基于表面增强的水质检测方法

文档序号:6174594阅读:408来源:国知局
基于表面增强的水质检测方法
【专利摘要】本发明提供一种基于表面增强的水质检测方法,方法包括:S1:将待测水溶液置于金属纳米柱阵列的夹层中,光源从三角棱镜的一边入射,并在所述三角棱镜的另一边接收所述光源的反射光;S2:改变所述金属纳米柱阵列之间间隔的周期,根据接收到的反射光以及通过有限时域差分计算得到不同周期对应的透射光谱;S3:根据所述透射光谱的共振波长判断待测水溶液中的杂质。本发明采用有限时域差分计算透过位于纳米柱阵列夹层的待测水溶液的反射光,得到的透射光谱的波谷值比理论的模拟值要大。通过金属纳米柱阵列发生等离子共振与待测水溶液中的杂质的吸收光谱相作用,对透射光谱的波谷值起增强作用,从而大幅度提高了水质检测的精度。
【专利说明】基于表面增强的水质检测方法
【技术领域】
[0001]本发明涉及水质检测【技术领域】,特别涉及一种基于表面增强的水质检测方法。
【背景技术】
[0002]随着经济社会的快速发展,人们生活水平逐渐提高,“健康饮水”的生活意识也不断提升。人们对饮用水源一般只能从浊度、味觉、嗅觉等方面对水质进行检测。
[0003]传统的水质检测技术通常采用指示剂滴定法和电解器水质检验法。其中指示剂滴定法主要通过使用不同的化学试剂滴入待测水溶液中,通过反应后的颜色来判断待检物的PH值(即酸碱度)。
[0004]然而对于传统水质检测技术,无法实现实时检测,只能将相关的测试样品带到实验室用齐全的设备加上复杂的化学反应进行检测,因此,检测精度相对较低。

【发明内容】

[0005](一)解决的技术问题
[0006]本发明解决的技术问题是:如何提供一种基于表面增强的水质检测方法,提高水质检测的精度。
[0007](二)技术方案
[0008]为解决上述技术问题,本发明实施例提供了一种基于表面增强的水质检测方法,所述方法包括:
[0009]S1:将待测水溶液置于金属纳米柱阵列的夹层中,光源从三角棱镜的一边入射,并在所述三角棱镜的另一边接收所述光源的反射光;
[0010]S2:改变所述金属纳米柱阵列之间间隔的周期,根据接收到的反射光以及通过有限时域差分计算得到不同周期对应的透射光谱;
[0011]S3:根据所述透射光谱的共振波长判断待测水溶液中的杂质。
[0012]优选地,所述金属纳米柱阵列的夹层的高度为所述金属纳米柱阵列的高度;
[0013]所述三角棱镜除步骤SI中两个边以外的边与所述金属纳米柱阵列垂直固定,所述金属纳米柱阵列与衬底垂直固定。
[0014]优选地,所述金属纳米柱阵列之间形成间隔周期相等。
[0015]优选地,所述金属纳米柱阵列的高度为150nm?750nm。
[0016](三)有益效果
[0017]本发明通过提供一种基于表面增强的水质检测方法,采用有限时域差分法计算透过位于金属纳米柱阵列夹层的待测水溶液的反射光,得到的透射光谱的波谷值比理论的模拟值要大。通过金属纳米柱阵列发生等离子共振与待测水溶液中的杂质的吸收光谱相作用,对透射光谱的波谷值起到放大和增强作用,从而大幅度提高了水质检测的精度。
【专利附图】

【附图说明】[0018]图1是本发明实施例提供的方法流程图;
[0019]图2是本发明实施例提供的纳米柱结构示意图;
[0020]图3是本发明实施例提供的水质检测装置;
[0021]图4a为不同周期纳米柱阵列的理论模拟透射光谱;
[0022]图4b为本发明实施例提供的不同周期金属纳米柱阵列的透射光谱;
[0023]图5本发明实施例提供的葡萄糖吸收光谱的增强效果图。
【具体实施方式】
[0024]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0025]实施例1:
[0026]本发明实施例还提供了一种基于表面增强的水质检测方法,方法流程图如图1所示,包括:
[0027]S1:将待测水溶液置于金属纳米柱阵列的夹层中,光源从三角棱镜的一边入射,并在所述三角棱镜的另一边接收所述光源的反射光;
[0028]其中,纳米柱结构示意图如图2所示,该结构包括纳米柱结构以及三角棱镜2。其中,纳米柱结构如图3所示,包括衬底3和在所述衬底3的一侧形成的金属纳米柱阵列4。所述三角棱镜2的一个边与所述金属纳米柱阵列远离所述衬底的一侧紧贴,形成待测水溶液夹层1,该待测水溶液夹层I即为金属纳米柱阵列的夹层。所述金属纳米柱阵列的夹层的高度为所述金属纳米柱阵列的高度;所述三角棱镜除步骤SI中两个边以外的边与所述金属纳米柱阵列垂直固定,所述金属纳米柱阵列与衬底垂直固定。所述金属纳米柱阵列的高度为150nm?750nm,在本发明实施例中采用金属纳米柱阵列为180nm的高度进行测量。
[0029]所述纳米柱结构的形成过程为:首先通过使用电子束蒸镀(electron-beamevaporation)的方法将一定厚度(在本发明中为180纳米)的银(silver, Ag)沉积在石英(quartz)衬底3上,然后通过使用激光全息光刻技术(interference lithography)制备得到大面积的金属纳米柱阵列4功能区域。
[0030]在实际检测时,待测水溶液需要置于水质检测装置的待测水溶液夹层内,对于该待测水溶液夹层的封闭性根据实际情况具体设置,本发明实施例在此不作赘述。
[0031]光源作为入射光从三角棱镜的不与金属纳米柱阵列垂直固定的一边入射,经过三角棱镜、待测水溶液进行反射后得到反射光,反射光从不与金属纳米柱阵列垂直固定的另一边射出,利用接收器对该反射光进行接收。
[0032]S2:改变金属纳米柱阵列之间间隔的周期,根据接收到的反射光以及通过有限时域差分计算得到不同周期对应的透射光谱;
[0033]—般来说,基于不同的金属纳米柱间距(inter-rod spacing),即金属纳米柱阵列之间形成间隔的周期,在本发明实施例中以下简称金属纳米柱阵列周期,有两种不同的耦合体系,分别叫做弱稱合体系(weak coupling regime)和强稱合体系(strong couplingregime)。对于相对较大的金属纳米柱阵列周期,远场偶极相互作用占主导地位。当金属纳米柱阵列周期明显地减小时,相邻的金属纳米柱能够激发出很强的近场耦合。对于正方形结构的金属纳米柱阵列,这种柱与柱之间的耦合作用可以用双极子(dipole)模型来估计。金属纳米柱阵列也可以为圆柱形。双极子模型可以很好地解释正方形的纳米柱阵列所呈现的局域表面等离子体共振的谱线线形,共振是在周期结构的衍射光栅和局限于金属纳米柱表面的局域表面等离子体相互作用下形成的。这种相互作用受到阵列的周期布置的极大影响(最主要的则是周期的大小)。
[0034]所述金属纳米柱阵列之间形成间隔周期相等。当对金属纳米柱阵列之间间隔的周期进行调整时,则共振波长不同,如图4所示,图4a为不同周期纳米柱阵列的理论模拟透射光谱,当金属纳米柱阵列之间间隔的周期分别为250nm、350nm和450nm时,共振发生时共振波长分别为750nm、850nm和980nm,上述共振波长对应的透射光谱的透射值分别为18%、4%和1% ;图4b为本发明实施例提供的不同周期纳米柱阵列的透射光谱,当金属纳米柱阵列之间间隔的周期分别为250nm、350nm和450nm时,共振发生时共振波长分别为760nm、910nm和1090nm,上述共振波长对应的透射光谱的透射值分别为38%、25%和40%。
[0035]由图4中的两个图可以得出,基于表面等离子共振波谷在透射光谱中随着金属纳米柱阵列之间间隔的周期的变化而变化,周期越大,共振波长越大。本发明实施例中,透射光谱的共振波谷的峰值相对于理论模拟值起到放大和增强的作用。通过金属纳米柱阵列发生等离子共振与待测水溶液中的杂质的吸收光谱相作用,从而大幅度提高了水质检测的精度。
[0036]S3:根据所述透射光谱的共振波长判断待测水溶液中的杂质。
[0037]其中,待测水溶液的杂质分别对应不同的共振波长,根据得到的透射光谱的共振波长,获知待测水溶液中的杂质类型。
[0038]本发明实施例提供了葡萄糖吸收谱的增强效果图。如图5所示,图5中上部图为葡萄糖吸收光谱的增强效果图,其中,图中实线为理论模拟值,虚线为基于本发明实施例提供的方法的吸收值,如果将吸收峰附近的谱线进行局部放大,这种增强作用会更为明显,如图5下部图所示,可以看出相应的增强效应平均约为2?3倍左右。其中,吸收光谱、透射光谱和反射光谱的关系为三者之和为I。
[0039]在检测过程中,待测水溶液均匀分散在金属纳米柱阵列中,在光谱测试过程中,待测水溶液中的不同物质的吸收光谱可以和金属纳米柱阵列所对应的表面等离子共振相耦合,起到很强的增强作用,使得原本含量很低的物质也可以被准确无误的检测出来,并且,不同的物质对应的吸收光谱不同,因此,可以通过一次光谱检测把待测水溶液中的多种不同的物质同时检测出来,并且不受待检物质浓度的任何影响,整个检测过程高效、省时、易操作、精度高。
[0040]以上实施方式仅用于说明本发明,而并非对本发明的限制,有关【技术领域】的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。
【权利要求】
1.一种基于表面增强的水质检测方法,其特征在于,所述方法包括: S1:将待测水溶液置于金属纳米柱阵列的夹层中,光源从三角棱镜的一边入射,并在所述三角棱镜的另一边接收所述光源的反射光; S2:改变所述金属纳米柱阵列之间间隔的周期,根据接收到的反射光以及通过有限时域差分计算得到不同周期对应的透射光谱; S3:根据所述透射光谱的共振波长判断待测水溶液中的杂质。
2.如权利要求1所述的方法,其特征在于,所述金属纳米柱阵列的夹层的高度为所述金属纳米柱阵列的高度; 所述三角棱镜除步骤SI中两个边以外的边与所述金属纳米柱阵列垂直固定,所述金属纳米柱阵列与衬底垂直固定。
3.如权利要求1所述的方法,其特征在于,所述金属纳米柱阵列之间形成间隔周期相坐寸ο
4.如权利要求1所述的方法,其特征在于,所述金属纳米柱阵列的高度为150nm?750nmo
【文档编号】G01N21/31GK103439277SQ201310393258
【公开日】2013年12月11日 申请日期:2013年9月2日 优先权日:2013年9月2日
【发明者】吕江涛, 杨琳娟, 闫冬梅, 谷琼婵, 刘艳, 吴朝霞, 杨明, 马淑华, 舒冬梅, 王凤文, 司光远 申请人:东北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1