高效高精度低温激光扫描双聚焦显微系统的制作方法

文档序号:10532778阅读:864来源:国知局
高效高精度低温激光扫描双聚焦显微系统的制作方法
【专利摘要】本发明涉及一套低温激光扫描双聚焦显微系统的设计和制作。该设计和制作包括五个主要部分:I外场输入;II低温致冷腔;III光子收集;IV光谱/单光子检测;V系统自动控制。系统主要技术性能指标包括:①真空极限荧光收集率;②振幅≤10纳米;③平移精度≤10纳米;④氦气闭循环制冷;⑤最低温度4K,稳定性≤0.01K;⑥多外场同步激发。⑦~10纳米分辨率;⑧电学/光学测量;⑨外光路可扩展性。本发明的优点在于该套系统从光子收集率、三维平移精度、抗振动度、以及扩展性应用上都能达到同类国际顶级水平。能够为量子点、半导体材料、微生物单分子等的量子光学、调控、光电和电学低温/常温测试等提供一套高效高精度低温显微测试平台。
【专利说明】
高效高精度低温激光扫描双聚焦显微系统
技术领域
[0001 ]本发明涉及一项高荧光收集效率、纳米三维扫描精度的氦气闭循环低温激光扫描双聚焦显微系统的设计方案和制作。
【背景技术】
[0002]20世纪60年代Minsky在其专利中首次阐述了共焦显微技术的基本原理。1984年出现了第一台激光扫描共焦显微镜实用产品,真正实现了三维立体成像,共焦扫描显微镜也就逐渐成为生物学、医学研究等领域一种非常重要的工具。此后,随着科学技术的进步、工业制造工艺和计算机图像处理技术等不断发展,在共焦扫描显微镜的基础上,经过不断地发展和改进,各类新型共焦显微镜相继出现,激光扫描共焦显微镜探测精度、分辨能力等不断得以改善和提高,在光学、光电子学、半导体材料、量子点、量子调控、细胞生物学、生物医学以及医学检测等领域对显微镜的探测速率的要求也越来越高,然而现有的大多数是常温、单通道或双通道的激光扫描共焦显微镜,并且缺乏多种外场(包括电场、磁场、微波场等)同步栗浦,从而缺乏对于单分子/单光子的荧光光子态和光子相关函数等前沿领域研究的扩展性探测等,很难满足日益发展的科技需求。如何实现在高真空、液氦低温条件下,对样品的快速、便捷、尚精度扫描,最大限度提尚光子探测效率,利用多种外场同步栗浦的尚端物理前沿研究手段的开发,利用多种探测手段同步检测等等,成为了阻碍现今激光扫描共焦显微镜技术发展的一大“瓶颈”。
[0003]最近数年以来,随着量子调控技术和生物分子学等基础前沿研究的发展和应用,同时具备液氦低温条件、多场对量子点/生物分子能级的同步调控和受控能级跃迀、对纳米量子点的扫描和精确定位、对荧光/光子态等信号的同步精确测量等逐步成为前沿尖端领域研究的必备实验条件。然而,目前我国在这种尖端精密设备研究领域尚有极大的欠缺,目前拥有类似实验条件的相关领域研究团队屈指可数。国外也仅有少数顶尖研究团队具备类似的设备条件。包括如美国哈佛大学的Lukin组,德国斯图加特大学研究组等等。

【发明内容】

[0004]本发明的目的是提供一种高荧光收集效率和高扫描平移精度的低温激光扫描双聚焦显微和完备测量系统的设计方案和制作方法。
[0005]系统包括如下五个部分,如图1所示:
[000?] I外场输入部分;
[0007]II氦气闭循环低温致冷腔部分;
[0008]III荧光/光子收集外光路部分;
[0009]IV荧光谱/单光子性能检测部分;
[0010]V系统集成自动控制部分。
[0011]具体设计和制作方案为:
[0012]1.外场输入部分。包括多路激光场、电场、磁场、微波场同步栗浦。
[0013]S1.采用光路切换和偏振分束等方法,同时设计多个输入光路。
[0014]S2.通过在低温致冷腔内设计安装小型磁场线圈,可以在腔内产生可调控磁场,最大磁场强度可达100高斯。
[0015]S3.通过在低温腔上预留的真空法兰,采用微波发生器将微波场直接输入到低温腔内。
[0016]S4.低温腔上预留了表面绝缘导电线输入/输出通道,可以在基片上加工出电极,将电场输入到样品上。
[0017]S5.低温腔上预留的光纤输入/输出通道可通过光纤法兰直接将光纤输入到样品上。通过PZT纳米平移样品,可将光纤和量子点类样品进行精确耦合。
[0018]2.氦气闭循环真空低温致冷腔部分。
[0019]S1.物镜内置于腔内,腔顶开石英窗口,输入激光可垂直进入物镜内。物镜内置可将工作距离降低到?0.2um的极限距离,实现近场扫描;同时可将数值孔径提高到真空极限
0.95,物镜荧光收集效率正比于数值孔径的平方,从而最大限度提高光子收集效率。10—5Pa真空度不会对物镜造成任何损伤。由于物镜与样品之间存在?0.2um的真空间距,物镜温度保持室温。
[0020]S2.样品通过低温导热胶固定于冷头2上,冷头2通过螺丝固定于三维平移压电陶瓷电机(PZT)上,压电陶瓷电机通过螺丝固定于冷头I上。PZT受外部控制器通过USB接口由电脑程序控制。通过PZT的三维纳米精度平移,结合单光子探测器和光子计数器的同步控制,可实现样品的平面纳米精度扫描和定位;同时可实现物镜焦距的纳米精度调节。扫描、定位效果图如图2所示。
[0021]S3.如权利要求1所述,通过真空法兰,实现真空低温致冷腔内与外部控制器如温度和位移控制,和外场之间的光、电传输。基于氦气闭循环的低温致冷,在10—5Pa真空条件下,底部冷头最低温度可达4K;底部冷头上有压电陶瓷电机负载,最低温度可达6K。铂铑合金热电偶的温度控制可实现0.1K的温度控制精度。
[0022]S4.致冷系统采用压缩机与低温腔分离,两者之间软管连接的设备结构,低温腔放置于光学平台上,可最大限度降低振动幅度至?10纳米水平。
[0023]3.荧光/光子收集外光路部分。
[0024]S1.荧光/光子收集光路采用全封闭式。最大限度降低暗室中游离光子等噪声信号的干扰。
[0025]S2.通过设计转盘和采用分束器等,将荧光按需求分成一定的比例进入不同的接收通道。
[0026]S3.扩展性测量。同时可在光学平台上进一步搭建光学测量系统,将荧光信号引入扩展光路进行检测。
[0027]4.荧光谱/单光子性能检测部分。外围荧光谱/光子探测设备可以对收集和准直后的荧光/光子进行同步的荧光谱测量,和光子态等的测量(包括光子相关函数、光子反聚束、量子拍、光子寿命、偏振态等)。
[0028]5.系统集成自动控制部分。如权利要求2所述,将各激发场、驱动控制器、光子探测器、计数器、CCD驱动控制等利用Labview软件编程集成控制,在同一控制界面进行同步的外场激发、扫描驱动、光子探测和计数、CCD实时监控等。实现本系统的简便、快捷、自动化操控。基于Labview软件的集成控制界面如图3所示。
[0029]本设计方案可根据实际使用和需求进行适当调整。图4是本项发明的具体设计和制作方案图。图5是根据本项设计制作出的低温激光扫描显微系统样品机,以及利用该系统检测获得的纳米量子点的低温扫描图。
【附图说明】
[0030]图1为高效高精度低温激光扫描双聚焦显微系统设计原理图;
[0031 ]图2为系统扫描、定位效果图;
[0032]图3基于Labview软件的集成控制界面图。
[0033]图4具体设计和制作方案图。
[0034]图5低温激光扫描双聚焦显微系统样机。
【主权项】
1.一种高荧光收集效率、高精度液氦低温激光扫描双聚焦显微系统包括外场输入部分、氦气闭循环真空低温致冷腔部分、荧光/光子收集外光路部分、荧光谱/单光子性能检测部分、和系统集成自动控制部分。2.根据权利要求1所述的一种高荧光收集效率、高精度液氦低温激光扫描双聚焦显微系统,其特征在于,所述的外场输入部分包括多路激光场、电场、磁场、微波场同步栗浦: 51.采用光路切换和偏振分束等方法,同时设计多个输入光路; 52.通过在低温致冷腔内设计安装小型磁场线圈,可以在腔内产生可调控磁场,最大磁场强度可达100高斯; 53.通过在低温腔上预留的真空法兰,采用微波发生器将微波场直接输入到低温腔内; 54.低温腔上预留了表面绝缘导电线输入/输出通道,可以在基片上加工出电极,将电场输入到样品上; 55.低温腔上预留的光纤输入/输出通道可通过光纤法兰直接将光纤输入到样品上,通过PZT纳米平移样品,可将光纤和量子点类样品进行精确耦合。3.根据权利要求1所述的一种高荧光收集效率、高精度液氦低温激光扫描双聚焦显微系统,所述的氦气闭循环真空低温致冷腔部分具有以下特征: 51.物镜内置于腔内,腔顶开石英窗口,输入激光可垂直进入物镜内。物镜内置可将工作距离降低到?0.2um的极限距离,实现近场扫描;同时可将数值孔径提高到真空极限0.95,物镜荧光收集效率正比于数值孔径的平方,从而最大限度提高光子收集效率;10-5Pa真空度不会对物镜造成任何损伤。由于物镜与样品之间存在?0.2um的真空间距,物镜温度保持室温; 52.样品通过低温导热胶固定于冷头2上,冷头2通过螺丝固定于三维平移压电陶瓷电机(PZT)上,压电陶瓷电机通过螺丝固定于冷头I上;PZT受外部控制器通过USB接口由电脑程序控制;通过PZT的三维纳米精度平移,结合单光子探测器和光子计数器的同步控制,可实现样品的平面纳米精度扫描和定位;同时可实现物镜焦距的纳米精度调节; 53.通过真空法兰,实现真空低温致冷腔内与外部控制器如温度和位移控制,和外场之间的光、电传输。基于氦气闭循环的低温致冷,在10_5Pa真空条件下,底部冷头最低温度可达4K;底部冷头上有压电陶瓷电机负载,最低温度可达6K。铂铑合金热电偶的温度控制可实现0.1K的温度控制精度。 54.致冷系统采用压缩机与低温腔分离,两者之间软管连接的设备结构,低温腔放置于光学平台上,可最大限度降低振动幅度至?10纳米水平。4.根据权利要求1所述的一种高荧光收集效率、高精度液氦低温激光扫描双聚焦显微系统,所述的荧光/光子收集外光路部分具有以下特征: 51.荧光/光子收集光路采用全封闭式。最大限度降低暗室中游离光子等噪声信号的干扰。 52.通过设计转盘和采用分束器等,将荧光按需求分成一定的比例进入不同的接收通道。 53.扩展性测量。同时可在光学平台上进一步搭建光学测量系统,将荧光信号引入扩展光路进彳丁检测。5.根据权利要求1所述的一种高荧光收集效率、高精度液氦低温激光扫描双聚焦显微系统,其特征在于,所述的荧光谱/单光子性能检测部分可以对收集和准直后的荧光/光子进行同步的荧光谱测量,和光子态等的测量(包括光子相关函数、光子反聚束、量子拍、光子寿命、偏振态等)O6.根据权利要求1所述的一种高荧光收集效率、高精度液氦低温激光扫描双聚焦显微系统,其特征在于,所述的系统集成自动控制部分将各激发场、驱动控制器、光子探测器、计数器、CCD驱动控制等利用Labview软件编程集成控制,在同一控制界面进行同步的外场激发、扫描驱动、光子探测和计数、CCD实时监控等。实现本系统的简便、快捷、自动化操控。
【文档编号】G01N21/64GK105891171SQ201610136183
【公开日】2016年8月24日
【申请日】2016年3月1日
【发明人】赵洪泉, 石轩, 马勇, 任昌亮
【申请人】中国科学院重庆绿色智能技术研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1