一种基于压缩感知的双通道sar动目标检测的方法

文档序号:10487510阅读:374来源:国知局
一种基于压缩感知的双通道sar动目标检测的方法
【专利摘要】一种基于压缩感知的双通道SAR动目标检测的方法,涉及微波遥感技术领域,尤其涉及一种基于压缩感知的双通道SAR动目标检测的方法。本发明为解决现有单通道SAR?GMTI系统由于平台运动导致地杂波频谱展宽,使得慢速运动目标淹没其中而难以检测的问题以及多通道SAR系统存在通道数目和数据量庞大给数据的传输和存储造成巨大压力的问题。本发明按以下步骤进行:一、双通道SAR原始数据沿方位向进行稀疏采样;二、双通道SAR回波的预处理:距离向脉冲压缩;距离徙动校正;杂波抑制处理;三、双通道SAR回波的预处理;四、利用贝叶斯稀疏重构算法实现动目标散射系数的重构。本发明可应用于微波遥感技术领域。
【专利说明】
一种基于压缩感知的双通道SAR动目标检测的方法
技术领域
[0001] 本发明涉及微波遥感技术领域,尤其涉及一种基于压缩感知的双通道SAR动目标 检测的方法。
【背景技术】
[0002] 合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种高分辨成像雷达,具 有全天时、全天候、远距离的特点,能够提供丰富的地表电磁散射特性信息。SAR系统在其固 有成像基础上实现动目标检测(Ground Moving Target Indication,简称GMTI),即利用信 号处理技术在对静止场景成像的同时实现对地面运动目标的检测,并最终将目标的真实位 置及运动参数标注于地面高分辨率图像中,实现预警与测绘的结合。单通道SAR-GMTI系统 由于平台运动导致地杂波频谱展宽,使得慢速运动目标淹没其中而难以检测;多通道SAR动 目标检测通过增加空间上的维数实现空、时两域联合处理,从而克服单通道系统在运动目 标检测中的不足。
[0003] 随着对雷达图像分辨率的需求不断提高,对采样速度和数据处理速度的要求也越 来越高,也给相应的硬件设备和成本投入带来了极大的挑战。同时,多通道动目标检测的通 道数目和数据量的庞大亦给数据的传输和存储造成巨大压力。然而单纯地降低采样率 (PRF)会加重方位模糊降低方位向分辨率。压缩感知理论(Compressive sensing,简称CS) 指出,当信号具有稀疏性或可压缩性时,通过求解一个最优化问题,可以依靠远低于 Nyquist采样率所采集到的信号测量值实现信号的准确或近似重构。动目标在成像场景中 通常具有稀疏性,因此,根据CS理论可以在降低数据量的同时实现动目标检测,有效解决在 多通道动目标检测中存在的问题。

【发明内容】

[0004] 本发明为解决现有单通道SAR-GMTI系统由于平台运动导致地杂波频谱展宽,使得 慢速运动目标淹没其中而难以检测的问题以及多通道SAR系统存在通道数目和数据量庞大 给数据的传输和存储造成巨大压力的问题,而提出一种基于压缩感知的双通道SAR动目标 检测的方法。
[0005] 本发明所述一种基于压缩感知的双通道SAR动目标检测的方法,按以下步骤进行:
[0006] 步骤一:双通道SAR原始数据沿方位向进行稀疏采样;
[0007] 步骤二:双通道SAR回波的预处理:距离向脉冲压缩;距离徙动校正;杂波抑制处 理;
[0008] 步骤三:双通道SAR回波的预处理;
[0009] 步骤四:利用贝叶斯稀疏重构算法实现动目标散射系数的重构。
[0010] 本发明包括以下有益效果:
[0011] 1、本发明所采用的稀疏采样回波模型不需要满足Nyauist采样定理,可以有效地 降低数据量;
[0012] 2、本发明对回波数据的杂波抑制处理,使得动目标在场景中呈现稀疏特征,满足 压缩感知稀疏重构条件;
[0013] 3、利用基于贝叶斯的稀疏重构算法对动目标的散射系数进行稀疏重构,使动目标 在杂波背景下仍能够实现检测,并且这种方法的计算复杂度低,适应性更强;
[0014] 4、实测数据处理结果表明:本发明提出的动目标检测方法检测性能高,计算复杂 度低,具有很强的实际应用价值。
【附图说明】
[0015] 图1为本发明所述的基于压缩感知的双通道SAR动目标检测方法的流程图;
[0016] 图2为本发明所述的基于压缩感知的双通道SAR动目标检测方法的几何结构图;
[0017] 图3为本发明所述的基于压缩感知的双通道SAR动目标检测方法在采样率为30% 条件下获得的点目标方位向剖面图;
[0018] 图4为本发明所述的基于压缩感知的双通道SAR动目标检测方法在采样率为50% 条件下获得的点目标方位向剖面图;
[0019] 图5为本发明所述的基于压缩感知的双通道SAR动目标检测方法在采样率为100% 条件下获得的点目标方位向剖面图;
[0020] 图6为传统相位中心偏置天线方法,即Displaced Phase Center Antenna,简称 DPCA,即传统DPCA方法在采样率为30%条件下获得的点目标方位向剖面图;
[0021]图7为传统DPCA方法在采样率为50%条件下获得的点目标方位向剖面图;
[0022]图8为传统DPCA方法在采样率为100%条件下获得的点目标方位向剖面图;
[0023] 图9为不同信噪比下稀疏重构算法的检测性能曲线。
【具体实施方式】
[0024] 为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合图1至9和具体 实施方式对本发明作进一步详细的说明,其中图1为本发明所述的基于压缩感知的双通道 SAR动目标检测方法的流程图。
【具体实施方式】 [0025] 一、本实施方式所述的一种基于压缩感知的双通道SAR动目标检测 的方法,按以下步骤进行:
[0026] 步骤一:双通道SAR原始数据沿方位向进行稀疏采样;
[0027] 步骤二:双通道SAR回波的预处理:距离向脉冲压缩;距离徙动校正;杂波抑制处 理;
[0028]步骤三:根据SAR回波模型进行观测矩阵的构建;
[0029] 步骤四:利用贝叶斯稀疏重构算法实现动目标散射系数的重构。
[0030] 本实施方式包括以下有益效果:
[0031] 1、本实施方式所采用的稀疏采样回波模型不需要满足Nyauist采样定理,可以有 效地降低数据量;
[0032] 2、本实施方式对回波数据的杂波抑制处理,使得动目标在场景中呈现稀疏特征, 满足压缩感知稀疏重构条件;
[0033] 3、利用基于贝叶斯的稀疏重构算法对动目标的散射系数进行稀疏重构,使动目标 在杂波背景下仍能够实现检测,并且这种方法的计算复杂度低,适应性更强;
[0034] 4、实测数据处理结果表明:本实施方式提出的动目标检测方法检测性能高,计算 复杂度低,具有很强的实际应用价值。
【具体实施方式】 [0035] 二、本实施方式是对一所述的一种基于压缩感知的双 通道SAR动目标检测的方法的进一步说明,步骤一所述的双通道SAR原始数据的稀疏采样的 具体过程如下:
[0036] 与传统SAR沿方位向等周期发射和接收脉冲方式不同,在该方法中,沿方位向随机 稀疏采样以降低原始采样数据,由通道1沿方位向随机发射脉冲,通道1和通道2同时接收脉 冲信号,合成孔径时间T a内共随机发射与接收M个脉冲,则方位向慢时间表示为:
[0037]
[0038] 【具体实施方式】三、本实施方式是对【具体实施方式】一或二所述的一种基于压缩感知 的双通道SAR动目标检测的方法的进一步说明,步骤二所述的双通道SAR回波的预处理的具 体过程如下:
[0039]结合图2双通道SAR动目标检测方法的几何结构图,说明双通道SAR回波的预处理 过程,SAR工作在正侧视模式下,平台距地面高度为H,飞机以速度V沿X轴匀速运动,在飞行 方向放置两幅天线1和2,二者相距为d,由天线1发射LFM信号,两天线同时接收回波信号,在 tm=0时刻,天线1和2的坐标分别为(0,0,h)和(_d,0,h),动目标坐标为(XQ,yo,0);经过U= η · PRF时刻,其中PRF表示脉冲重复频率,天线1和2移至(vn · PRF,0,h)和(vn · PRF-d,0, h),此时,动目标坐标为(χη,yn, 0); Rb为动目标到航迹方向的最近距离,Ri( tm)和R2( tm)分别 表示天线1和2与动目标的距离;在斜距平面内,动目标的径向速度和切向速度分别为Vr和 Va;天线1、2与动目标的瞬时斜距表示为:
[0040]
[0041]
[0042] 其中,v-Va = VA;
[0043] 对天线接收到的回波信号进行解调和距离向压缩后,两通道的回波信号 士 (匕/",)分别表示成复数形式:
[0044]
[0045]
[0046] 表不载波波长,σ〇 表示为目标复散射系数,A表示距离向压缩增益,B为发射信号带宽,c为光速,?表示快时间, aa(tm)表示方位向窗函数;
[0047] 将斜距公式代入上式可得:
[0048]
[0049]
[0050]
[0051] 对于任意距离单元数据81(^)和82("),对2通道的信号进行时间校准后,杂波抑 制处理,得到处理后的信号表达式为:
[0052]
[0053] 对于静止目标(Vr = O),s(U)取值为零,而动目标(Vr矣0),s(u)取值不为零而得 以保留,实现杂波抑制,使得动目标从整个目标场景中分离出来。
[0054]【具体实施方式】四、本实施方式是对【具体实施方式】一至三之一所述的一种基于压缩 感知的双通道SAR动目标检测的方法的进一步说明,步骤三所述的根据SAR回波模型进行观 测矩阵的构建的具体过程如下:
[0055] 根据压缩感知理论,如果动目标在每个距离单元内是稀疏的,则利用稀疏采样回 波原始数据可以实现动目标检测;根据SAR动目标回波模型,得到:
方位向上的全采样点数,在稀疏采样的条件下满足M<<N;[0059] 则观测矩阵表示为:
[0056]
[0057]
[0058]
[0060]
[0061]【具体实施方式】五、本实施方式是对【具体实施方式】一至四之一所述的一种基于压缩 感知的双通道SAR动目标检测的方法的进一步说明,步骤四所述的利用贝叶斯稀疏重构算 法实现动目标散射系数的重构的具体过程如下:
[0062] 令s = [s(ti),···,s(tM)]T和Ρ=[Ρι,…,Pn]T,则复数域观测模型表达式为:
[0063] SMxi= Φ mxnPnxi
[0064]其中,Smx1表示经过杂波抑制后的回波数据,Φμχν表示观测矩阵,P表示某距离单 元的散射系数;
[0065]由于上式为欠定方程组,因此存在无穷解,根据压缩感知理论,可知若P满足稀疏 性,并且矩阵Φμχν满足RIP条件,则对于α的求解问题转化为对于如下最优化问题的求解,实 现散射系数的重构:
[0066] min I IP I 11 s · t · S= Φρ
[0067] 其中,I I I I1表示1-范数,min表示取最小值,s表示经过杂波抑制后的回波数据,Φ 表示观测矩阵,P表示某距离单元的散射系数。在噪声存在的情况下,P取估计值,上式转化 为:
[0068:
[0069]其中,I I I |2表示2-范数,ε由噪声水平决定;
[0070] 对上式的求解利用基于贝叶斯的稀疏重构算法,其具体步骤为:
[0071] (1)复数域观测模型实数化:
[0072] 复数域观测模型表示为:
[0073] SR+j · si=(C>R+j · C>i)(PR+j · Pi)
[0074] 其中,SR与si分别表不测量值矢量的实部与虚部组成的矢量,C>r和ΦI表不观测矩 阵的实部矩阵,PR为散射系数矢量的实部,P1为散射系数矢量的虚部;
[0075]将上式展开得到:
[0076] SR+j · SI= ( i>RPR-C>lPl) + j · ( i>lPR+C>RPl)
[0077] 上式可以用如下方程组等价表示:
[0078]
[0079] 将复数域观测模型转化为如下实数模型:
[0080]
[0081 ] 由于SAR回波信号含有噪声,观测模型可 以表;
[0082] y = Tw+n
[0083] 其中,η为噪声,ye R2mx1,T E R2mx2n,w E R2nx1
[0084] (2)快速贝叶斯算法的步骤为:
[0085] A、初始化:卩棄声参数α〇,一般取aQ = 〇. I Xvar(y),其中var(y)表示y的方差;集合 利用观测矩阵的某一列!^初始化超参数ru,
其中T1选取目 标向量投影值最大时对应的列,即
,.arg max表3最大 时对应的列,其余的^均假设为无穷大,并将i添加到集合L中;
[0086] B、计算均值μ和协方差Σ,对于每一个Ti令:
[0087]
[0088]
[0089] C、随机从观测矩阵中选择一列计算0m=qm2-Sm,如果0 m>〇且nm〈TO,则更新Ilm;如果0m 〉〇且rIm= 00,则将m添加到L中,并更新Hm;如果9m S 〇且rim〈〇〇,则将m从L中删除,并令Hm = 00 ; [0090] D、更新均值丸和协方差5:L,即μ和Σ中下标在L中的元素,并重新计算所有的81和 Qi;
[0091 ] Ε、如果迭代收敛,则终止迭代,否则转到步骤C。
[0092]为验证本发明的有益效果,进行如下仿真实验:
[0093] 结合图3-9对仿真实验进行说明,成像场景中心设置1个运动目标,运动速度为Vr =1111/8和1 = 2〇111/8。信噪比(SNR)和信杂比(SCR)分别取23dB和-10dB。分别通过本发明基 于压缩感知的动目标检测方法与传统DPCA方法在不同采样率下获取的动目标方位向剖面 图。其中,图3-5分别为本发明基于压缩感知的动目标检测方法在采样率为30%、50%、 100 %条件下获取的剖面图,图6-8分别为传统DPCA方法依次在采样率为30%、50%、100% 条件下获取的剖面图,可知本发明基于压缩感知的动目标检测方法与传统DPCA方法相比, 在少量数据下本发明可以使杂波得到有效抑制,并实现动目标的检测。
[0094] 图9为在不同检测门限情况、不同信噪比下获取的检测概率Pd曲线图。动目标的检 测性能均随检测门限的变化而变化,当检测门限为-12到-SdB时检测性能最佳;并且信噪比 越高各算法的检测概率越高。本发明中采用的基于贝叶斯的稀疏重构方法每次迭代的复杂 度为〇(NK 2),其中K为某距离单元的动目标稀疏度,由于动目标在场景中具有稀疏特性,因 此本方法的复杂度较低。
【主权项】
1. 一种基于压缩感知的双通道SAR动目标检测的方法,其特征在于它按w下步骤进行: 步骤一:双通道SAR原始数据沿方位向进行稀疏采样; 步骤二:双通道SAR回波的预处理:距离向脉冲压缩;距离徙动校正;杂波抑制处理; 步骤Ξ:双通道SAR回波的预处理; 步骤四:利用贝叶斯稀疏重构算法实现动目标散射系数的重构。2. 如权利要求1所述的一种基于压缩感知的双通道SAR动目标检测的方法,其特征在于 步骤一所述的双通道SAR原始数据的稀疏采样的具体过程如下: 与传统SAR沿方位向等周期发射和接收脉冲方式不同,在该方法中,沿方位向随机稀疏 采样W降低原始采样数据,由通道1沿方位向随机发射脉冲,通道1和通道2同时接收脉冲信 号,合成孔径时间Ta内共随机发射与接收Μ个脉冲,则方位向慢时间表示为:3. 如权利要求1或2所述的一种基于压缩感知的双通道SAR动目标检测的方法,其特征 在于步骤二所述的双通道SAR回波的预处理的具体过程如下: SAR工作在正侧视模式下,平台距地面高度为Η,飞机W速度V沿X轴匀速运动,在飞行方 向放置两幅天线1和2,二者相距为d,由天线1发射LFM信号,两天线同时接收回波信号,在U =0时刻,天线1和2的坐标分别为(0,0,h)和(-d,0,h),动目标坐标为(XD,y(),0);经过tm = η · PRF时刻,其中PRF表示脉冲重复频率,天线1和2移至(vn · PRF,0,h)和(vn · PRF-d,0, h ),此时,动目标坐标为(Xn,yn,0 );化为动目标到航迹方向的最近距离,Rl ( tm)和R2 ( tm)分别 表示天线1和2与动目标的距离;在斜距平面内,动目标的径向速度和切向速度分别为Vr和 Va ;天线1、2与动目标的瞬时斜距表示为:其中,V-Va = VA; 对天线接收到的回波信号进行解调和距离向压缩后,两通道的回波信号和 扭Λ,)分别表示成复数形式:其中,/ = ^/^.,λ表示载波波长,O0表示 为目标复散射系数,A表示距离向压缩增益,B为发射信号带宽,C为光速,?表示快时间,aa (tm)表示方位向窗函数; 将斜距公式代入上式可得:对于任意距离单元数据Sl(tm)和S2(tm),对2通道的信号进行时间校准后,杂波抑制处 理,得到处理后的信号表达式为:对于静止目标Vr = 0,S (tm)取值为零,而动目标Vr辛0,S (tm)取值不为零而得W保留。4. 如权利要求3所述的一种基于压缩感知的双通道SAR动目标检测的方法,其特征在于 步骤Ξ所述的根据SAR回波模型进行观测矩阵的构建的具体过程如下: 根据压缩感知理论,如果动目标在每个距离单元内是稀疏的,则利用稀疏采样回波原 始数据可W实现动目标检测;根据SAR动目标回波模型,得到:其中,ξ = Gi (1 -exp (j3Τ2Vrd/(λ(v-Va)))) exp (- j43TRB/A); 令,i=-N/2+l,···,0,···N/2,N为在方位向 上的全采样点数,在稀疏采样的条件下满足M<<N; 则观测矩阵表示为:5. 如权利要求4所述的一种基于压缩感知的双通道SAR动目标检测的方法,其特征在于 步骤四所述的利用贝叶斯稀疏重构算法实现动目标散射系数的重构的具体过程如下: 令s=[s(ti),…,S(tM)]哺P=[Pi,…,ΡΝ]τ,则复数域观测模型表达式为: SMX1 二 ΦμχνΡνχι 其中,SMXl表示经过杂波抑制后的回波数据,Φμχν表示观测矩阵,P表示某距离单元的散 射系数; 上式为欠定方程组,存在无穷解,根据压缩感知理论,可知若P满足稀疏性,并且矩阵 Φμχν满足RIP条件,则对于α的求解问题转化为对于如下最优化问题的求解,实现散射系数 的重构: mini |p| |i s.t. 8=Φρ 其中,Μ Μ 1表示1-范数,min表示取最小值,s表示经过杂波抑制后的回波数据,Φ表示 观测矩阵,Ρ表示某距离单元的散射系数;在噪声存在的情况下,Ρ取估计值,上式转化为:其中,II 1|2表示2-范数,ε由噪声水平决定; 对上式的求解利用基于贝叶斯的稀疏重构算法,其具体步骤为: (1) 复数域观测模型实数化: 复数域观测模型表示为: SR+j · SI=(〇R+j · 〇l)(PR+j · Pi) 其中,SR与SI分别表示测量值矢量的实部与虚部组成的矢量,Φκ和Φ?表示观测矩阵的 实部矩阵,PR为散射系数矢量的实部,ΡΙ为散射系数矢量的虚部; 将上式展开得到: SR+j · SI=(巫RP广巫 lPl) + j ·(巫 IPR+巫RPI) 上式可W用如下方程组等价表示:将复数域观测模型转化为如下实数模型:令自于SAR回波信号含有噪声,观测模型可W表 示为: y = Tw+n 其中,η为噪声,yER2Mxi,TeR2Mx2%eR2Nxi (2) 快速贝叶斯算法的步骤为: A、 初始化:噪声参数日日,一般取α〇 = 0.1 XvaHy),其中va;r(y)表示y的方差;集合怎=0 利用观测矩阵的某一列Τι初始化超参数ru其中Τι选取目标向量 投影值最大时对应的列,即最大时对应 的列,其余的^均假设为无穷大,并将i添加到集合L中; B、 计算均值μ和协方差Σ,对于每一个Ti令:当rU = w时,4C、 随机从观测矩阵中选择一列计算目m = qm2-Sm,如果目m〉0且rim<〇〇,则更新rim;如果目m〉0 且rim= 〇〇,则将m添加至化中,并更新rim;如果θη含0且rim<〇〇,则将m从L中删除,并令rim= 〇〇 ; D、 更新均值WL和协方差Sl,即μ和Σ中下标在L中的元素,并重新计算所有的Si和qi; E、 如果迭代收敛,则终止迭代,否则转到步骤C。
【文档编号】G01S13/90GK105842693SQ201610169281
【公开日】2016年8月10日
【申请日】2016年3月23日
【发明人】张云, 穆慧琳, 李宏博, 郭怡冉
【申请人】哈尔滨工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1