可移动式高功率激光光束波前测量装置及其测量方法
【专利摘要】一种可移动式高功率激光光束波前测量装置,待测高功率激光光束通过缩束器后由聚焦透镜聚焦,然后通过光学衰减片调整光强以后经过分光棱镜分成两束,利用其中一个光斑探测器探测待测光束的焦点位置进行光路调整,当待测光束的焦点位置调整到校准的焦点位置时代表光路定位完成,此时利用另外一个光斑探测器记录一幅待测光束经过随机相位板后的衍射光斑即可获得待测光束的波前测量。此装置固定在一个多孔固定板上,经过一次校准以后可以移动进行波前测量,十分便携,适用于连续和脉冲激光光束测量,成本低于现有常用的干涉测量波前仪器,并且分辨率高。由于装置结构简单、体积小,满足于高功率激光驱动器中光束波前测量的要求。
【专利说明】 可移动式高功率激光光束波前测量装置及其测量方法
【技术领域】
[0001]本发明涉及可移动式高功率激光光束波前测量及其测量方法,该装置部件固定在一个多孔固定板上,经过一次校准以后可以移动进行波前测量,十分便携,适用于连续和脉冲激光光束测量,成本低于现有常用的干涉测量波前仪器,并且分辨率高。由于装置结构简单、体积小,满足于高功率激光驱动器中光束波前测量的要求。
技术背景
[0002]在高功率激光装置的系统中,光束质量控制对于提升激光能量密度具有十分重要的作用,光束质量的好坏直接关系着最终物理实验的成败。通常采用对高功率激光光束发生的波前畸变进行控制和纠正以获得高质量的激光光束,只有准确知道波前畸变的大小和畸变发生的位置,才能采用有效的措施进行纠正并提高光束质量,因此对高功率激光光束波前进行精确的测量是一项十分重要的工作。实际中被测量的光束是脉冲激光,在相当短的脉冲时间内很难获取波前信息,而且由于装置内部空间非常有限,波前测量无法采用干涉的方法,因为干涉测量需要高度隔振的大型光学平台和规整的平行或者球面参考光。国内的高功率固体激光器输出光束的波前一般采用自适应光学系统中的哈特曼传感器进行测量,但是由于传感器阵列单元数有限,采用这种方法对波前的测量精度受到限制,并且这种方法还有系统复杂,对工作环境要求高的缺点。2008年美国Rochester大学的研究人员采用了“相位恢复算法”的原理在世界第二大激光装置上进行了激光光束波前测量,并获得了较高的检测成功率,但是它存在体积太大而不能放入靶室测量等诸多需要改进的地方。因此对于高功率激光装置的系统中光束波前测量新方法的研究具有十分重要的意义。
【发明内容】
[0003]本发明针对上述高功率激光装置的系统波前测量的问题,设计出一种可移动式高功率激光光束波前测量装置,该装置装置固定在一个多孔固定板上,经过一次校准以后可以移动进行波前测量,十分便携,适用于连续和脉冲激光光束测量,成本低于现有常用的干涉测量波前仪器,并且分辨率高。由于装置结构简单、体积小,满足于高功率激光驱动器中光束波前测量的要求。
[0004]为解决上述问题,本发明的技术方案如下:
[0005]一种可移动式高功率激光光束波前测量装置,其特点在于,包括:沿待测高功率激光光束方向依次放置的缩束比可选的缩束器、聚焦透镜、第一光学衰减片和分光棱镜,该分光棱镜将光束分成两路光束,沿一路光束方向依次放置第二光学衰减片和第一光斑探测器,沿另一路光束方向依次放置一可调小孔光阑、随机相位板和第二光斑探测器;所述的第一光斑探测器和第二光斑探测器分别与计算机连接。
[0006]本装置还包括多孔固定板和设置在该多孔固定板上的直线滑动导轨及二维电动位移台;
[0007]所述的缩束器、聚焦透镜、第一光学衰减片、分光棱镜、小孔光阑、随机相位板、第二光学衰减片、第一光斑探测器和第二光斑探测器分别通过固定杆与所述的多孔固定板固定;
[0008]所述的二维电动位移台与计算机相连。
[0009]利用所述的测量装置进行高功率激光光束波前的测量方法,其特点在于,该方法包括以下步骤:
[0010]I)以待测高功率激光光束为基准,确定光轴,沿待测光入射方向分别放置缩束比可选缩束器、聚焦透镜、光学衰减片和分光棱镜,光学元件与待测光束垂直并且中心保持在光轴上;
[0011]2)根据待测高功率激光光束直径大小选择合适的缩束器,使待测光束聚焦后通过随机相位板后的衍射光斑尺寸大小与光斑探测器靶面大小基本相等;
[0012]3)选择合适的光学衰减片,使待测光束聚焦后通过随机相位板后的衍射光斑光强最大值与光斑探测器的饱和值相当;
[0013]4)选择合适的光学衰减片,使分出来的光束聚焦到光斑探测器的焦点光强值与饱和值相当;
[0014]5)移动直线滑动导轨,使光斑探测器的靶面在垂直待测光入射方向光束的焦点的位置,此时记录的焦斑分布送入计算机保存;
[0015]6)在待测光入射方向的光束焦点处放置一可调小孔光阑,调整小孔光阑孔径的大小,在保证焦点处的光束全部通过小孔光阑的前提下使得光阑孔径尽可能的小;
[0016]7)随机相位板的相位分布已知,尺寸大小满足待测光束全部通过,由二维电动位移台控制送入光路中;
[0017]8)用直尺测量出聚焦透镜到随机相位板的直线距离Lci,小孔光阑到随机相位板的直线距离L1,随机相位板到光斑探测器靶面的直线距离L2 ;
[0018]9)整个装置的部件用固定支杆固定在多孔固定板上,并且各自位置确定;
[0019]10)移动测量时,只需移动固定在多孔固定板上的所有部件,选择合适的缩束器保证待测光束通过可调小孔光阑并使光斑探测器观察到的焦点与计算机记录保持的焦点位置重合;
[0020]11) 二维电动位移台和光斑探测器与计算机的输入端相连,由计算机程序控制二维电动位移台的移动位移大小,使待测光束能全部通过随机相位板,光斑探测器记录的光斑强度分布输入计算机进行数据处理;
[0021]12)所述的计算机采用下面的迭代运算实现待测高功率激光光束波前测量:
[0022]①在可调小孔光阑处给焦点光波分布一初始的随机猜测值的光阑孔径大小限制函数S1,初始光阑半径1^
[0023]当实际光阑半径在初始光阑半径1^范围以内,则函数S1取值为1,代表光可以透过光阑,
[0024]当实际光阑半径在初始光阑半径Γι范围以外,则函数S1取值为0,代表光不能透过光阑,
[0025]初始小孔光阑面上的光波分布为/Ocw1 =的* S1;
[0026]②第η次传播到随机相位板面上的照明光函数为///〃? = ^Uocusii ,Li),Zs(JocusniL1)表示第η次迭代光波focusn传播距离L1的过程;
[0027]③在随机相位板面上,随机相位板的的分布函数为P,第η次照明光通过随机相位板后的出射波函数为= ^ifocusn,L1)*P ;
[0028]④第η次光斑探测器靶面上衍射光斑的复振幅分布而7:, = 3(ex//,,, U , 7s(ex//,?L2)
表示第η次迭代光波exitn传播距离L2的过程;
[0029]⑤光斑探测器实际记录的光斑分布为I,复振幅分布diffjP^Z的误差
error =X(|?////;,.1->/7) ,/[/ ;
[0030]⑥对光斑探测器(9)靶面上的衍射光斑的复振幅分布进行更新,得到diff’n,diff ? = sfl exp(/'(//,,),Ψη 为 diffn 的相位分布;
[0031]⑦反方向传播diff’ ?到随机相位板面上得到= 3 '((IiJfirL2) , 3 \diff >rU)
表示第η次迭代光波diff’ n反方向传播距离L2的过程;
[0032]⑧更新随机相位板面上的照明光函数illu’ n = exit’ n/P ;
[0033]⑨反方向传播illu’ n到可调小孔光阑面上得到focus ? = 3 ' (/7/" ,,.L1),3 1 (///〃?.L1)表示第η次迭代光波illu’η反方向传播距离L1的过程;
[0034]⑩增大小孔光阑半径为rn+1,半径rn+1范围以内光阑孔径大小限制函数Sn+1取值为1,半径rn+1范围以外Sn+1函数取值为0,更新后的小孔光阑面上的光波分布为f0CUSn+1 =focus’ n*Sn+1作为第n+1次迭代的初始光波分布;
[0035]?重复步骤②到⑩,直至误差err0rn变化非常小甚至不变时迭代过程停止,此时更新后的随机相位板面上的照明光函数为illu ;
[0036]?反方向传播iIIu到聚焦透镜面上得到Iem = 3 1 (illu, Ln), 3 1 (///".L(i)表示光波illu反方向传播距离Ltl的过程;
[0037]?聚焦透镜面上波函数lens分布乘以选择的缩束器的缩束比k即获得待测高功率激光光束波前分布。
[0038]本发明的技术效果:
[0039]I)装置固定在一个多孔固定板上,经过一次校准以后可以移动进行波前测量,十分便携,适用于任意光路中,只需要记录一幅衍射光斑,适用于连续和脉冲激光光束测量。
[0040]2)装置结构简单、体积小,满足于高功率激光驱动器中光束波前测量的要求。
[0041]3)该装置部件构成简单,成本低于现有常用的干涉测量波前仪器,并且分辨率高,由于波前测量在各个领域都有十分重要的应用,需求量比较大,该装置具有十分广阔的市场前景。
【专利附图】
【附图说明】
[0042]下面结合附图和【具体实施方式】对本发明作进一步详细的说明。
[0043]图1是x-z平面上的可移动式高功率激光光束波前测量装置示意图。
[0044]图2是y-ζ平面上的可移动式高功率激光光束波前测量装置示意图。
[0045]图3是χ-y平面上的可移动式高功率激光光束波前测量装置示意图。
[0046]图中:1-缩束器,2-聚焦透镜,3-光学衰减片,4-分光棱镜,5-小孔光阑,6_随机相位板,7-光学衰减片,8-光斑探测器,9-光斑探测器,10- 二维电动位移台,11-多孔固定板,12-22固定支杆,23-直线滑动导轨。
【具体实施方式】
[0047]下面结合实施例和附图对本发明作进一步说明,但不应以此实施例限制本发明的保护范围。
[0048]请先参阅图1,图1是x-z平面上的可移动式高功率激光光束波前测量装置示意图,如图所示,待测高功率激光光束通过缩束比可选缩束器I后由聚焦透镜2聚焦,然后通过第一光学衰减片3调整光强以后经过分光棱镜4分成两束,其中一束光经过第二光学衰减片7调整光强后利用第一光斑探测器8探测待测光束的焦点位置进行光路调整,当待测光束的焦点位置调整到校准的焦点位置时代表光路定位完成,另外一束光焦点处放置一可调小孔光阑5,通过光阑后照射到随机相位板6,此时利用第二光斑探测器9记录一幅衍射光斑即可获得待测光束的波前测量,第一光斑探测器8、第二光斑探测器9与计算机的输入端相连。图2所示该装置部件缩束器1、聚焦透镜2、第一光学衰减片3、分光棱镜4、小孔光阑5、随机相位板6、第二光学衰减片7、第一光斑探测器8和第二光斑探测器9分别通过固定杆12-20固定在多孔固定板11上,各自位置保持确定。图3所示用一个直线滑动导轨23移动光斑探测器8来寻找焦点的位置,当焦点位置确定以后,第一光斑探测器8位置保持确定,固定支杆21和22分别用来把第二光学衰减片7和第一光斑探测器8固定在多孔固定板11上。
[0049]随机相位板6采用相位板为O和π随机分布P,最小单元的大小为7.4 μ m,可调小孔光阑5处平面焦点位置距离随机相位板6平面L1为3.5cm,普通(XD作为第一光斑探测器8和第二光斑探测器9,其分辨率为2048像素X 2048像素,最小单元为7.4 μ m,随机相位板6平面到第二光斑探测器9的距离L2为6cm,记录高功率脉冲激光光束时利用外部触发信号触发C⑶记录一幅衍射光斑,光斑分布为I,输入计算机进行迭代运算。
[0050]利用该装置实现可移动式高功率激光光束波前测量,步骤如下:
[0051]I)根据待测高功率激光光束直径大小选择合适的缩束器1,本实施例中缩束器I的缩束比k为5,使待测光束聚焦后通过随机相位板6后的衍射光斑尺寸大小与第二光斑探测器9靶面大小基本相等;
[0052]2)选择合适的第一光学衰减片3,使待测光束聚焦后通过随机相位板6后的衍射光斑光强最大值与第二光斑探测器9的饱和值相当;
[0053]3)移动测量时,只需移动固定在多孔固定板11上的所有部件,调制整个装置的高度和方向,保证待测光束通过可调小孔光阑5并使第一光斑探测器8观察到的焦点与计算机记录保持的焦点位置重合;
[0054]4) 二维电动位移台10和第二光斑探测器9与计算机的输入端相连,由计算机程序控制二维电动位移台10的移动位移大小,使得待测光束全部通过随机相位板6,第二光斑探测器9记录的光斑强度分布输入计算机进行数据处理;
[0055]5)所述的计算机采用下面的迭代运算实现待测高功率激光光束波前测量:
[0056]①在小孔光阑5处给焦点光波分布一初始的随机猜测值奶,光阑孔径大小限制函数S1, Γι为初始光阑半径,本实施例中初始光阑半径η为3mm,半径Γι范围以内S1函数取值为1,Γ!范围以外S1函数取值为O,初始小孔光阑5面上的光波分布为=^1 ;
[0057]②第η次传播到随机相位板6面上的照明光函数为W? = ^(Jocusii--?),3(/οα--.Α)表示第η次迭代光波f0Cusn传播距离L1的过程;
[0058]③在随机相位板6面上,随机相位板的的分布函数为P,第η次照明光通过随机相位板后的出射波函数为= Zs(JocusirLi)*P ;
[0059]④第η次第二光斑探测器9靶面上衍射光斑的复振幅分布difj], = ^(CxiiirL1),3(?77,,.L2)表示第n次迭代光波exitj#播距离L2的过程;
[0060]⑤第二光斑探测器9实际记录的光斑分布为I,复振幅分布(^〖匕和^/7的误差error” = ^(卜////:,| — >/7) /[ / ;
[0061]⑥对光斑探测器9靶面上的衍射光斑的复振幅分布进行更新,得到diff’n,diff,, = V/ exp(/i//?)? Ψη 为 diffn 的相位分布;
[0062]⑦反方向传播diff’ n到随机相位板6面上得到exit= 7s 1 (Cliff irL2),
3 ^/故__,,.乙)表示第η次迭代光波diff’ n反方向传播距离L2的过程;
[0063]⑧更新随机相位板6面上的照明光函数illu’ n = exit’ n/P ;
[0064]⑨反方向传播iIlu’ n到可调小孔光阑5面上得到focus" = 3-1 (/77//
3 1 (///〃_?.V)表示第η次迭代光波illu’η反方向传播距离L1的过程;
[0065]⑩增大小孔光阑5半径为rn+1,半径rn+1范围以内光阑孔径大小限制函数Sn+1取值为1,半径rn+1范围以外Sn+1函数取值为0,更新后的小孔光阑5面上的光波分布为f0CUsn+1=focus’n*Sn+1作为第n+1次迭代的初始光波分布;
[0066]?重复步骤②到⑩,直至误差err0rn变化非常小甚至不变时迭代过程停止,此时更新后的随机相位板6面上的照明光函数为illu ;
[0067]?反方向传播illu到聚焦透镜2面上得到丨u1、= 3 '(/////.L0), 3 '(illu.Lu)表示光波illu反方向传播距离Ltl的过程;
[0068]?聚焦透镜2面上波函数lens分布乘以选择的缩束器I的缩束比大小k = 5即获得待测高功率激光光束波前分布。
[0069]实验结果表明,本发明装置成功实现了可移动式高功率激光光束波前测量,该装置固定在一个多孔固定板上,经过一次校准以后可以移动进行波前测量,十分便携,适用于连续和脉冲激光光束测量,成本低于现有常用的干涉测量波前仪器,并且分辨率高。由于装置结构简单、体积小,满足于高功率激光驱动器中光束波前测量的要求。
【权利要求】
1.一种可移动式高功率激光光束波前测量装置,其特征在于,包括:沿待测高功率激光光束方向依次放置的缩束比可选的缩束器(I)、聚焦透镜(2)、第一光学衰减片(3)和分光棱镜(4),该分光棱镜(4)将光束分成两路光束,沿一路光束方向依次放置第二光学衰减片(7)和第一光斑探测器(8),沿另一路光束方向依次放置一可调小孔光阑(5)、随机相位板(6)和第二光斑探测器(9);所述的第一光斑探测器⑶和第二光斑探测器(9)分别与计算机连接。
2.根据权利要求1所述的可移动式高功率激光光束波前测量装置,其特征在于,还包括多孔固定板(11)和设置在该多孔固定板(11)上的直线滑动导轨(23)及二维电动位移台(10); 所述的缩束器(I)、聚焦透镜(2)、第一光学衰减片(3)、分光棱镜(4)、小孔光阑(5)、随机相位板¢)、第二光学衰减片(7)、第一光斑探测器(8)和第二光斑探测器(9)分别通过固定杆与所述的多孔固定板(11)固定; 所述的二维电动位移台(10)与计算机相连。
3.利用权利要求1所述的测量装置进行高功率激光光束波前测量方法,其特征在于,该方法包括以下步骤: 1)以待测高功率激光光束为基准,确定光轴,沿待测光入射方向依次放置缩束比可选的缩束器(I)、聚焦透镜(2)、第一光学衰减片(3)和分光棱镜(4),各光学元件与待测光束垂直且中心保持在光轴上; 2)根据待测高功率激光光束直径大小选择合适的缩束器(I),使待测光束被聚焦后通过随机相位板(6)后的衍射光斑尺寸大小与第二光斑探测器(9)靶面大小基本相等; 3)选择合适的第一光学衰减片(3),使待测光束聚焦后通过随机相位板(6)后的衍射光斑光强最大值与第二光斑探测器(9)的饱和值相当; 4)选择合适的第二光学衰减片(7),使分出来的光束聚焦到第一光斑探测器(8)的焦点光强值与饱和值相当; 5)移动直线滑动导轨(23),当第一光斑探测器(8)的靶面在垂直待测光入射方向光束的焦点的位置,记录此时的焦斑分布,送入计算机保存; 6)在分光棱镜(4)分光后的一路光束焦点处放置一可调的小孔光阑(5),调整小孔光阑(5)孔径的大小,在保证焦点处的光束全部通过小孔光阑(5)的前提下使得光阑孔径尽可能的小; 7)随机相位板¢)的相位分布已知,尺寸大小满足待测光束全部通过,由二维电动位移台(10)控制送入光路中; 8)用直尺测量出聚焦透镜(2)到随机相位板(6)的直线距离Ltl,小孔光阑(5)到随机相位板(6)的直线距离L1,随机相位板(6)到第二光斑探测器(9)靶面的直线距离L2; 9)整个装置的部件用固定支杆(12-22)固定在多孔固定板(11)上,并且各自位置确定; 10)移动测量时,只需移动固定在多孔固定板(11)上的所有部件,待测光束通过缩束器(I)和可调小孔光阑(5)并使第一光斑探测器(8)观察到的焦点与计算机记录保持的焦点位置重合; 11)由计算机程序控制二维电动位移台(10)的移动,带动随机相位板(6)移动至使待测光束全部通过随机相位板¢)的位置,第二光斑探测器(9)记录的光斑强度分布输入计算机进行数据处理; 12)利用计算机进行待测高功率激光光束波前测量。
4.根据权利要求3所述的高功率激光光束波前测量方法,其特征在于,所述的步骤12)利用计算机进行待测高功率激光光束波前测量,具体如下: ①在小孔光阑(5)处给焦点光波分布一初始的随机猜测值奶,光阑孔径大小限制函数S1,初始光阑半径r1; 当实际光阑半径在初始光阑半径!^范围以内,则函数S1取值为1,代表光可以透过光阑, 当实际光阑半径在初始光阑半径A范围以外,则函数S1取值为O,代表光不能透过光阑, 初始小孔光阑(5)面上的光波分布为介CiW1 =的*51; ②第η次传播到随机相位板(6)面上的照明光函数为—n= Ajocrnu ,I1),^./OcmvL1)表示第η次迭代光波f0Cusn传播距离LI的过程; ③在随机相位板(6)面上,随机相位板的分布函数为P,第η次照明光通过随机相位板后的出射波函数为exit,, = ZKJbcus1rLlVP; ④第η次第二光斑探测器(9)靶面上衍射光斑的复振幅分布diJl, = ^(cxil?,L2),i2)表示第n次迭代光波exitj#播距离L2的过程; ⑤第二光斑探测器(9)实际记录的光斑分布为I,复振幅分布diffn和力的误差error =X(|c////;,|->/7) /[J ; ⑥对第二光斑探测器(9)靶面上的衍射光斑的复振幅分布进行更新,得到diff’n,<;////'? = λ/7exp(/'i//?),ψη 为 diffn 的相位分布; ⑦反方向传播diff’n到随机相位板(6)面上得到八古3'(CliffirL2),3 1 (Ciiffi,.!)表示第η次迭代光波diff’ n反方向传播距离L2的过程; ⑧更新随机相位板(6)面上的照明光函数illu’n= exifn/P ; ⑨反方向传播1111!’?到小孔光阑(5)面上得到.細=3 '(HhlirLl), 3 X./J表示第η次迭代光波illu’ η反方向传播距离L1的过程; ⑩增大小孔光阑(5)半径为rn+1,半径rn+1范围以内光阑孔径大小限制函数Sn+1取值为.1,半径rn+1范围以外Sn+1函数取值为0,更新后的小孔光阑(5)面上的光波分布为f0CUsn+1=focus’n*Sn+1作为第n+1次迭代的初始光波分布; ?重复步骤②到⑩,直至误差61^04变化非常小甚至不变时迭代过程停止,此时更新后的随机相位板(6)面上的照明光函数为illu ; ?反方向传播illu到聚焦透镜⑵面上得到/e/w= 1 (illu,L0),3-1 (///h,Ltj)表示光波illu反方向传播距离Ltl的过程; ?聚焦透镜⑵面上波函数lens分布乘以选择的缩束器⑴的缩束比k即获得待测 高功率激光光束波前分布。
【文档编号】G01J9/00GK104198054SQ201410428016
【公开日】2014年12月10日 申请日期:2014年8月27日 优先权日:2014年8月27日
【发明者】陶华, 潘兴臣, 刘诚, 朱健强 申请人:中国科学院上海光学精密机械研究所