基于多光谱图像的植物叶片水分含量的检测方法及系统的制作方法

文档序号:5950894阅读:312来源:国知局
专利名称:基于多光谱图像的植物叶片水分含量的检测方法及系统的制作方法
技术领域
本发明涉及一种植物叶片水分含量的检测领域,尤其涉及一种基于多光谱图像的植物叶片水分含量的检测方法及系统。
背景技术
胁迫是指一种显著偏离于植物最适生活条件的环境条件。水分胁迫是指环境中水分不足-干旱,或水分过多-洪涝。世界上约有30%以上的土地属于干旱和半干旱地区,干旱严重影响植物的生长发育,并使生态环境日益恶化。如何开发利用干旱、半干旱地区种植植物,已成为一个亟待解决的问题。水分胁迫对植物产生的影响以及植物对此所产生的反 应与适应是植物生理生态学研究的重要课题之一,无论从农业发展或是植物生理生态学理论的发展来说,植物水分胁迫的检测特别是干旱胁迫是非常重要的。目前在国内,植物水分胁迫的检测手段相对落后,绝大部分靠农民长期积累的经验进行感官识别判断,这种主观评定方法受个人经验、色彩分辨力和光线等条件的影响,而且大多数停留在定性判断上,其客观性、准确性较差,容易引起因作物的缺水而导致减产等。植物水分胁迫的快速、无损检测技术综合运用了计算机和光电传感器等高新技术,目前已引起了国内外相关领域的高度重视,迄今为止已经出现了诸如声学检测、叶绿素荧光技术、光谱检测技术、以及机器视觉等技术。可见及近红外多光谱成像技术是一种能够同时采集可见光谱和红外光谱等波段数字图像并进行分析的技术。它结合了光谱分析技术(敏感波段提取)和计算机图像处理技术的长处,同时可以弥补光谱仪抗干扰能力较弱和RGB图像感受范围窄的缺点。针对各种生长环境下植物叶片的不同形态特征,利用可见及近红外多光谱成像技术,获取可见及红外光谱图像中植物叶片的颜色、形状以及纹理等信息,对植物叶片的水分含量进行准确、快速、无损、实时的检测。公布号为“CN 1715880A”的发明专利申请涉及一种便携式植物氮素和水分含量的无损检测方法及测量仪器,该系统包括4波长光谱测量装置,其中4波长光谱测量装置中光源和检测器相对设置,并在光源和检测器之间放置中性参比样或待测叶片,光源和检测器分别与微控制器电连接,微控制器与串行口电路相连接,还分别与显示器和键盘相连接。该检测方法利用所检测的数据Itl与I,计算出Itl与I各波长检测光对鲜叶片的透过率T (T =I/Io),然后利用化学计量算法计算出叶片中的叶绿素、水分和反映氮素水平的相对含量值NI。本发明虽然能实现水分的快速、无损检测,但误差较大。公布号为“CN 101949825A”的发明专利申请公开了一种光开放环境下的叶片水分近红外无损检测装置,包括调制光源,用于向叶片发射按交流规律调制了光线光强的交流光信号;检测电路,将透过叶片的交流光信号转换为光谱数据;计算处理设备,用于从所述光谱数据中计算出叶片的水分浓度,还公开了一种光开放环境下的叶片水分近红外无损检测方法,包括将两种预定波长的光线,第一光线和第二光线先后通过光纤照射到叶片表面;将透射过叶片的两种光线转换为第一光谱数据和第二光谱数据;根据两种光谱数据计算叶片的水分浓度,此发明申请虽能使得叶片水分的检测更为精确,但是操作计算过程较为复杂。

发明内容
本发明提供了一种基于多光谱图像的植物叶片水分含量的检测方法及系统,通过引入多光谱图像分析技术以及图像处理技术,可实现植物叶片的水分含量的准确、快速、无损、实时检测。一种基于多光谱图像的植物叶片水分含量的检测方法,包括以下步骤a、获取样本植物叶片的绿光波段、红光波段和近红外波段的单色图像;b、获取所述单色图像的灰度信息,并根据所述近红外波段的单色图像获取所述样 本植物叶片的灰度纹理特征量;C、将所述灰度信息转化为所述样本植物叶片的反射率信息,通过反射率信息获取叶片植被指数值;d、以所述灰度纹理特征量和所述叶片植被指数值为输入向量,以样本植物叶片的实测水分含量值为输出向量,建立基于多元线性回归的模型;e、按照步骤a c的操作获取待测植物叶片的灰度纹理特征量和叶片植被指数值,带入步骤d中所述模型,即得所述待测植物叶片的水分含量值。所述步骤a中,绿光波段波长为490 570nm,红光波段波长为600 700nm,近红外波段波长为750 850nm。所述步骤b中,由于近红外图像能将物体从背景中分离出来,首先采用中值滤波法对所述近红外波段的单色图像进行预处理,然后对预处理后所述近红外波段的单色图像进行分割,以确定植物叶片在所述近红外波段的单色图像中的位置;根据植物叶片在所述近红外波段的单色图像中的位置,分别确定植物叶片在所述绿光波段的单色图像以及所述红光波段的单色图像中的位置;再分别计算绿光波段、红光波段和近红外波段的单色图像中植物叶片位置的灰度值,即所述单色图像的灰度信息。所述灰度纹理特征量由所述近红外波段的单色图像提取分析得出,所述灰度纹理特征量包括对比度、相关性、能量和一致性,是四个基于灰度共生矩阵的纹理特征量(可参见薄华,马缚龙,焦李成.2006. “图像纹理的灰度共生矩阵计算问题的分析”《电子学报》34,155-158,134.),其中所述对比度反映灰度、色度、饱和度局部变化情况,所述相关性反映了图像纹理的细致程度,所述能量是图像的均衡性或平滑性量度,所述一致性是指图像灰度值、图像的频率特征等的一致性。所述步骤c中,所述植被指数是用于表征地表植被和生长状况的度量参数,与植物叶片水分含量具有相关性,所述植被指数包括归一化植被指数、绿色归一化植被指数和比值植被指数,其中所述归一化植被指数为近红外通道与所述红光通道反射率之差与之和的商,所述绿色归一化植被指数为近红外通道与绿光通道反射率之差与之和的商,比值植被指数为近红外通道与绿光通道反射率的比值,所述通道是指工作波段。所述步骤d中,所述样本植物叶片的实测水分含量值一般可以采用烘干称重法获取。所述多元线性回归是一种较为广泛使用的多元校正方法,它通过对自变量权重的优化,提高回归模型的解释能力和预测效果,能较好地解决多变量的线性回归问题。采用所述多元线性回归建模方法建立模型,能够保证所述模型的精确性。图像的分割质量直接决定了水分特征提取和所述模型的精度,优选二维最大信息熵阈值分割法对所述近红外波段的单色图像进行背景分割,进而获取所述灰度信息和灰度纹理特征量,由于最大熵阈值分割法综合利用了像素点的灰度信息和临域空间信息,较传统图像分割法更有优势。所述灰度信息转化为反射率信息的方法,优选为灰度-反射率校正板法(可参见冯雷,方慧,周伟军,黄敏,何勇.2006.“基于多光谱视觉传感技术的油菜氮含量诊断方法研究”《光谱学与光谱分析》26,1749-1752.),此法可简单、快速地将灰度值转化为反射率。基于以上所述优选方法,优选的植物叶片水分含量测量模型为Y = -278. Hx1-H. 54x2+5. 65x3_535. 85x4+33. 76x5+6. 75x6-2. 04x7+588. 97其中,X1, x2,. . . X7分别为归一化植被指数,绿色归一化植被指数,比值植被指数,对比度,相关性,能量和一致性;Y为植物叶片水分含量值。这里的对比度,相关性,能量和一致性即是指所述灰度纹理特征量中的对比度、相关性、能量和一致性。本发明还提供了一种基于所述检测方法的检测系统,包括用于获取所述单色图像的可见及近红外多光谱成像仪以及用接收所述单色图像并结合实测水分含量值建立模型的计算机。所述可见及近红外多光谱成像仪与计算机之间通过图象采集卡传输数据。所述的可见及近红外多光谱成像仪优选为美国Redlake公司的MS3IOODuncanCamera,可实现对不同波段图像的同步获取,有利于各独立波段图像特征的提取,因无需进行图形配准,也易于实现多光谱图像的像素级运算。所述的图象采集卡优选为美国National Instrument公司的PCI1424或1428数据采集卡,PCI1424或1428数据采集卡不仅与MS3100DuncanCamera相匹配,同时能满足图
像采集通道数、采样率和分辨率等需要。所述的可见及近红外多光谱成像仪采集图像所用光源优选为自然光,采用自然光能够使采得的图像光线均匀,与卤素灯等人造光源相比,采用自然光得到的图像能够更好得进行后续的图像预处理等分析,并且无需对光源进行人为的调节等,而且方便田间操作。所述可见及近红外多光谱成像仪可通过设置可调节角度、高度、移动底座的三脚架或安装有可调节机械伸展臂高度、角度的车辆等固定装置进行固定,分别用于温室及田间使用。相对于现有技术,本发明具有以下优点(I)功能强大,可实现植物叶片水分含量的快速、稳定、非破坏性的诊断,并且做到尽可能地早期检测;(2)准确度高,整个系统受外界环境干扰小,所建立的模型对水分预测准确度高。(3)运算速度快,植物叶片水分检测模型一旦建立以后,可实现农田植物水分信息的实时获取与诊断。(4)系统简单,整个检测系统只由一个可见及近红外多光谱成像系统和一台计算机组成,;(5)使用方便,当检测系统的各组件都连接完毕后,最后的图像采集分析工作通过图像分析处理软件完成。


图I是本发明植物叶片水分含量的检测方法流程图;图2是模型验证时20个样本叶片的实测水分含量值与拟合值之间的关系。
具体实施方式
本发明用于检测植物叶片水分的系统包括可见及近红外多光谱成像仪和计算机,可见及近红外多光谱成像仪与计算机之间通过图象采集卡传输数据,图像采集卡连接于可见及近红外多光谱成像仪上,可见及近红外多光谱成像仪通过RS-232串口线及图象采集卡数据线和计算机连接,所述计算机设有图像处理软件,其中,可见及近红外多光谱成像仪为美国Redlake公司的MS3100Duncan Camera,底部设有可调节角度、高度、移动底座的三脚架,镜头垂直向下采集图像信息,图象采集卡为美国National Instrument公司的PCI1424或1428数据采集卡,可见及近红外多光谱成像仪采集图象所用光源为自然光。利用可见及近红外多光谱成像仪获取72个植物叶片的在绿光波段(550nm)、红光波段^50nm)、近红外波段(SOOnm)三个波段通道的单色图像,所述单色图像通过图象采集卡传输至计算机,通过计算机上的图像处理软件获取72个植物叶片的灰度纹理特征量(对比度、相关性、能量和一致性)和植被指数值(归一化植被指数,绿色归一化植被指数和比值植被指数),其中52个植物叶片作为样本植物叶片,其灰度纹理特征量和植被指数值用于模型的校正。在建模过程中,以52个样本植物叶片的四种灰度纹理特征量和三种类型的植被指数作为模型的输入,以叶片的水分含量为输出,对灰度纹理特征量、植被指数与叶片水分含量之间进行基于多元线性回归理论的数值拟合,可得以下模型Y = -278. Hx1-H. 54x2+5. 65x3_535. 85x4+33. 76x5+6. 75x6_2. 04x7+588. 97其中,Xl,x2,. . . X7分别对应归一化植被指数,绿色归一化植被指数,比值植被指数,对比度,相关性,能量和一致性;Y为叶片水分含量值。以其余20个植物叶片作为待测植物叶片,将其灰度纹理特征量和植被指数值代入上述模型,得出拟合水分含量值;同时,利用烘干称重法获取20个待测植物叶片的实测水分含量值,如下表所示
权利要求
1.一种基于多光谱图像的植物叶片水分含量的检测方法,其特征在于,包括以下步骤 a、获取样本植物叶片的绿光波段、红光波段和近红外波段的单色图像; b、获取所述单色图像的灰度信息,并根据所述近红外波段的单色图像获取所述样本植物叶片的灰度纹理特征量; C、将所述灰度信息转化为所述样本植物叶片的反射率信息,通过反射率信息获取叶片植被指数值; d、以所述灰度纹理特征量和所述叶片植被指数值为输入向量,以样本植物叶片的实测水分含量值为输出向量,建立基于多元线性回归的模型; e、按照步骤a c的操作获取待测植物叶片的灰度纹理特征量和叶片植被指数值,带入步骤d中所述模型,即得所述待测植物叶片的水分含量值。
2.如权利要求I所述的基于多光谱图像的植物叶片水分含量的检测方法,其特征在于,所述步骤b中,首先采用中值滤波法对所述近红外波段的单色图像进行预处理,然后对预处理后所述近红外波段的单色图像进行分割,以确定植物叶片在所述近红外波段的单色图像中的位置;根据植物叶片在所述近红外波段的单色图像中的位置,分别确定植物叶片在所述绿光波段的单色图像以及所述红光波段的单色图像中的位置;再分别计算绿光波段、红光波段和近红外波段的单色图像中植物叶片位置的灰度值,即所述单色图像的灰度信息。
3.如权利要求2所述的基于多光谱图像的植物叶片水分含量的检测方法,其特征在于,采用二维最大信息熵阈值分割法对所述近红外波段的单色图像进行背景分割,进而获取所述灰度信息和灰度纹理特征量。
4.如权利要3所述的基于多光谱图像的植物叶片水分含量的检测方法,其特征在于,所述反射率信息是通过标准化的灰度-反射率校正板将所述灰度信息转化所得。
5.如权利要求4所述的基于多光谱图像的植物叶片水分含量的检测方法,其特征在于,所述模型为Y = -278. Hx1-H. 54x2+5. 65x3_535. 85x4+33. 76x5+6. 75x6-2. 04x7+588. 97 其中,X1, X2, . . . X7分别为归一化植被指数,绿色归一化植被指数,比值植被指数,对比度,相关性,能量和一致性;Y为植物叶片水分含量值。
6.一种实施权利要求I 5任一项所述的检测方法的检测系统,其特征在于,包括用于获取所述单色图像的可见及近红外多光谱成像仪以及用接收所述单色图像并结合实测水分含量值建立模型的计算机。
7.如权利要求6所述的检测系统,其特征在于,所述可见及近红外多光谱成像仪与计算机之间通过图象采集卡传输数据。
全文摘要
本发明公开了一种基于多光谱图像的植物叶片水分含量的检测方法及系统,检测方法包括以下步骤a、获取样本植物叶片的绿光波段、红光波段和近红外波段的单色图像;b、获取单色图像的灰度信息,并获取所述样本植物叶片的灰度纹理特征量;c、将灰度信息转化为样本植物叶片的反射率信息,通过反射率信息获取叶片植被指数值;d、以灰度纹理特征量和叶片植被指数值为输入向量,以样本植物叶片的实测水分含量值为输出向量,建立模型;e、按照步骤a~c的操作获取待测植物叶片的灰度纹理特征量和叶片植被指数值,带入步骤d中模型,即得待测植物叶片的水分含量值。该方法能够实现对植物叶片的水分含量进行准确、快速、无损、实时的检测。
文档编号G01N21/25GK102721651SQ20121020454
公开日2012年10月10日 申请日期2012年6月18日 优先权日2012年6月18日
发明者何勇, 邵咏妮 申请人:浙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1