一种高精度传感光纤应变测量装置的制造方法
【专利摘要】本发明公开了一种高精度传感光纤应变测量装置,包括特种复合材料层、金属隔槽层和内层复合材料层,所述特种复合材料层的两个表面上分别设有第一传感光纤和第三传感光纤,第一传感光纤和第三传感光纤分别穿过位于特种复合材料层的两个表面端部的挡板,挡板上通过螺纹安装有锁紧柱,锁紧柱通过端部压紧第一传感光纤和第三传感光纤;内层复合材料层的轴线上通过内支撑安装有一对弧复合材料体构成的椭球体,在两个椭球体之间设有复合材料制成的葫芦状的葫芦体,第二传感光纤依次穿过第一通纤管、第二通纤管和另一个第一通纤管。本发明可从监测层面上去除温度干扰影响、可较为真实地反映待测结构体内部应力应变性态的新型的监测装置。
【专利说明】
一种高精度传感光纤应变测量装置
技术领域
[0001]本发明涉及高精度传感光纤应变测量装置,属于涉水工程、土木工程等安全健康监测领域。
【背景技术】
[0002]20世纪60年代,由于激光和光纤的发明,光纤技术取得了举世瞩目的成功,在光通信技术的推动下,各种光纤、器件、元件、仪器和机械设别等相关器件的研究与开发取得了巨大的进步,随着光纤应用研究不断地深入和传感技术不断地发展,光纤已经成为了一种不仅仅可以以高速率和大容量传送传感器获取的信息,并且其本身就可以做为传感元件,与传统的传感元件相比,光纤传感技术具有抗电磁干扰、抗化学腐蚀、抗辐射性能好、且本身不带电、体积小、质量轻、容易弯曲等优势。
[0003]自从1989年蒙德兹等首先将光纤传感器埋入混凝土结构体中进行结构安全监测以来,各国学者进一步推动了该技术在土木、水利工程中的应用,现在光纤传感技术已经在监控复合材料固化、结构无损检测、损伤监测、识别及评估方面取得了一些成果,对于点式的光纤传感技术而言,其监测精度高,但是并没有脱离最为传统的监测仪器的弊端,因此,分布式传感光纤技术得到了长足的发展,但是不管是点式光纤传感监测技术还是分布式传感光纤监测技术,在实际工作环境下单纯获取结构体的应力应变数值时,都逃脱不了结构体外界与内部温度的影响,当前很多温度补偿的方法极为粗简、且极不准确,在很多地方温度的影响却极为明显,因此,研制一种可实现温度补偿的传感光纤封装装置显得极为重要。
[0004]对于待测结构体而言,外界多复杂因素的干扰导致待测结构体表征出多种复杂的外部特征,且该外部信息为待测结构体内部信息的柔和体,根据所提取出来的外部信息,即使使用了很多先进的数据优化算法,但是对于内嵌在结构体内反映结构体各种信息也无法真实地进行分离与辨识,这就需要从监测装置出发,研究一种可以去除某些干扰因素的监测仪器设备。
【发明内容】
[0005]发明目的:为了克服现有技术中存在的不足,本发明提供一种高精度传感光纤应变测量装置,可从监测层面上去除温度干扰影响、可较为真实地反映待测结构体内部应力应变性态的新型的监测装置。
[0006]技术方案:为解决上述技术问题,本发明的一种高精度传感光纤应变测量装置,包括圆弧状的特种复合材料层、紧邻特种复合材料层的金属隔槽层和位于金属隔槽层内的内层复合材料层,所述特种复合材料层的两个表面上分别设有第一传感光纤和第三传感光纤,第一传感光纤和第三传感光纤分别穿过位于特种复合材料层的两个表面端部的挡板,挡板上通过螺纹安装有锁紧柱,锁紧柱通过端部压紧第一传感光纤和第三传感光纤;内层复合材料层的轴线上通过内支撑安装有一对弧复合材料体构成的椭球体,两个椭球体位于圆弧形内层复合材料层的两端,椭球体内设有第二传感光纤通过的第一通纤管,在两个椭球体之间设有复合材料制成的葫芦状的葫芦体,葫芦体内设有第二通纤管,第二传感光纤依次穿过第一通纤管、第二通纤管和另一个第一通纤管,葫芦体通过内支撑柱支撑在圆弧形圆弧形内层复合材料层内。
[0007]作为优选,所述特种复合材料层与经过该材料的第一传感光纤,它们的热膨胀系数之差与第一传感光纤应变值的乘积,等于该光纤的温度系数;特种复合材料层与经过该材料的第三传感光纤,它们的热膨胀系数之差与该光纤应变值的乘积,等于第三传感光纤的温度系数。
[0008]作为优选,所述椭球体和葫芦体的复合热膨胀系数与通过对应段的第二传感光纤的热膨胀系数之差,与该对应段的第二传感光纤应变值的乘积,等于该对应段的第二传感光纤的温度系数值。
[0009]有益效果:本发明的高精度传感光纤应变测量装置,采用多层级的复合材料体结构形式,为温度补偿提供了基础,采用三通道同步互校正最大化地实现了监测结果的高精度性,其灵活性强、操作简单、使用便捷,在实际工程现场与室内外试验中都具有较好的应用潜力。
【附图说明】
[0010]图1为本发明的结构图;
[0011]图2为1-1截面的结构示意图。
【具体实施方式】
[0012]如图1和图2所示,本发明的一种高精度传感光纤应变测量装置,包括圆弧状的特种性能树脂基复合材料的特种复合材料层117、紧邻特种复合材料层117的铬材质的金属隔槽层128和位于金属隔槽层128内的特种性能树脂基复合材料的内层复合材料层127,所述特种复合材料层117的两个表面上分别设有G.652D型号的第一传感光纤101和G.652D型号的第三传感光纤103,第一传感光纤101和第三传感光纤103分别穿过位于特种复合材料层117的两个表面端部的挡板112,挡板112上通过螺纹安装有锁紧柱113,锁紧柱113通过端部压紧第一传感光纤101和第三传感光纤103;内层复合材料层127的轴线上通过内支撑131安装有一对弧复合材料体构成的椭球体,椭球体包含特种性能树脂基复合材料的上半弧复合材料体129和特种性能树脂基复合材料的下半弧复合材料体121,两个椭球体位于圆弧形内层复合材料层127的两端,椭球体内设有第二传感光纤102通过的第一通纤管122,在两个椭球体之间设有复合材料制成的葫芦状的葫芦体,葫芦体包含特种性能树脂基复合材料的左弧复合材料123和特种性能树脂基复合材料的右弧复合材料130,葫芦体内设有第二通纤管124,第二传感光纤102依次穿过第一通纤管122、第二通纤管124和另一个第一通纤管122,葫芦体通过内支撑131柱支撑在圆弧形圆弧形内层复合材料层127内。
[0013]在本发明中,所述特种复合材料层117与经过该材料的第一传感光纤101,它们的热膨胀系数之差与第一传感光纤101应变值的乘积,等于该光纤的温度系数;特种复合材料层117与经过该材料的第三传感光纤103,它们的热膨胀系数之差与该光纤应变值的乘积,等于第三传感光纤103的温度系数。所述椭球体和葫芦体的复合热膨胀系数与通过对应段的第二传感光纤102的热膨胀系数之差,与该对应段的第二传感光纤102应变值的乘积,等于该对应段的第二传感光纤102的温度系数值。
[0014]—种高精度传感光纤应变测量装置的运行方法的运行方法,包括以下步骤:
[0015](I)构建及配备传感光纤及装配各模块
[0016]在需要去温度干扰的传感光纤段确定具体的监测范围及确定高精度传感光纤应变测量装置的个数,根据本次所选定的待测水工混凝土结构体中,由于所处的温度范围值基本相似,以及根据监测的长度为1000m,且根据实际工程需要,确定5处需要布设的区域,每处的长度为2m,为更好地阐述具体的细节化的运行方法,仅对其中一处进行详细论述,其他处与本处方法一致,并且依据从左到右,从上到下的原则将高精度传感光纤应变测量装置进行装配;
[0017](2)引导及固定各不同位置处的第一传感光纤101
[0018]将G.652D型号的第一传感光纤101通过挡板112和锁紧柱113进行预拉应力的设置;
[0019](3)引导及固定各不同位置处的第二传感光纤102和第三传感光纤103
[0020]按照第二步的步骤形式,将第三传感光纤103以同样的操作方法布设到特种复合材料层117上,对于第二传感光纤102,主要是将其引至第一通纤管122和第二通纤管124中,并且对第一通纤管122和第二通纤管124进行封装;
[0021 ] (4)完成去温度干扰后的监测数值获取
[0022]由于所设置的特种复合材料层117、内层复合材料层127、上半弧复合材料体129、下半弧复合材料体121、左弧复合材料123、右弧复合材料130为具有特殊热膨胀系数的材料,通过构建了一系列多平行布设的传感光纤与不同材料之间的材料参数的差别,即可以消除温度的影响,又根据多级校准,通过使用第二传感光纤102的应变值来校正第一传感光纤101和第三传感光纤103应变值的平均值,进而确立最可靠的无温度干扰的传感光纤监测应变的数值。
[0023]以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
【主权项】
1.一种高精度传感光纤应变测量装置,其特征在于:包括圆弧状的特种复合材料层、紧邻特种复合材料层的金属隔槽层和位于金属隔槽层内的内层复合材料层,所述特种复合材料层的两个表面上分别设有第一传感光纤和第三传感光纤,第一传感光纤和第三传感光纤分别穿过位于特种复合材料层的两个表面端部的挡板,挡板上通过螺纹安装有锁紧柱,锁紧柱通过端部压紧第一传感光纤和第三传感光纤;内层复合材料层的轴线上通过内支撑安装有一对弧复合材料体构成的椭球体,两个椭球体位于圆弧形内层复合材料层的两端,椭球体内设有第二传感光纤通过的第一通纤管,在两个椭球体之间设有复合材料制成的葫芦状的葫芦体,葫芦体内设有第二通纤管,第二传感光纤依次穿过第一通纤管、第二通纤管和另一个第一通纤管,葫芦体通过内支撑柱支撑在圆弧形圆弧形内层复合材料层内。2.根据权利要求1所述的高精度传感光纤应变测量装置,其特征在于:所述特种复合材料层与经过该材料的第一传感光纤,它们的热膨胀系数之差与第一传感光纤应变值的乘积,等于该光纤的温度系数;特种复合材料层与经过该材料的第三传感光纤,它们的热膨胀系数之差与该光纤应变值的乘积,等于第三传感光纤的温度系数。3.根据权利要求1所述的高精度传感光纤应变测量装置,其特征在于:所述椭球体和葫芦体的复合热膨胀系数与通过对应段的第二传感光纤的热膨胀系数之差,与该对应段的第二传感光纤应变值的乘积,等于该对应段的第二传感光纤的温度系数值。
【文档编号】G01D3/036GK105910549SQ201610459236
【公开日】2016年8月31日
【申请日】2016年6月22日
【发明人】苏怀智, 杨孟, 黄潇霏, 顾昊
【申请人】河海大学