包括发光二极管。
30.根据权利要求9所述的传感器,其中,所述辐射源包括辐射发光光源。
31.根据权利要求9所述的传感器,其中,所述指示剂分子通过短暂激发,与所述辐射源发射的辐射交互作用。
32.根据权利要求9所述的传感器,其中,所述指示剂分子通过表面等离子体激元共振型激发与所述辐射源发射的辐射交互作用。
33.一种基于光学的传感器,用于在介质中测定分析物的存在或浓度,所述传感器包含;传感器主体,其具有外表面;基质层,设置在所述传感器主体的外表面上,所述分析物可以透过所述基质层,所述基质层包括吸收辐射的指示剂分子,所述吸收的程度是指示剂分子暴露其中的分析物的浓度的函数,所述基质层允许所述指示剂分子吸收的辐射进入其中;辐射源,其发射由所述指示剂分子吸收的辐射,所述辐射源被设置为使得由此发出的辐射进入所述基质层,并被所述指示剂分子吸收;以及感光元件,其探测所述辐射源发出的辐射,并设置为探测所述辐射源发出的并且没有被所述指示剂分子吸收的辐射,所述感光元件配置为提供响应信号,所述信号表示这样探测到的未吸收辐射的量以及因此表示所述分析物的存在或是浓度。
34.根据权利要求33所述的传感器,其中所述传感器具有长椭圆形、圆形,其具有约 500微米至约0. 5英寸的总长,以及约300微米至约0. 3英寸的直径,由此使得所述传感器可以设置在活人的体内而不会导致过量的或是难以忍受程度的不适。
35.一种基于光学的传感器,用于在介质中测定分析物的存在或浓度,所述传感器包含;传感器主体,其具有外表面;吸收辐射的指示剂分子,设置在所述传感器主体的外表面,所述吸收的程度是所述指示剂分子暴露于其中的分析物的浓度的函数;辐射源,其发射所述指示剂分子吸收的辐射,所述辐射源设置为使得由此发射的辐射被所述指示剂分子吸收;以及感光元件,其探测所述辐射源发射的辐射,所述感光元件配置为探测所述辐射源发射的而未被所述指示剂分子吸收的辐射,所述感光元件配置为提供响应信号,所述信号表示这样探测到的未吸收辐射的量以及因此表示所述分析物的存在或是浓度;所述传感器还包括嵌入在所述传感器主体中的电源,所述电源为所述辐射源供电,以使得所述辐射源发射辐射。
36.根据权利要求35所述的传感器,还包括嵌在所述传感器主体内的传送器,所述传送器发射表示所述感光元件探测到的未吸收辐射的程度的信号。
37.根据权利要求36所述的传感器,其中所述嵌入的电源给所述辐射源和所述传送器提供能量。
38.根据权利要求35所述的传感器,其中所述电源包括感应器,且通过将所述传感器暴露于在所述传感器主体外部产生的电磁辐射场,从而使得所述辐射源发射辐射。
39.一种基于光学的传感器,用于在介质中测定分析物的存在或浓度,所述传感器包含;传感器主体,其具有外表面;吸收辐射的指示剂分子,设置在所述传感器主体的外表面,所述吸收的程度是指示剂分子暴露其中的分析物的浓度的函数;辐射源,其发射所述指示剂分子吸收的辐射,所述辐射源设置为使得由此发射的辐射被所述指示剂分子吸收;以及感光元件,其探测所述辐射源发射的辐射,所述感光元件配置为探测所述辐射源发射的而未被所述指示剂分子吸收的辐射;所述传感器还包括嵌在所述传感器主体内的传送器,所述传送器发射表示所述感光元件探测到的辐射程度以及因此表示所述分析物的存在或是浓度的信号。
40.根据权利要求39所述的传感器,其中所述传送器包括感应器,其产生设置在所述传感器主体外部的信号拾取设备可以探测到的电磁辐射场。
41.一种基于光学的传感器,用于在介质中测定多个分析物的存在或浓度,所述传感器包含;透光传感器主体,其用作波导,所述传感器主体具有外表面;设置在所述传感器主体外表面的第一与第二指示剂分子,所述第一指示剂分子具有响应于所述第一指示剂分子所暴露于其中的第一分析物的浓度变化的光学特性,并且所述第二指示剂分子具有响应于所述第二指示剂分子所暴露于其中的第二分析物的浓度变化的光学特性;发射与所述第一指示剂分子依照其响应于分析物的光学特性而交互作用的辐射的辐射源,以及发射与所述第二指示剂分子依照其响应于分析物的光学特性而交互作用的辐射的辐射源;所述一个或多个辐射源嵌入在所述传感器主体内,使得由此发射的辐射在所述传感器主体内传播;以及嵌入在所述传感器主体内的第一和第二感光元件,所述第一感光元件提供响应信号, 表示所述第一指示剂分子及与其交互作用的辐射的交互作用程度、并因此表示所述第一分析物的存在或浓度,并且所述第二感光元件提供响应信号,表示所述第二指示剂分子及与其交互作用的辐射的交互作用程度、并因此表示所述第二分析物的存在或浓度。
42.根据权利要求41所述的传感器,其中响应于所述第一分析物浓度改变的第一指示剂分子的光学特征与响应于所述第二分析物浓度改变的第二指示剂分子的光学特征相同。
43.一种基于光学的传感器,用于在介质中测定分析物的存在或浓度,所述传感器包含;透光传感器主体,其用作波导,所述传感器主体具有外表面;设置在所述传感器主体外表面的第一与第二指示剂分子,所述第一指示剂分子具有响应于所述分析物的浓度变化的第一光学特性,并且所述第二指示剂分子具有响应于所述分析物的浓度变化的第二光学特性,所述第一和第二光学特性彼此不同;发射与所述第一指示剂分子依照其第一响应于分析物的光学特性而交互作用的辐射的辐射源,以及发射与所述第二指示剂分子依照其第二响应于分析物的光学特性而交互作用的辐射的辐射源;所述一个或多个辐射源嵌入在所述传感器主体内,使得由此发射的辐射在所述传感器主体内传播;以及嵌入在所述传感器主体内的第一和第二感光元件,所述第一感光元件提供响应信号, 表示所述第一指示剂分子及与其交互作用的辐射的交互作用程度,并因此表示所述分析物的存在或浓度,且所述第二感光元件提供响应信号,表示所述第二指示剂分子及与其交互作用的辐射的交互作用程度,并因此表示所述分析物的存在或浓度;由此可以通过使用多个转换方式的单个传感器来测定所述分析物的存在或浓度。
44.一种基于光学的传感器,用于在介质中测定分析物的存在或浓度,所述介质具有第一折射率,它作为在所述介质中所述分析物浓度的函数而改变,所述传感器包括透光传感器主体,其作为波导,所述的传感器主体具有第二折射率和外表面; 发射辐射的辐射源,所述辐射源嵌于所述传感器主体内,使得所述源发射的辐射在所述传感器主体内传播;以及响应于所述辐射源发射的辐射的感光元件,所述感光元件嵌于所述传感器主体内; 其中,所述源发射的一定量的辐射穿过所述传感器主体,穿过传感器主体的辐射量作为所述第一与第二折射率之比例的函数、并因此作为在所述介质中所述分析物的浓度的函数而改变,至少部分穿过所述传感器主体的辐射在穿过所述传感器主体之前,在所述传感器主体中被内反射;以及其中,未穿过所述传感器主体的辐射被所述感光元件检测到,被所述感光元件检测到的至少部分未离开的辐射在照射到所述感光元件之前,在所述传感器主体中被内反射。
45.根据权利要求44所述的传感器,还包括电源,其为所述辐射源提供能量,以使得所述辐射源发射辐射,所述电源嵌在所述传感器主体中。
46.根据权利要求45所述的传感器,其中所述电源包括感应器,且通过将传感器暴露于在所述传感器主体外部产生的电磁辐射场,从而使得所述辐射源发射辐射。
47.根据权利要求44所述的传感器,还包括嵌在所述传感器主体内的传送器,所述传送器从所述传感器主体内向所述传感器主体外部发射表示所述分析物浓度的信号。
48.根据权利要求47所述的传感器,其中所述传送器包括感应器,其产生所述传感器主体之外设置的信号拾取器件可以探测到的电磁辐射场。
49.根据权利要求45所述的传感器,还包括嵌在所述传感器主体内的传送器,所述传送器从所述传感器主体内向所述传感器外部发射表示分析物浓度的信号。
50.根据权利要求49所述的传感器,其中所述嵌入的电源给所述辐射源和所述传送器提供能量。
51.根据权利要求44所述的传感器,其中所述传感器具有长椭圆形、圆形,由此使得所述传感器可以设置在活人的体内。
52.根据权利要求51所述的传感器,其中,所述传感器具有约500微米至约0.5英寸的总长,以及约300微米至约0. 3英寸的直径。
53.根据权利要求44所述的传感器,还包括设置在所述传感器主体外表面上的组织/ 传感器界面层,所述分析物可以透过所述组织/传感器界面层。
54.根据权利要求53所述的传感器,其中所述组织/传感器界面层延迟伤疤组织或是纤维变性封包的形成。
55.根据权利要求53所述的传感器,其中所述组织/传感器界面层包括一个次层,所述次层促进其中的组织向内生长。
56.根据权利要求55所述的传感器,其中所述组织向内生长包含血液系统形成。
57.根据权利要求53所述的传感器,其中所述组织/传感器界面层包括一个分子筛次层,所述的分子筛次层实现分子量阻断功能。
58.根据权利要求53所述的传感器,其中,所述组织/传感器界面层可选择性地渗透, 以使含有所述分析物的介质接触所述外表面,同时防止细胞或大分子接触所述外表面。
59.根据权利要求53所述的传感器,其中,所述组织/传感器界面层为生物相容性的。
60.根据权利要求44所述的传感器,还包括一个反射增强层,所述反射增强层设置在所述传感器主体的一部分外表面上,以增强所述源发射的辐射在所述传感器主体内的反射。
61.根据权利要求44所述的传感器,其中,所述辐射源包括发光二极管。
62.根据权利要求44所述的传感器,其中,所述辐射源包括辐射发光光源。
63.一种测定介质中分析物的存在或浓度的方法,所述方法包括下面的步骤;在所述介质中设置传感器,所述传感器包括透光传感器主体,其用作波导,所述传感器主体还具有都嵌入其中的辐射源和感光元件,以及设置在其外表面上的指示剂分子,所述指示剂分子响应于所述源发射的辐射而发出荧光,且所述荧光的程度随着所述分析物的浓度或存在而变化;使得所述源发射辐射并内部地照射所述传感器主体,所述源发射的辐射使得所述指示剂分子发出荧光,并且所述指示剂分子发出的荧光进入所述传感器主体中;以所述感光元件探测所述指示剂分子发射的并进入到的所述传感器主体内的荧光;以及提供响应信号,表示所述感光元件探测到的荧光的程度,以及因此表示所述介质中分析物的存在或是浓度。
64.根据权利要求63所述的方法,还包括发射表示所述介质内分析物浓度或存在的信号。
65.根据权利要求63所述的方法,还包括通过所述传感器外部的装置使得所述辐射源发射辐射。
66.一种测定介质中分析物的存在或浓度的方法,所述方法包括下面的步骤;在所述介质中设置传感器,所述传感器包括传感器主体,所述传感器主体具有都嵌入其中的发射辐射的源和感光元件,以及设置在其外表面上的指示剂分子,所述指示剂分子吸收至少一部分所述源发射的并传播通过所述传感器主体的辐射,以及至少部分所述源发射的、没有被吸收并被反射回所述传感器主体内的辐射,所述吸收的程度随着分析物的浓度或存在而改变;使得所述源发射辐射并内部地照射所述传感器主体,至少部分所述源发射的辐射传播通过所述传感器主体,并被所述指示剂分子吸收或是被反射回所述传感器主体中;以所述感光元件探测所述源发射的、传播通过所述传感器主体并没有被所述指示剂分子吸收、并传播回所述传感器主体中的辐射;以及提供响应信号,表示所述感光元件探测到的辐射的程度,以及因此表示所述介质中分析物的存在或浓度。
67.根据权利要求66所述的方法,还包括发射表示所述介质内分析物的浓度或存在的信号。
68.根据权利要求66所述的方法,还包括通过所述传感器外部的装置使得所述辐射源发射辐射。
69.一种测定介质中分析物的存在或浓度的方法,所述方法包括下面的步骤;在所述介质中所关注的位置插入传感器,所述传感器包括基于荧光的传感器,其发射辐射,并具有响应于所述辐射而发射荧光的指示剂分子,所述指示剂分子的荧光程度随着所述分析物的浓度或存在而改变,所述传感器还包括透光传感器主体,其用作波导,所述传感器主体还具有源和感光元件,所述感光元件感测所述指示剂分子发射的荧光并且提供表示所述指示剂分子荧光程度的响应信号;使用完全位于所述介质之外的装置使得所述传感器发射辐射;以及使用完全位于所述介质之外的装置,探测表示所述指示剂分子的荧光程度的所述信号,并由此测定所述分析物的存在或浓度。
70.一种测定介质中分析物的存在或浓度的方法,所述方法包括下面的步骤在所述介质中所关注的位置插入传感器,所述传感器包括基于吸收的传感器,其发射辐射并具有吸收至少部分所述发射的辐射的指示剂分子,吸收程度随着所述分析物的浓度或存在而改变,所述传感器还包括感光元件,所述感光元件感测所述指示剂分子没有吸收的辐射并且提供表示所感测辐射的程度的响应信号;使用完全位于所述介质之外的装置使得所述传感器发射辐射;以及使用完全位于所述介质之外的装置探测表示所感测的辐射程度的信号,并由此确定所述分析物的存在或浓度。
71. 一种在具有第一折射率的介质中测定分析物的存在或浓度的方法,所述方法包括下面的步骤将传感器设置在所述介质中,所述传感器包括嵌入的照射源和嵌入的感光元件,并具有第二折射率;通过所述照明源内部地照射所述传感器,所述内部照射的程度作为所述第一和第二折射率的函数而改变;通过所述感光元件测量所述内部照射的程度;以及从所述内部照明的程度确定所述分析物的存在或浓度。
全文摘要
一种基于光学的传感器(10),用指示剂与参考通道来检测分析物的存在或量。传感器具有传感器主体(12),其具有辐射源(18)嵌于其中。此辐射源发射的辐射与指示剂薄膜(3)交互作用,指示剂分子(16)接近主体的表面。这些指示剂分子的至少一种光学特性随分析物浓度而改变。例如,荧光指示剂分子的荧光含量或吸光指示剂分子吸收的光的量随分析物浓度的函数而改变。此外,由辐射源发射的辐射也与接近主体表面的参考薄膜指示剂分子交互作用。这些指示剂分子发射或反射的辐射(例如,光)进入传感器主体且内反射。传感器主体内的感光元件产生指示剂通道及参考通道信号而提供分析物浓度的正确指示。较佳的实施例为完全自我容纳及调整和成形,以活体地用于人类。此实施例较佳为包括电源,例如,感应器,其使用外部装置将辐射源充电;及传送器,例如,感应器,以将表示分析物含量的信号传送至外部拾取装置。
文档编号G01N21/27GK102226766SQ20111008237
公开日2011年10月26日 申请日期1999年8月26日 优先权日1998年8月26日
发明者保罗·塞缪尔·策韦克, 杰弗里·C·莱绍, 格雷戈里·A·戴尔, 罗伯特·W·林恩, 阿瑟·E·科尔文 申请人:医药及科学传感器公司