专利名称:成像装置的制作方法
技术领域:
本发明涉及用于对对象的内部成像的成像装置、成像方法以及成像计算机程序。本发明还涉及用于影响(influencing)对象的内部的影响装置、影响方法以及影响计算机程序。
背景技术:
US 7,396,332B2公开了能够以多个固有共振频率振荡的单个换能器元件,该单个换能器元件可以用在包括导管主体的超声成像导管组合件中,该导管主体配置为插入及引导通过活体的血管系统。该超声成像导管组合件包括管腔(lumen)以及适于通过该管腔的可旋转成像芯(core),其中该成像芯包括柔性驱动轴。由于换能器元件能够以多个固有共振频率振荡,因此用户能够从一个频率切换至另一频率以改善景深或分辨率,而不必关断导管或成像芯。
发明内容
本发明的目的在于提供用于对对象的内部成像的成像装置、成像方法以及成像计算机程序,其中能够提高对象内部成像的质量。本发明的另一目的在于提供用于影响对象的内部的影响装置、影响方法以及影响计算机程序,该影响装置、影响方法以及影响计算机程序将使用提高的成像。在本发明的第一方面,提供一种用于对对象的内部成像的成像装置,其中所述成像装置包括-第一图像产生设备包括a)第一超声传感器,用于以第一频率感测所述对象的所述内部,其中产生指示所述对象的所述内部的第一超声感测信号;b)第二超声传感器,用于以第二频率感测所述对象的所述内部,其中产生指示所述对象的内部的第二超声感测信号;其中所述第一频率小于所述第二频率,以使得所述第一超声传感器适于以较小空间分辨率感测所述对象的内部,并且所述第二超声传感器适于以较大空间分辨率感测所述对象的内部;c)超声图像产生单元,用于根据所述第一超声感测信号产生具有较小空间分辨率的第一超声图像,并且根据所述第二超声感测信号产生具有较大空间分辨率的第二超声图像;-外壳,用于至少容纳所述第一超声传感器和所述第二超声传感器,所述外壳适于被导入所述对象中。由于第一超声传感器和第二超声传感器用于以不同频率感测对象的内部,其中来自这些超声传感器的超声感测信号用于产生第一超声图像和第二超声图像,因此可以以不同的空间分辨率同时感测对象的内部。而且,较大的频率相比较小的频率通常具有穿透对象的内部的较小深度。因此,可以同时产生以不同深度对对象的内部成像的至少两个图像。成像装置因此可以提供以不同空间分辨率并且以不同穿透深度同时对对象的内部成像的能力。这使得成像装置提高了对对象的内部成像的质量。外壳优选为导管或介入针。成像装置可以包括结合在外壳中的其他元件。例如,其他的超声传感器、例如,相控超声阵列、诸如电或光感测元件的其它感测元件、用于执行活检操作的活检元件、诸如消融元件的能量施加元件,该消融元件例如为消融电极、消融冷冻元件、消融光学元件等。第一和第二超声波传感器可以适于在不同的方向上感测对象的内部。而且,第一图像产生设备可以包括至少两对的第一超声传感器和第二超声传感器,其中不同对在不同的方向上感测对象的内部。如果成像装置包括其他的超声传感器,这些其他的超声传感器优选具有不同于第一频率和第二频率的频率,以便以不同的空间分辨率并且以不同的深度感测对象的内部。 第一频率和第二频率优选为中心频率,即对于本领域技术人员众所周知的超声传感器并不以单个频率来操作,而是以中心频率为中心的频率范围来操作。因此,超声传感器通常包括具有中心频率的带宽。第一和第二频率分别优选为第一和第二超声传感器的带宽的中心频率。优选地,成像装置还包括用于产生对象的第三图像的第二图像产生设备,以及用于以第一超声图像和第二超声图像中的至少一个覆盖第三图像的覆盖单元。进一步优选地,第二图像产生设备包括a)辐射源,用于产生穿过所述对象的辐射;b)探测器,用于根据已穿过所述对象之后的辐射产生探测值;c)图像重建单元,用于根据所产生的探测值重建所述第三图像。辐射源优选为X射线源,并且探测器优选为X射线探测器。第二图像产生设备也可以是另一种成像模式。例如,第二图像产生设备可以为磁共振成像模式,或者诸如正电子发射断层扫描模式或单光子发射计算机断层扫描模式的核成像模式。图像重建单元优选适于根据所产生的探测值重建对象的投影图像,其中该图像重建单元可以适于并行布置所产生的探测值,用以重建投影图像。然而,该图像重建单元也可以适于重建对象的例如计算机断层扫描图像,其中该辐射源适于使得所产生的辐射在不同的方向上穿过对象,探测器适于根据已在不同的方向上穿过对象之后的辐射产生探测值,并且图像重建单元适于根据所产生的探测值重建计算机断层扫描图像。第三图像优选由并非超声成像模式的成像模式来产生。第三图像因此示出对象内部的特征,该特征可能并未在第一和第二超声图像上示出,或者与第一和第二超声图像上示出的不同。作为第三图像与第一超声图像和第二超声图像中至少一个的覆盖的覆盖图像因此包含关于对象内部的更多信息,并且因此能够改善对象的成像。例如,第一超声图像可以包括在较大穿透深度处的较小空间分辨率,第二超声图像可以包括在较小穿透深度处的较大空间分辨率,并且尤其是如果第二图像产生设备的辐射源是X射线源,第三图像可以包括最低空间分辨率并且可以是投影图像。进一步优选地,成像装置包括配准单元,用于将第一超声图像和第二超声图像中的至少一个与第三图像配准。如果第三图像与第一超声图像和第二超声图像中的至少一个相对于彼此而配准,则它们可以由覆盖单元更加正确地覆盖,因此进一步提高对象内部成像的质量。优选实时地执行覆盖图像的配准和产生。优选地,由配准单元使用具有相对于第一超声传感器和第二超声传感器的已知空间关系并且在第三图像中可见的元件,用于配准图像。该元件例如为第一超声传感器自身、第二超声传感器自身、活检针等。对象可以是诸如机器、管道的技术对象,或任何其它内部不得不成像的技术对象。对象也可以是人或动物,其中人或动物的内部,尤其是器官、脉管等的内部不得不成像。进一步优选地,成像装置包括用于以光照亮对象内部并且用于接收来自对象内部的光的光纤;以及用于从光谱上研究所接收的光的光谱仪,其中光纤容纳在外壳内。成像装置优选包括用于照亮对象内部的一个或若干光纤,以及用于接收来自对象内部的光的一个或若干光纤,该光优选由对象的内部散射。光谱仪产生所接收的光的光谱。光谱仪还 可以适于根据所产生的光谱确定关于对象内部的信息。例如,可以通过校准来确定对于诸如脂肪、水、血液、氧等特定物质的光谱,其中这些光谱可以存储在光谱仪的存储单元中。在已经针对实际测量产生光谱之后,该光谱可以与存储在存储单元中的光谱进行比较,以确定由光实际照亮的物质。具体来说,如果假定不同组织类型包括不同物质组合,则光谱仪可以适于通过研究该光谱确定相应组织类型。例如,如果已知特定组织类型包括特定物质组合,通过从光谱上分析实际测量的光谱,能够确定哪个物质组合被实际照亮,并且从而确定哪个组织类型被实际照亮。成像装置因此能够适于确定哪个组织类型处于导管尖端或针尖端的前方。进一步优选地,成像装置包括用于驱动第一超声传感器和第二超声传感器的驱动单元。优选由同一驱动单元来驱动第一超声传感器和第二超声传感器。由于每个超声传感器不必均连接至其自身的驱动单元,因此外壳内用于将超声传感器与驱动单元连接的布线可以被简化,并且在外壳内需要较少的空间。这实现了使用具有较小直径的外壳,和/或将其他元件集成在外壳内。进一步优选地,驱动单元经由单个导线连接至第一超声传感器和第二超声传感器。这可以进一步地简化用于将超声传感器连接至驱动单元的布线,并且可以减少用于外壳内的布线所需要的空间。进一步优选地,驱动单元适于从第一超声传感器和第二超声传感器接收包括第一超声感测信号和第二超声感测信号的组合的超声感测信号,其中该驱动单元包括滤波单元,该滤波单元用于从所组合的超声感测信号中滤波出第一超声感测信号以及第二超声感测信号。为了滤波出第一超声感测信号,该滤波单元优选适于对所组合的超声感测信号进行傅里叶变换,以使用第一频率带通滤波器滤波出包含第一频率的带通;并且适于对已带通滤波的所组合的超声信号进行逆傅里叶变换,以产生第一超声感测信号。为了滤波出第二超声感测信号,该滤波单元优选适于对所组合的超声感测信号进行傅里叶变换,以使用第二频率带通滤波器滤波出包含第二频率的带通;并且适于对已带通滤波的所组合的超声信号进行逆傅里叶变换,来产生第二超声感测信号。可以例如通过执行校准测量来确定第一频率带通滤波器,其中仅当第一超声感测信号存在时,确定第一超声感测信号的带宽和中心频率。相似地,可以例如通过执行校准测量来确定第二频率带通滤波器,其中仅当第二超声感测信号存在时,确定第二超声感测信号的带宽和中心频率。所确定的第一和第二超声感测信号的带宽和中心频率分别定义了第一和第二频率带通滤波器。优选地,校准测量仅执行一次,或者在已执行多次测量之后但并非每次测量之前执行校准测量。具体来说,成像装置的制造商可能已经执行了校准测量,并且将所确定的第一和第二频率带通滤波器存储在滤波单元中,或者将所确定的第一和第二频率带通滤波器提供给用户,用户经由所提供的诸如键盘、鼠标等输入单元,将第一和第二频率带通滤波器输入到滤波单元中。进一步优选地,成像装置包括导航单元,该导航单元用于至少根据第一超声图像和第二超声图像来将外壳导航至对象内的期望位置。由于第一超声图像和第二超声图像提供了对象内部的改善的成像,尤其是,因为提供了不同空间分辨率和不同成像距离,因此也可以改善基于该成像的导航。
导航单元优选适于将外壳尖端,尤其是导管尖端导航至对象内的期望位置。导航单元也可以适于根据其他的图像,尤其是根据第一超声图像和第二超声图像中的至少一个与第三图像的覆盖,来实现对外壳的导航。导航单元可以适于允许用户至少根据第一超声图像和第二超声图像,完全手动或半自动地导航外壳。导航单元也可以适于至少根据第一超声图像和第二超声图像完全自动化地导航外壳。具有较小空间分辨率和较大成像距离的第一超声图像可以用于将外壳粗略地导航至期望位置,并且具有精细空间分辨率和较小成像距离的第二超声图像可以用于更加精确地将外壳导航至期望位置,或者将外壳的位置精确地调节到期望位置。第一超声图像可以用于对位于对象内的较大深度处的第一感兴趣区域成像,并且第二超声图像可以用于对位于对象内的较小深度处的第二感兴趣区域成像。优选同时操作第一超声传感器和第二超声传感器,以对粗略引导提供反馈,并同时提供尤其是来自外壳尖端,例如来自活检针尖端的附近的高分辨率信息。然而,也可以顺序地操作第一超声传感器和第二超声传感器,以便首先提供粗略信息,并且随后提供精细信息。进一步优选地,所述第一频率和所述第二频率至少分隔开所述第一超声传感器和所述第二超声传感器的半带宽之和。还优选地,第一频率处于I至IOMHz的范围内,并且第二频率处于20至40MHz的范围内。如果第一频率和第二频率处于这些范围内,可以由滤波单元容易地将它们分隔开。而且,在上述频率范围内的第一频率具有在人体内多达10至15cm的穿透深度,这非常适于粗略导航的目的,并且在相应的上述频率范围中的第二频率允许产生具有高分辨率的第二超声图像,这也非常适于导航的目的。半带宽优选为半峰值时的一半宽度。在本发明的另一方面,提供一种用于影响对象的内部的影响装置,其中所述影响装置包括-用于影响所述对象的影响元件;-根据权利要求I所述的用于产生第一超声图像和第二超声图像的成像装置;-导航单元,用于至少根据所述第一超声图像和所述第二超声图像,将所述影响元件导航至所述对象的内部中的期望位置。该影响元件优选是位于作为上述外壳的导管或介入针的尖端的活检针或消融元件。因此影响元件优选集成在成像装置的导管或介入针中。导航单元优选适于至少根据第一超声图像和第二超声图像,将活检针或消融元件导航至对象内部中的期望位置。在本发明的另一方面,提供一种用于对对象的内部成像的成像方法,其中所述成像方法包括a)由第一超声传感器以第一频率感测所述对象的内部,其中产生指示所述对象的内部的第一超声感测信号;b)由第二超声传感器以第二频率感测所述对象的内部,其中产生指示所述对象的内部的第二超声感测信号;其中所述第一频率小于所述第二频率,以使得所述第一超声传感器以较小空间分辨率感测所述对象的所述内部,并且所述第二超声传感器以较大空间分辨率感测所述对象内部; c)由超声图像产生单元根据所述第一超声感测信号产生具有较小空间分辨率的第一超声图像,并且根据所述第二超声感测信号产生具有较大空间分辨率的第二超声图像;其中至少所述第一超声传感器和所述第二超声传感器容纳在外壳内,所述外壳适于被导入所述对象中。在本发明的另一方面,提供一种用于影响对象的内部的影响方法,其中所述影响方法包括-由根据权利要求12所述的成像装置产生第一超声图像和第二超声图像;-由导航单元至少根据所述第一超声图像和所述第二超声图像,将用于影响所述对象的影响元件导航至所述对象内部中的期望位置;以及-以所述影响元件影响所述对象。在本发明的另一方面,提供一种用于对对象的内部成像的成像计算机程序,其中所述计算机程序包括程序代码模块,当所述计算机程序运行在控制根据权利要求I所述的成像装置的计算机上时,所述程序代码模块用于使计算机执行根据权利要求12所述的成像方法的步骤。在本发明的另一方面,提供一种用于影响对象的内部的影响计算机程序,其中所述影响计算机程序包括程序代码模块,当所述计算机程序运行在控制根据权利要求11所述的影响装置的计算机上时,所述程序代码模块用于使计算机执行根据权利要求13所述的影响方法的步骤。应当理解,权利要求I的成像装置、权利要求11的影响装置、权利要求12的成像方法、权利要求13的影响方法、权利要求14的成像计算机程序以及权利要求15的影响计算机程序具有类似和/或相同的尤其是如从属权利要求限定的优选实施例。应当理解,本发明的优选实施例也可以是从属权利要求与相应独立权利要求的任
意组合。参照以下描述的实施例,本发明的这些和其它方面将变得明显。
在以下附图中图I示意性和示例性示出用于对对象的内部成像的成像装置的实施例;图2和图3示意性和示例性示出导管的远端的实施例;图4示例性示出组合的超声感测信号;图5示例性示出第二超声感测信号;图6示例性示出第一超声感测信号;图7至图9示意性和示例性示出导管的远端的其他实施例;图10示出在将导管的远端导航至目标对象时若干超声传感器的操作; 图11示出示例性说明用于对对象的内部成像的成像方法的实施例的流程图;以及图12示出示例性说明用于影响对象的内部的影响方法的实施例的流程图。
具体实施例方式图I示意性和示例性示出用于对象2的内部成像的成像装置。在该实施例中,对象2是位于患者检查台28上的患者27的内部器官2。装置I包括用于容纳至少第一超声传感器和第二超声传感器的外壳6,其中外壳6适于导入对象2中。在该实施例中,夕卜壳6是导管。该第一超声传感器和第二超声传感器优选位于外壳6的远端29处。图2中更加详细地示意性和示例性示出了导管6的远端29的实施例。导管6的远端29包括用于以第一频率感测对象2的内部的第一超声传感器4,其中产生指示对象2的内部的第一超声感测信号。第二超声传感器5适于以第二频率感测对象2的内部,其中产生指示对象2的内部的第二超声感测信号。第一频率小于第二频率,以使得第一超声传感器4以较小的空间分辨率感测对象的内部,并且第二超声传感器5以较大的空间分辨率感测对象2的内部。导管6还包括用于以第三频率感测对象2的内部的第三超声传感器3,其中第三频率大于第一频率并且小于第二频率,以使得第三超声传感器能够以大于第一超声感测信号的空间分辨率并且小于第二超声感测信号的空间分辨率的空间分辨率,来感测对象的内部。因为不同的频率,第二超声传感器5的成像距离30小于第三超声传感器3的成像距离31,并且第一超声传感器4的成像距离32大于第三超声传感器3的成像距离31。不同超声传感器3、4、5的不同超声感测信号因此能够以不同的穿透深度来感测对象2的内部。在图2中,超声传感器3、4、5在相同方向上感测对象的内部。然而,超声传感器也可以布置为在不同的方向上感测对象的内部。而且,在导管的远端的另一实施例中,远端可以包括至少两对具有较小频率的第一超声传感器和具有较大频率的第二超声传感器。图3中示意性和示例性地示出了在导管远端内的这些对的布置。在图3中,导管的远端129包括三对133第一超声传感器104和第二超声传感器105。第一超声传感器104以小于第二超声传感器105的频率的频率感测对象的内部。三对133超声传感器适于在不同的方向上感测对象的内部。导管的远端129包括由能量施加元件135围绕的三个开口 134,该能量施加元件135优选为环形电极。具有环形电极135的开口 134设置为使得超声波能够通过环形电极135行进。图3中所示的导管129的远端当然包括出于清楚原因而未在图3中示出的其他兀件。例如,导管的远端129包括用于将环形电极135和超声传感器104、105与导管外部的各自的控制单元相连接的布线。而且,导管的远端129可以包括其他的能量施加元件、感测元件、和/或活检元件。环形电极135优选用于消融术中,尤其是用于射频消融术中。在该实施例中,开口 134并未由窗体覆盖。然而,在另一实施例中,开口可以由诸如聚甲基戊烯窗体的超声透明窗体来封闭。超声传感器与对象的内部,尤其是人的组织之间的接触,通过诸如聚甲基戊烯或者诸如盐溶液的生理溶液的声学透明物质来居间实现。再次参照图1,成像装置I包括导管控制单元10,该导管控制单元10包括用于驱动超声传感器3、4、5的驱动单元11。驱动单元11是单个驱动单元,即超声传感器3、4、5由同一驱动单元来驱动。图2中示意性示出了超声传感器3、4、5至驱动单元11的连接。由图2中可以看出,超声传感器3、4、5经由单根同轴线22连接至驱动单元11。驱动单元11适于从不同的超声传感器3、4、5接收组合的超声感测信号,该组合的超声感测信号包括由第一超声传感器4产生的第一超声感测信号、由第二超声传感器5产生的第二超声感测信号、以及由第三超声传感器3产生的第三超声感测信号。驱动单元11 包括滤波单元23,该滤波单元23用于从所接收的组合的超声感测信号中滤波出第一超声感测信号、第二超声感测信号以及第三超声感测信号。例如,为了滤波出第一超声感测信号,该滤波单元适于对组合的超声感测信号进行傅里叶变换,以使用第一频率带通滤波器滤波出包含第一频率的带通;并且适于对已带通滤波的组合超声信号进行逆傅里叶变换,以产生第一超声感测信号。相应地,可以从组合的超声感测信号滤波出第二超声感测信号以及第三超声感测信号。每个超声传感器以特定的带宽来操作。因此,第一超声传感器以第一带宽操作,第二超声传感器以第二带宽操作,以及第三超声传感器以第三带宽操作。第一频率是第一带宽的中心频率,第二频率是第二带宽的中心频率,以及第二频率是第二带宽的中心频率。第一频率带通滤波器优选适于使其对应于第一带宽,第二频率带通滤波器优选适于使其对应于第二带宽,以及第三频率带通滤波器优选适于使其对应于第三带宽。频率带通滤波器可以通过执行校准测量来确定。例如,为了确定第一频率带通滤波器,仅当第一超声感测信号存在时,可以确定第一超声感测信号的第一带宽和第一中心频率,其中该确定的第一带宽和第一中心频率限定了第一频率带通滤波器。可以以类似的方式来确定第二频率带通滤波器和第三频率带通滤波器。图4示例性示出组合的超声感测信号36,该组合的超声感测信号36为第一和第二超声传感器4、5各自的第一超声感测信号和第二超声感测信号的组合。图5示例性示出已从所组合的超声感测信号36滤波出之后的第二超声感测信号,以及图6示例性示出已从所组合的超声感测信号36滤波出之后的第一超声感测信号38。在该实施例中,超声传感器优选包括压电换能器,如果压电换能器接收到从各自的超声传感器以不同的距离反射的超声波,则压电换能器将产生电信号。在图4至图6中,垂直轴示例性表示由各自压电换能器产生的电信号的任意单位的电压U ;以及横轴表不各自压电换能器与已反射了各自超声波的位置之间的同样任意单位的距离。导管控制单元10还包括超声图像产生单元12,该超声图像产生单元12用于根据第一超声感测信号产生具有较小空间分辨率的第一超声图像,以及根据第二超声感测信号产生具有较大空间分辨率的第二超声图像。在该实施例中,超声图像产生单元12还适于根据第三超声感测信号产生另一超声图像,该另一超声图像的空间分辨率大于第一超声图像的空间分辨率,并小于第二超声图像的空间分辨率。驱动单元11适于驱动超声传感器,并从超声传感器接收超声信号。将所接收的超声信号提供给图像产生单元,用以例如,如果相控阵列用作超声传感器,则产生B型超声图像;以及如果单个换能器用作超声传感器,则产生A型和/或M型超声图像。超声传感器3、4、5与驱动单元11以及超声图像产生单元12 —起形成第一图像产生设备。成像装置I还包括用于产生对象的另一图像的第二图像产生设备7。在该实施例中,该第二图像产生设备是产生透视(fluoroscopy)图像的透视设备。该第二图像 产生设备7包括辐射源15,其用于产生穿过对象2的辐射16 ;探测器17,其用于根据已穿过对象2之后的辐射来产生探测值;以及图像重建单元19,其用于根据所产生的探测值重建透视图像。辐射源15是X射线源,以及探测器17是X射线探测器。图像重建单元19并行布置所产生的探测值,以将投影图像重建为透视图像。在其它实施例中,第二图像产生设备也可以为另一成像模式。例如,可以在不同的方向上产生投影,并且该图像重建单元可以适于重建对象的计算机断层扫描图像。或者,第二图像产生设备可以为磁共振成像模式,或者诸如正电子发射断层扫描模式或单光子发射计算机断层扫描模式的核成像模式。由透视控制单元18控制辐射源15、探测器17以及图像重建单元19,该透视控制单元18还优选包括用于显示透视图像的显示器。如上所述,成像装置,尤其是导管或介入针可以包括其他的感测元件。例如,如图2中示意性示出的,导管6的远端29可以包括光纤20、21,用以利用光照亮对象的内部并且用于接收来自对象2内部的光。光纤20、21连接到导管控制单元10中的光谱仪39,用以从光谱上研究所接收的光信号。成像装置优选包括用于照亮对象内部的一个或若干光纤以及用于接收来自对象内部的光的一个或若干光纤,该来自对象内部的光优选由对象的内部散射。光谱仪39产生所接收的光的光谱。光谱仪39还可以适于根据所产生的光谱确定关于对象的内部的信息。例如,可以通过校准来确定对于诸如脂肪、水、血液、氧等特定物质的光谱,其中这些光谱可以存储在光谱仪39的存储单元中。在已经针对实际测量产生光谱之后,该光谱可以与存储在存储单元中的光谱进行比较,以确定由光实际照亮的物质。具体来说,如果假定不同组织类型由不同的物质组合构成,则光谱仪39可以适于通过研究该光谱来确定各个组织类型。例如,如果已知特定组织类型由特定物质组合构成,通过从光谱上分析实际测量的光谱,能够确定哪个物质组合被实际照亮,并且从而确定哪个组织类型被实际照亮。成像装置因此能够适于实现确定哪个组织类型位于导管尖端或针尖端的前方。导管控制单元10还包括配准单元13,该配准单元13用于将第一超声图像和第二超声图像中的至少一个与透视图像配准。为了配准两个图像,配准单元13优选使用在这两个图像中可见的元件。该元件例如为超声传感器、活检针、诸如电极的能量施加元件等。优选由用于产生覆盖图像的覆盖单元14覆盖所配准的图像。该覆盖单元14优选适于采用至少一个超声图像覆盖透视图像。导管控制单元10还包括导航单元24,该导航单元24用于根据至少第一超声图像和第二超声图像,将导管6,尤其是导管6的远端29导航至对象2内的期望位置。在该实施例中,导航单元24适于还根据其他图像,即透视图像、光谱图像、以及还优选为第三超声图像来对导管进行导航。导航单元24可以适于根据至少第一超声图像和第二超声图像,允许用户完全由手动或半自动地对导管6进行导航。导航单元14还可以适于根据至少第一超声图像和第二超声图像对导管6进行自动导航。导管6优选包括可以由导航单元24控制的内建引导装置(图I中未示出)。例如,可以通过使用操纵线来操纵和导航导管6,以便将导管6的远端29引导至对象2内的期望位置。具有较小空间分辨率的第一超声图像可以用于将外壳粗略地导航至所期望的位置,并且具有更精细的空间分辨率的第二超声图像可以用于将外壳更加精确地导航至期望的位置。而且,第一超声图像可以用于对位于对象2内的较大深度处的第一感兴趣区域成像,并且第二超声图像可以用于对位于对象2内的较小深度处的第二感兴趣区域成像。可 以同时操作第一超声传感器4和第二超声传感器5,以对粗略引导提供反馈,并同时提供尤其是来自导管6的远端29附近的高分辨率信息,该导管6的远端29例如容纳活检针尖。然而,也可以顺序地操作第一超声传感器4和第二超声传感器5,以便首先提供粗略信息,并且随后提供精确信息。具有不同空间分辨率和不同穿透深度的诸如第三超声图像的其他超声图像也可以用于导航目的。此外,第三超声传感器可以与第一和第二超声传感器同时操作,或者可以顺序地操作这三个超声传感器。在优选实施例中,如果透射图像,或者例如计算机断层扫描设备或磁共振设备用作第二图像产生设备,则计算机断层扫描图像或者磁共振图像用于关于接近对象内的期望位置的非常粗略的信息。随后,将所配准的第一超声图像覆盖在透射图像、计算机断层扫描图像、或者磁共振图像上,以提供粗略的长距离信息,其中,由于假定第一超声图像的空间分辨率大于透射图像、计算机断层扫描图像、或者磁共振图像的空间分辨率,因此提高了接近所期望的位置的精度。如果已经粗略地到达所期望的位置,优选基于覆盖在透射图像、计算机断层扫描图像、或者磁共振图像上的所配准的第二超声图像,执行导管尖端的精确对准。在最终对准之后,例如,可以将活检针插入对象中。第二超声图像也可以用于提供关于病变/肿瘤边界的高分辨率信息以用于消融,其中在消融期间,第一超声图像可以用于监控例如对象的组织内的消融。第二超声图像例如可以用于确保不应被消融的相邻组织不被活检针损伤。图像装置可以适于通过使用相应的机器人单元自动执行导航处理过程。使用具有不同空间分辨率的不同图像以及还任选地使用从光谱仪接收的光谱信息的反馈回路可以用于调节导航轨迹,介入设备将沿着该导航轨迹移动。例如如果诸如血管或神经的关键结构位于导航轨迹的附近,则导航轨迹的调节将是必要的。此外,例如,可以由机器人自动执行作为介入设备的针的插入。如果使用诸如第三超声传感器3的另一超声传感器,该第三超声传感器3产生具有空间分辨率不同于第一和第二超声图像的空间分辨率的超声图像,则该另一超声图像也可以用于将导管尖端导航至期望的位置。相邻频率优选至少分隔开各自超声传感器的半带宽之和。例如,如果仅第一超声传感器4和第二超声传感器5用于成像,则第一频率优选在I至IOMHz的范围内,而第二频率优选在20至40MHz的范围内。图7示意性和示例性示出了导管的远端229的另一实施例,例如,该导管的远端229可以用于替代图2中所示的导管的远端29。导管的远端229包括三个超声传感器。第一超声传感器204以第一频率感测,第二超声传感器205以第二频率感测,以及第三超声传感器203以第三频率感测。此外,在该实施例中,第一频率小于第三频率,并且第二频率大于第三频率。因为不同的频率,三个超声传感器203、204、205具有不同的成像距离230、231、232、穿透例如对象的组织的不同深度、以及不同的空间分辨率。不同的超声传感器203、204、205布置为在不同的方向上感测。具体来说,第一超声传感器布置成在相对于导管的纵向上感测;第二超声传感器205布置成在相对于导管的横向上感测;以及第三超声传感器203布置成在纵向和横向之间的倾斜方向上感测。导管还包括活检通道240,活检针225可以通过该活检通道240前进,以执行活检操作。可以通过由导管控制单元10包含的活检控制单元26控制活检针225。此外,超声传感器203、204、205可以经由单根导线222连接至单个驱动单元11。图8示出导管的远端329的另一实施例。导管的远端329包括布置成在横向、侧 视方向上感测的两个超声传感器第一超声传感器304和第二超声传感器305。第一超声传感器以第一频率感测,该第一频率小于第二超声传感器感测对象内部的第二频率。超声传感器304、305因此包括不同的成像距离330、332,该不同的成像距离330、332使超声传感器304、305产生在对象内的不同深度处的超声图像。第一和第二超声传感器304、305经由单根导线322连接至驱动单元11。图9示出导管的远端的另一实施例。图9中所示的导管的远端429包括布置为在相对于导管的横向上感测对象内部的四个超声传感器404、405、441、442。第一超声传感器404和第三超声传感器441在相对方向上指向,并且第二超声传感器405和第四超声传感器442也在相对方向上指向。第一超声传感器以第一频率操作,该第一频率小于第二超声传感器405操作的第二频率。第三超声传感器441优选以等于第一频率的第三频率操作,并且第四超声传感器442优选以等于第二频率的第四频率操作。由于第一和第二超声传感器404、405以不同频率操作,因此它们的成像距离430、432是不同的。这将使第一和第二超声传感器404、405以不同深度对对象的内部成像。而且,根据第一超声传感器404的第一超声感测信号产生的超声图像具有的空间分辨率小于根据第二超声传感器405的第二超声感测信号产生的超声图像的空间分辨率。因此,可以以不同的深度确定具有不同空间分辨率的超声图像。由于同样以不同的频率操作第三和第四超声传感器441、442,因此这些超声传感器也可以用于以不同空间分辨率在不同的深度感测对象的内部。图9中以附图标记443、444表示相应的成像距离。导管还包括活检通道440,活检针425可以在该活检通道440中前进,以执行活检操作。此外,可以将活检针425连接至活检控制单元26,以执行活检操作。超声传感器404、405、441、442可以经由单根导线422连接至单个驱动单元11。图10示意性和示例性示出导管6的远端229至例如作为病变的目标组织45的导航。参照图7,以上更加详细地描述了导管的远端229。在该示例中,三个超声传感器203、204、205顺序地或同时地感测人27的不同区域46、47、48。相应的超声图像与由第二图像产生设备7产生的透视图像一起用于将导管6的远端229导航至目标组织45。由于三个相邻区域46、47、48采用超声进行成像,因此目标组织45不被发现的概率非常低。超声图像允许监控远端229的相对于目标组织位置45的空间位置,并且使用该相对的空间位置以将远端229导航至目标组织45。以下,将参照图11中所示的流程图来示例性地描述用于对对象2的内部成像的成像方法的实施例。在步骤501中,由第一超声传感器以第一频率感测对象内部,其中产生指示对象内部的第一超声感测信号。在步骤502中,由第二超声传感器以第二频率感测对象内部,其中产生指示对象内部的第二超声感测信号。第一频率小于第二频率,以使得第一超声传感器以较小的空间分辨率感测对象内部,而第二超声传感器以较大的空间分辨率感测对象内部。在步骤503中,由超声图像产生单元根据第一超声感测信号产生具有较小空间分辨率的第一超声图像,并且根据第二超声感测信号产生具有较大空间分辨率的第二超声图像。
可以同时地或顺序地执行步骤501和502,其中如果顺序地执行步骤501和502,则在已分别产生第一或第二超声感测信号之后,在步骤503中分别产生第一超声图像或第二超声图像,而无需分别等待其它的超声感测信号,即第二或第一超声感测信号。例如,可以首先循环执行步骤501和503,其中例如为了粗略导航的目的,产生若干第一超声图像而无需产生第二超声图像,随后可以执行步骤502和503 —次或循环执行步骤502和503,以产生一个或若干第二超声图像,而无需产生第一超声图像,以例如用于执行导管的更加精确的导航。例如,参照以上图3、图7或图9所描述的,如果导管包括诸如活检针或能量施加元件的影响元件,该导管与成像装置可以一起视为用于影响对象内部的影响装置。该影响装置优选包括用于影响对象的影响元件、成像装置、以及导航单元;该影响元件例如为活检针或能量施加元件;该成像装置至少包括第一超声传感器、第二超声传感器、超声图像产生单元、以及导管;该导航单元用于至少根据第一超声图像和第二超声图像,将影响元件导航至对象内部中的期望位置。以下将参照图12中所示的流程图来示例性地描述用于影响对象内部的相应的影响方法。在步骤601中,参照以上图11中所描述的,由成像装置产生第一超声图像和第二超声图像,并且在步骤602中,由导航单元至少根据第一超声图像和第二超声图像,将影响元件225导航至对象内部中所期望的位置。可以循环执行步骤601和602,以使得可以动态地尤其是实时地调节影响元件的导航以适应实际产生的第一和/或第二超声图像。此外,诸如由第二图像产生设备产生的图像的其他图像,和/或由光谱仪确定的光谱或确定的尤其是特定种类的组织的特定种类的物质可以用于将影响元件导航至所期望的位置,所述其他图像可以覆盖在第一超声图像和/或第二超声图像上。在实施例中,首先产生第一超声图像,并且基于该第一超声图像执行粗略导航。可以循环执行第一超声图像的产生以及基于第一超声图像的导航,以使得可以动态地调节影响元件的导航以适应实际产生的第一超声图像。在已将影响元件粗略地导航至所期望的位置之后,可以产生第二超声图像,并且可以基于第二超声图像执行更加精细的导航处理过程。此外,可以循环执行第二超声图像的产生以及影响元件的基于第二超声图像的导航,以使得同样可以动态地尤其是实时地调节影响元件的更加精细的导航以适应实际产生的第
二超声图像。如果影响元件已到达所期望的位置,在步骤603中影响元件将影响处于所期望的位置的对象。例如,执行活检操作,或者将能量施加于所期望的位置。交互式实时监控相对于期望位置的活检针尖端空间位置是长期的临床需要。当前超声引导的针跟踪通常无法满足深层病变,也无法用于骨骼和空气是阻碍因素的表层病变中。其它成像模式由于其非实时响应(注意X射线透视图像尽管具有实时扫描反馈,但不具有令人满意的对比度分辨率),因此也较少应用。成像装置能够提供包括扫描附接至活检针尖端的超声传感器的成像解决方案,该超声传感器在深入到人体中时,有效扫描组织环境。精确的针介入的组织取样尤其是在小且深层的病变中存在问题。在执行针介入的活检/引流时,会发生以下问题。 基于计算机断层扫描或磁共振预采集扫描的图像引导的针导航造成相当大数量的错位针,主要是因为不具有交互式的器官/组织运动的评价。超声引导的针导航被认为是用于实体解剖学中的表层病变的准绳。然而,有限的超声穿透和与骨解剖和空气之间的信号干扰使该技术无法用于深层病变、肺、肠周围的解剖等。X射线透视在骨活检和一些痛苦的与脊柱有关的手术中提供了相当令人满意的指导,但是因为狭窄的动态范围,而无法用于大量的活检和引流中。光子针为病变边界和病变体的交互探测提供了非常好的解决方案,但由于其有限的穿透率,从而在其探测病变位置时存在精度问题。成像装置和影响装置可以用于在穿透组织的同时,交互地探测相对于当前针位置的病变位置和边界;可以用于交互地探测有助于定义最优化的针插入过程以及有助于操纵针朝向目标的病变运动;可以用于交互地检查在病变块内的最终针尖端位置;和/或可以用于在注入造影剂或者药剂以执行消融术等的同时交互地监视病变的改变。尽管在上述实施例中,优选地,成像装置与作为活检针或诸如消融电极的能量施加元件的影响元件组合,然而该成像装置也可以与其它元件,尤其是其它影响元件组合,该其它影响元件可以集成在导管尖端内,例如,造影注入元件可以位于导管内,其中可以由导航单元将造影注入元件导航至所期望的位置,该导航单元优选至少使用第一和第二超声图像,用以注入造影剂。对于粗略导航,第一超声传感器优选具有I至9或I至IOMHz范围内的第一频率,对于第一频率,如果导管导入人体中,穿透深度处于IOcm或更大的范围内。对于精确导航,第二超声传感器优选具有20至40MHz范围内的第二频率,如果导管导入人体中,具有多达大约2至3cm的穿透深度。超声传感器可以是单个元件换能器或超声换能器阵列,该超声换能器阵列能够较大地覆盖周围区域,尤其是周围组织。如果所使用的实施例包括诸如活检针的针,则优选作为X射线图像的透视图像可以通过覆盖配准的透视图像和超声图像,与组织的来自第一和/或第二超声图像的对比度组合。这能够改善例如病变、癌种子、组织中的异常等的定位,并且可以在针朝向所期望的位置前进时,实时校正轻微的位置变化。在诸如肿瘤、心率失常以及心脏瓣膜修复的微创治疗中,使用诸如针或导管的细长设备。治疗和监控设备的尺寸的重要性是关键的,因为它通常受限于其诸如血管的路径,并且直接关系到术后的创伤。由于以下事实导管必须通过股静脉和将两个心房分离的隔膜,因此在例如心房颤动的治疗中优选更细的导管。大部分未来的微创设备将会不得不组合诊断、导航以及治疗的可能性。这些设备的直径限制导致这些功能性的智能组合。上述对于不同超声传感器使用同一驱动单元,即同一驱动电子设备的实施例不但减少了必须馈送通过微创设备的引线以实现更小的直径,而且还通过减少在设备周围所需的硬件组件的数量而结合了具有成本效益的驱动电子设备。而且,可以简化微创的创造性设备的机械构造。成像装置可以包括用于显示不同图像以及可选的光谱信息的显示器,以允许用户根据不同的图像和所提供的可选的光谱信息进行导航。成像装置也可以适于允许人选择哪个超声传感器应当被操作以及哪个图像应当在显示器上显示。具体来说,成像装置可以适于提供变焦功能。例如,再次参照图2,首先可以在显示器上显示由第一超声传感器4产生并具有最小空间分辨率的第一超声图像。随后,如果用户想要放大,用户可以选择由第二超声传感器5产生的第二超声图像或由第三超声传感器3产生的第三超声图像。通常而言, 成像装置可以适于允许用户在具有不同空间分辨率的不同超声图像之间进行切换。在实施例中,仅存在第一超声传感器和第二超声传感器,其中第一超声传感器包括5MHz的第一频率,并且第二超声传感器包括30MHz的第二频率。第一超声传感器和第二超声传感器的带宽优选为大约40%。成像装置和影响装置可以适于用于血管内的成像和处理,尤其用于执行肿瘤中的活检。具体来说,成像装置优选适于用作心脏治疗导管、用于血管内的介入设备、用于肿瘤的介入设备等。优选地,成像装置和影响装置适于用于交互式地实时监控相对于病变位置的介入设备空间位置。然而,成像装置也可以适于仅用于研究的目的,而并不提供治疗选择,其中可以以不同的空间分辨率,在不同深度研究组织。应当注意,以上参照图2、图3、以及图7至图9描述的导管的远端可以包括多于图中所示的元件。而且,可以将不同的图中所示的元件组合至包括不同的图中所示的这些元件的导管的远端。例如,图2和图8中所示的导管的远端也可以包括具有活检针的活检通道,并且也可以在图7和图9中所示的导管的远端中设置图2、图3以及图8中所示的布置和数量的超声传感器。而且,图2中所示的光纤也可以设置在这些图中所示的其它导管中。不同可能的导管,尤其是不同可能的导管的远端可以与图I中所示的其它元件一起使用,以用于至少产生超声图像,并且还优选用于将导管的各自远端导航至所期望的位置。尽管在上述实施例中,已经描述了特定数量的超声传感器,然而成像装置还可以包括等于或大于两个的另一数量的超声传感器。由本领域技术人员在实施所要求的发明时,根据对于附图、公开内容以及所附权利要求的研究,能够理解和实施对于所公开实施例的其它变形。在权利要求中,单词“包括”并不排除其它元件或步骤,并且“一”或“一个”并不排除多个。单个单元或设备可以执行记载在权利要求中的若干项的功能。记载于相互不同的从属权利要求中的某些措施的事实,并不表示这些措施的组合不能被有利地使用。
诸如由一个或若干单元或设备执行的诸如配准和覆盖的功能可以由任意其它数量的单元或设备来执行。成像装置的根据上述成像方法的控制和/或影响装置根据上述影响方法的控制可以实施为计算机程序的程序代码模块,和/或实施为专用的硬件。计算机程序可以存储或分布在与其它硬件一起提供或作为其它硬件的部分的合适介质上,诸如光存储介质或固态介质,但也可以以诸如经由因特网或其它有线或无线电信系统的其它形式来分布。权利要求中的任何附图标记不应理解为对保护范围的限制。本发明涉及用于对对象的内部成像的成像装置。该成像装置包括用于以不同频率感测对象内部的第一超声传感器和第二超声传感器,其中来自第一超声传感器的超声感测信号用于产生第一超声图像,并且来自第二超声传感器的超声感测信号用于产生第二超声图像。较大频率相比较小频率,通常提供穿透对象内部的较小深度以及提供较大的空间分 辨率。成像装置因此可以提供以不同的空间分辨率并且以不同的穿透深度同时对对象的内部成像的能力。这使得成像装置提高了对对象的内部成像的质量。
权利要求
1.一种用于对对象(2)的内部成像的成像装置,所述成像装置(I)包括 -第一图像产生设备,包括 a)第一超声传感器(4),用于以第一频率感测所述对象(2)的所述内部,其中产生指示所述对象的所述内部的第一超声感测信号; b)第二超声传感器(5),用于以第二频率感测所述对象(2)的所述内部,其中产生指示所述对象(2)的所述内部的第二超声感测信号;其中所述第一频率小于所述第二频率,以使得所述第一超声传感器(4)适于以较小空间分辨率感测所述对象的所述内部,并且所述第二超声传感器(5)适于以较大空间分辨率感测所述对象的所述内部; c)超声图像产生单元(12),用于根据所述第一超声感测信号产生具有较小空间分辨率的第一超声图像,并且根据所述第二超声感测信号产生具有较大空间分辨率的第二超声图像; -外壳(6),用于至少容纳所述第一超声传感器和所述第二超声传感器,所述外壳(6)适于被导入所述对象中。
2.根据权利要求I所述的成像装置,其中所述成像装置还包括 -第二图像产生设备(7),用于产生所述对象的第三图像; -覆盖单元(14),用于以所述第一超声图像和所述第二超声图像中的至少一个覆盖所述第三图像。
3.根据权利要求2所述的成像装置,其中所述第二图像产生设备(7)包括 a)辐射源(15),用于产生穿过所述对象(2)的辐射(16); b )探测器(17 ),用于根据已穿过所述对象(2 )之后的辐射产生探测值; c)图像重建单元(19),用于根据所产生的探测值重建所述第三图像。
4.根据权利要求2所述的成像装置,其中所述成像装置(I)还包括配准单元(13),所述配准单元(13)用于将所述第一超声图像和所述第二超声图像中的至少一个与所述第三图像配准。
5.根据权利要求I所述的成像装置,其中所述成像装置还包括驱动单元(11),所述驱动单元(11)用于驱动所述第一超声传感器和所述第二超声传感器。
6.根据权利要求5所述的成像装置,其中所述驱动单元(11)经由单个导线(22)连接至所述第一超声传感器(4 )和所述第二超声传感器(5 )。
7.根据权利要求5所述的成像装置,其中所述驱动单元(11)适于从所述第一超声传感器(4)和所述第二超声传感器(5)接收包含所述第一超声感测信号(38)和所述第二超声感测信号(37)的组合的超声感测信号(36),其中所述驱动单元(11)包括滤波单元(23),所述滤波单元(23)用于从所组合的超声感测信号(36)中滤波出所述第一超声感测信号(38)以及所述第二超声感测信号(37 )。
8.根据权利要求I所述的成像装置,其中所述成像装置还包括导航单元(24),所述导航单元(24)用于至少根据所述第一超声图像和所述第二超声图像来将所述外壳(6)导航至所述对象(2)内的期望位置。
9.根据权利要求I所述的成像装置,其中所述第一频率和所述第二频率至少分隔开所述第一超声传感器和所述第二超声传感器的半带宽之和。
10.根据权利要求I所述的成像装置,其中所述第一频率处于I至IOMHz的范围内,并且所述第二频率处于20至40MHz的范围内。
11.一种用于影响对象的内部的影响装置,所述影响装置包括 -用于影响所述对象(2)的影响元件(225); -根据权利要求I所述的用于产生第一超声图像和第二超声图像的成像装置; -导航单元(24),用于至少根据所述第一超声图像和所述第二超声图像,将所述影响元件导航至所述对象的所述内部中的期望位置。
12.一种用于对象(2)的内部成像的成像方法,所述成像方法包括 a)由第一超声传感器(4)以第一频率感测所述对象(2)的所述内部,其中,产生指示所述对象的所述内部的第一超声感测信号; b)由第二超声传感器(5)以第二频率感测所述对象(2)的所述内部,其中,产生指示所述对象(2)的所述内部的第二超声感测信号;其中所述第一频率小于所述第二频率,以使得所述第一超声传感器(4)以较小空间分辨率感测所述对象的所述内部,并且所述第二超声传感器以较大空间分辨率感测所述对象的所述内部; c)由超声图像产生单元(12)根据所述第一超声感测信号产生具有较小空间分辨率的第一超声图像,并且根据所述第二超声感测信号产生具有较大空间分辨率的第二超声图像, 其中至少所述第一超声传感器和所述第二超声传感器容纳在外壳(6)内,所述外壳(6)适于被导入所述对象(2)中。
13.一种用于影响对象的内部的影响方法,所述影响方法包括 -由根据权利要求12所述的成像装置产生第一超声图像和第二超声图像; -由导航单元(24)至少根据所述第一超声图像和所述第二超声图像,将用于影响所述对象(2)的影响元件(225)导航至所述对象的所述内部中的期望位置;以及 -以所述影响元件(225)影响所述对象(2)。
14.一种用于对对象(2)的内部成像的成像计算机程序,所述成像计算机程序包括程序代码模块,当所述计算机程序运行在控制根据权利要求I所述的成像装置的计算机上时,所述程序代码模块用于使计算机执行根据权利要求12所述的成像方法的步骤。
15.一种用于影响对象(2)的内部的影响计算机程序,所述影响计算机程序包括程序代码模块,当所述计算机程序运行在控制根据权利要求11所述的影响装置的计算机上时,所述程序代码模块用于使计算机执行根据权利要求13所述的影响方法的步骤。
全文摘要
本发明涉及一种用于对对象(2)的内部成像的成像装置(1)。该成像装置(1)包括用于以不同频率感测对象内部的第一超声传感器和第二超声传感器,其中来自第一超声传感器的超声感测信号用于产生第一超声图像,并且来自第二超声传感器的超声感测信号用于产生第二超声图像。较大频率相比较小频率,通常提供穿透对象内部的较小深度并且提供较大的空间分辨率。成像装置(1)因此可以提供以不同空间分辨率并且以不同穿透深度同时对对象内部成像的能力。这使成像装置提高了对对象内部成像的质量。
文档编号G01S15/89GK102781337SQ201180006339
公开日2012年11月14日 申请日期2011年1月12日 优先权日2010年1月19日
发明者D·巴比克, J·F·苏伊吉维尔, N·米哈伊洛维奇, S·德拉迪, Y·史 申请人:皇家飞利浦电子股份有限公司