张减机钢管增厚端控制方法

文档序号:6281886阅读:644来源:国知局

专利名称::张减机钢管增厚端控制方法
技术领域
:本发明涉及无缝钢管张力减径过程的钢管头尾增厚端切损控制(CropEndControl,简称CEC)技术。战旦仕士钢管在张力减径机的壁厚变化是通过调整钢管在各机架间张力实现的,而各机架间的张力由各轧辊之间的速度差产生。钢管管端增厚现象是张力减径的特性现象。管端增厚一般认为是由于轧制过程中钢管头尾端通过处于张力升起和张力下降机架间时,所承受的张力比张力不变机架间的稳定轧制状态小产生的。因此,钢管增厚端控制(以下简称CEC)控制的思路是补偿管端所缺少的那部分作用,在管端刚咬入机架时增大相邻机架间速度差,产生瞬态的较大张力,已达到縮短增厚端的目的。现有的CEC头端控制主要通过调整可编程度控制器PLC的前端延迟级、前端速降因子和整体参与机架数三个参数进行控制。而CEC尾端控制主要通过尾端干涉级、尾端速降因子和整体参与机架数三个参数进行控制。现有技术中参与CEC速降变化的速度动态调整机架数一旦由操作工设定后在轧制过程中是固定的,由前端延迟级和尾端干涉级两个参数决定。钢管头尾增厚端在轧制过程中实际上是随着钢管在轧机中的前进而不断增长的,只采用固定的几个机架对增厚端进行CEC作用产生的后果是一方面作用机架过多会把CEC作用到钢管正常端,另一方面作用机架过少不能达到縮短增厚端的效果。
发明内容本发明的目的在于提供一种张减机钢管增厚端控制方法,该控制方法能根据增厚端在轧制过程中的变化而调整钢管增厚端控制作用机架数,可有效的縮短钢管增厚端长度,减少增厚端切损,提高钢管成材率。本发明是这样实现的一种张减机钢管增厚端控制方法,是根据张减机管端壁厚分布规律计算钢管增厚端控制因子表,利用此因子表能根据增厚端长度在轧制过程的变化而自适应的增减参与CEC作用的机架数,配合作用在钢管头尾增厚端的附加张力的调整实现进一步縮短头尾增厚端;计算张减机钢管增厚端控制因子表的步骤是1)根据平均张力决定基础调速等级和最大调速等级;基础调速等级为钢管头部刚进入机架和钢管尾部将进入机架的初始参与钢管增厚端控制调速的机架数;基础调速等级由钢管张减轧制的平均张力决定,平均轴向张力系数、的计算公式如下<formula>formulaseeoriginaldocumentpage8</formula>其中,设《"^分别为荒管和成品管的平均外径,&、^分别为荒管和成品管的壁厚,则^为切向变形,^为径向变形,<formula>formulaseeoriginaldocumentpage8</formula>为平均壁径比;根据计算的平均轴向张力系数,再决定基础调速等级;最大调速等级是指同时参与钢管增厚端控制调速的最多机架数,最大调速等级限制为7机架,即任意机架位置的同时参与调速的机架数最多为7架;2)根据轧辊工作直径变化计算原始钢管增厚端控制调速因子;工作直径的计算公式为A=z)-c;《(2)式中理想轧辊直径为D,第^几架的轧辊的孔型直径为《,工作直径的比例参数为G;钢管处于正常轧制位置时,第4几架的轧辊工作直径的比例参数为q,头尾轧制时,第4几架的轧辊工作直径的比例参数为^,此处'代表轧辊工作直径的变化级数;假设第^机架正常轧制的转速为A,钢管线速度为、若采用钢管增厚端控制调整转速后,转速为^,钢管线速度为^,则q《)(3)为保证钢管的线速度不变,应该满足、=^,即故有<formula>formulaseeoriginaldocumentpage9</formula>)因此,钢管增厚端控制调速为<formula>formulaseeoriginaldocumentpage9</formula>钢管增厚端控制调速因子为<formula>formulaseeoriginaldocumentpage9</formula>对于头端每机架轧辊的工作直径的正常参数为C^,头端调速因子计算公式<formula>formulaseeoriginaldocumentpage9</formula>式中P为钢管增厚端控制调节的级数;对于尾端每机架轧辊的工作直径的正常参数为cv"则尾端调速因子计算W/入式为:cosC£>—cos/一1(9)「t义、3(p一l)3)构造原始钢管增厚端控制调速因子表由每机架的多级速度调节,根据公式(8)和(9)可以得到原始的头端和尾端钢管增厚端控制调速因子表;4)根据钢管延伸率决定每机架处同时参与钢管增厚端控制作用的机架数;若各机架的延伸率为4,"i,2,…,此处,延伸率理解为钢管从第l机架到第'机架时,钢管的延伸比率,则延伸率的计算公式为(13)(14)副:q《)附,.=/^-第財几架处同时参与CEC作用的机架数丄^一增厚端长度A(Q-第財几架的延伸比率m—参与CEC控制的所有机架数,1,2..."G—平均机架间距5)结合每机架处同时参与钢管增厚端控制作用的机架数,修正原始钢管增厚端控制因子表;结合步骤4)得出的每机架处同时参与CEC作用的机架数,根据"速度系列同比改变轧制壁厚不变原理"对原始CEC因子按同比修正,得出全新CEC因子表;该因子表考虑了每机架处应该同时参与CEC作用的机架数的计算,能根据钢管在机架中的延伸来增加同时参与CEC作用的机架数。本发明根据张减机管端壁厚分布规律设计出全新的CEC因子表,利用此因子表能根据增厚端长度在轧制过程的变化而自适应的增减参与CEC作用的机架数,配合作用在钢管头尾增厚端的附加张力的调整实现进一步縮短头尾增厚端的目的。本发明与现有技术相比,取消了前端延迟级和尾端干涉级两个参数,提出的根据CEC因子表能改变附加张力作用机架数的技术方案较原来附加张力只作用固定几个机架的技术有较大优势,可有效的縮短钢管增厚端长度,减少增厚端切损,提高钢管成材率。图1为轧辊工作半径变化示意图;图2为CEC因子表作用过程图;图3为典型规格152.5X5.75—73.03X5.6头端增厚端采用CEC因子前后的比较示意图;图4为典型规格152.5X5.75—73.03X5.6C端样(每段100MM)示意图;图5为典型规格152.5X5.75—73.03X5.6尾端增厚端采用CEC因子前后的比较示意图;图6为典型规格152.5X5.75—73.03X5.6A端样(每段100MM)示意图。具体实施方式下面结合附图和具体实施例对本发明作进一步说明。参见图2,张减机钢管增厚端控制方法是针对不同轧制规格的不同CEC因子表保存在过程控制层(L2层)的数据库里,基础设备层(Ll层)通过调用这些CEC因子表来调整轧辊速度。CEC因子表由各机架按照步骤动态调整速度值构成,以机架顺序和步骤顺序为两轴的二维表。这种以CEC因子表保存在L2层的形式更有利于技术人员针对生产实际优化CEC因子表。张减机钢管增厚端CEC因子表计算的主要依据为1)钢管头尾所处机架的工作直径的变化情况;2)钢管头尾处于不同机架时,钢管的延伸情况。计算新型张减CEC因子表的步骤为1、根据平均张力决定基础调速等级和最大调速等级;2、根据轧辊工作直径变化计算原始cec调速因子;3、构造原始cec调速因子表;4、根据钢管延伸率决定每机架处同时参与cec作用的机架数;5、结合每机架处同时参与cec作用的机架数,修正原始cec因子表;具体步骤为1、决定基础调速等级和最大调速等级基础调速等级为钢管头部刚进入机架和钢管尾部将进入机架的初始参与cec调速的机架数。最大调速等级是指同时参与cec调速的最多机架数。基础调速等级由钢管张减轧制的平均张力决定,平均轴向张力系数^的计算公式如下<formula>formulaseeoriginaldocumentpage12</formula>其中,设々、^分别为荒管和成品管的平均外径,^分别为;和成品管的壁厚,则(为切向变形,Sa为径向变形,.(《J为平均壁径比。根据计算的平均轴向张力系数,由表1决定基础调速等级。表l、钢管头端和尾端的基础调速等级<table>tableseeoriginaldocumentpage12</column></row><table><table>tableseeoriginaldocumentpage13</column></row><table>小口径薄壁管钢管延伸较大,根据经验选5个机架(5X310毫米)作为l弁机架的同时参与机架数(后续机架利用公式(14)计算第k机架应同时参与CEC的机架数);小口径中厚壁管延伸稍小点,选择4个机架或3个机架作为l弁机架的同时参与机架数;大口径管子减径量少,延伸最小,选择2架;最大调速等级限制为7机架,即任意机架位置的同时参与调速的机架数最多为7架(钢管延伸率最大的情况下)。2、计算原始CEC调速因子原始CEC因子表的计算主要围绕钢管头尾所处机架的工作直径的变化情况进行。头端和尾端的工作直径的计算方法不同,这主要是考虑到轧辊转速调整过程中可能存在滑动的情况,故此轧辊间增加的速差应比理想计算的情况更大一些。采用简单的方法设置各轧辊的工作直径的参数,可以计算出钢管处于任何时段,各轧辊的工作直径。记理想轧辊直径为^,第4几架的轧辊的孔型直径为^,工作直径的比例参数为G,该参数的变化范围为0.5到1.0,则工作直径的计算公式为记钢管处于正常轧制位置时,第4几架的轧辊工作直径的比例参数为G,头尾轧制时,第4几架的轧辊工作直径的比例参数为"),此处'代表轧辊工作直径的变化级数。原始CEC调速因子的计算方式如下假设第4几架正常轧制的转速为化,钢管线速度为、若采用CEC控制调整转速后,转速为&,钢管线速度为、则<formula>formulaseeoriginaldocumentpage13</formula>因此,为保证钢管的线速度不变,应该满足<formula>formulaseeoriginaldocumentpage13</formula>,即<formula>formulaseeoriginaldocumentpage14</formula>CEC调速因子为对于头端每机架轧辊的工作直径的正常参数为Ct(7),头端调速因子计算公式为:<formula>formulaseeoriginaldocumentpage14</formula>式中^为钢管增厚端控制调节的级数;,.为V..,P;对于尾端每机架轧辊的工作直径的正常参数为,尾端调速因子计算公式为:<formula>formulaseeoriginaldocumentpage14</formula>3、构造原始CEC调速因子表由每机架的多级速度调节,根据公式(8)和(9)可以得到原始的头端和尾端钢管增厚端控制调速因子表;4、决定每机架处同时参与CEC作用的机架数计算得到原始的头端CEC调速因子后,需要根据钢管延伸率的变化情况,决定钢管头端处于具体机架时,应该作用的管端长度。估计管端增厚端长度的公式主要有以下三种。(1)洛特尔(Rodder)公式或者由下式表示<formula>formulaseeoriginaldocumentpage15</formula>-相对减壁:i在张减机中的延伸系数;平均机架间距(mm);芒管米重(kg/m);—力Li一热轧管米重(kg/m);一荒管壁厚(mm)-,一热轧管壁厚(mm);(2)瓦伦特(Valenta)公式<formula>formulaseeoriginaldocumentpage15</formula>(10)(11)一荒管直径(mm);-热轧管直径(mm);其余符号的意义同洛特尔公式。(3)A.A.舍甫琴科(Shevchenko)公式该式各符号的意义同洛特尔公式。上述各公式都是在试验基础上得出的经验公式。由于试验条件和实际情况不尽相同,因此,这些公式有很大的局限性。通过对各种规格的热轧管的增厚端的长度进行实测表明当减径量大时,实测增厚端长度比计算的要长,而当减径量较小时,则计算值偏高。尤其是在张减机上实施转速调节措施后,这种关系就变得模糊不清了。瓦伦特公式和舍甫琴科公式的计算值与实际值相比,前者偏小,后者偏大。上面的公式均是按碳素钢管来考虑的。当计算合金钢管增厚端长度时,其切损值将会增大。因此,针对需要进行CEC切头控制的钢管类型,考虑到控制机构的滞后以及控制过程中的过渡过程,一般应选择计算值偏大的头尾增厚端长度公式。在此,仍然根据平均轴向张力系数决定使用具体的公式,参见表2。表2、钢管头尾增厚段公式选用<table>tableseeoriginaldocumentpage16</column></row><table>上述公式也可根据不同的钢管型号进行调整,根据钢管的延伸率/入和不采用CEC控制的头尾增厚端长度,得到基础的头尾增厚端长度w式。若各机架的延伸率为\'-l,2,-、"i.此处,延伸率理解为钢管从第l机架到第'机架时,钢管的延伸比率,则延伸率的计算公式为<formula>formulaseeoriginaldocumentpage16</formula>决定每机架处同时参与CEC作用的机架数w,-第財几架处同时参与CEC作用的机架数Z^—增厚端长度义,^)-第A机架的延伸比率"一参与CEC控制的所有机架数,1,2..力C,一平均机架间距全新的CEC因子表的构建(14)结合步骤4得出的每机架处同时参与CEC作用的机架数,根据"速度系列同比改变轧制壁厚不变原理"对原始CEC因子按同比修正,得出的全新CEC因子表。此因子表由于考虑了每机架处应该同时参与CEC作用的机架数的计算,能根据钢管在机架中的延伸来增加同时参与CEC作用的机架数。典型规格152.5X5.75—73.03X5,6CEC因子表如表3所示。表3中标出线框部分即为优选的机架数。实施例根据
发明内容部分所述规则,结合产品大纲不同钢管规格,利用自主开发的程序计算出所有轧制规格的新型CEC因子表。新型CEC因子表存储在数据库中,轧制前操作工在调用轧制表时同时调出CEC因子表,并在操作界面中输入头尾段CEC作用大小的参数(头端A因子和尾端A因子)。(1)试验钢管的典型规格选取典型规格152.5X5.75—73.03X5.6钢管的张减过程进行新型CEC控制生产试验,其规格参数见表4。表4典型规格钢管小73.03x5.6的规格参数孔型代号荒管外径(mm)荒管壁厚(mm)成品管外径(mm)成品管壁厚(mm)参与轧制机架数BRDBY152.505.7573.035.618操作参数张减轧制过程调用的CEC因子表如附表3,附表3体现料管端和管尾到达不同机架位置时各机架的转速变化情况。表征头尾端CEC作用大小的另两个调节参数的取值头端A因子一70%,尾端A因子一100%。(2)生产试验方法在实际生产过程中连续运行一个炉号,收集生产过程中钢管增厚端的在线测量数据和人工实测数据。通过收集到的增后端长度数据,根据不同因子表和轧制参数对比后确定最优化的CEC因子表。(3)钢管增厚端的生产试验结果采用新CEC技术试验结果发现,典型规格73.03X5.6油管,A段切头由目前的1.3M减少到UM,C段切尾长度由目前的1.35M减少到0.7M。A段改善效果没有C段明显,但从C段的改善效果来看,新的CEC控制技术具有很大的优越性。参见图3、图4、图5、图6。本发明可有效的縮短钢管增厚端长度,减少增厚端切损,提高钢管成材率。表3:新型因子表举例<table>tableseeoriginaldocumentpage19</column></row><table><table>tableseeoriginaldocumentpage20</column></row><table>权利要求1.一种张减机钢管增厚端控制方法,其特征是根据张减机管端壁厚分布规律计算钢管增厚端控制因子表,利用此因子表能根据增厚端长度在轧制过程的变化而自适应的增减参与CEC作用的机架数,配合作用在钢管头尾增厚端的附加张力的调整实现进一步缩短头尾增厚端;计算张减机钢管增厚端控制因子表的步骤是1)根据平均张力决定基础调速等级和最大调速等级;基础调速等级为钢管头部刚进入机架和钢管尾部将进入机架的初始参与钢管增厚端控制调速的机架数;基础调速等级由钢管张减轧制的平均张力决定,平均轴向张力系数x1m的计算公式如下其中,设dmK、dmR分别为荒管和成品管的平均外径,SK、SR分别为荒管和成品管的壁厚,则id="icf0002"file="A2007100385930002C2.tif"wi="16"he="8"top="159"left="71"img-content="drawing"img-format="tif"orientation="portrait"inline="yes"/>为切向变形,id="icf0003"file="A2007100385930002C3.tif"wi="14"he="8"top="159"left="123"img-content="drawing"img-format="tif"orientation="portrait"inline="yes"/>为径向变形,<mathsid="math0001"num="0001"><math><![CDATA[<mrow><msub><mi>&epsiv;</mi><mi>m</mi></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><mfrac><msub><mi>S</mi><mi>K</mi></msub><msub><mi>d</mi><mi>mK</mi></msub></mfrac><mo>+</mo><mfrac><msub><mi>S</mi><mi>R</mi></msub><msub><mi>d</mi><mi>mR</mi></msub></mfrac><mo>)</mo></mrow></mrow>]]></math>id="icf0004"file="A2007100385930002C4.tif"wi="28"he="10"top="172"left="22"img-content="drawing"img-format="tif"orientation="portrait"inline="yes"/></maths>为平均壁径比;根据计算的平均轴向张力系数,再决定基础调速等级;最大调速等级是指同时参与钢管增厚端控制调速的最多机架数,最大调速等级限制为7机架,即任意机架位置的同时参与调速的机架数最多为7架;2)根据轧辊工作直径变化计算原始钢管增厚端控制调速因子;工作直径的计算公式为Dk=D-CKdK(2)式中理想轧辊直径为D,第k机架的轧辊的孔型直径为dk,工作直径的比例参数为Ck;钢管处于正常轧制位置时,第k机架的轧辊工作直径的比例参数为Ck,头尾轧制时,第k机架的轧辊工作直径的比例参数为Ck(i),此处i代表轧辊工作直径的变化级数;假设第k机架正常轧制的转速为ωk,钢管线速度为vk,若采用钢管增厚端控制调整转速后,转速为<overscore>ω</overscore>k,钢管线速度为<overscore>v</overscore>k,则vk=ωkπ(D-Ckdk)(3)<mathsid="math0002"num="0002"><math><![CDATA[<mrow><msub><mover><mi>v</mi><mo>&OverBar;</mo></mover><mi>k</mi></msub><mo>=</mo><msub><mover><mi>&omega;</mi><mo>&OverBar;</mo></mover><mi>k</mi></msub><mi>&pi;</mi><mrow><mo>(</mo><mi>D</mi><mo>-</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup><msub><mi>d</mi><mi>k</mi></msub><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow>]]></math></maths>为保证钢管的线速度不变,应该满足vk=<overscore>v</overscore>k,即<mathsid="math0003"num="0003"><math><![CDATA[<mrow><msub><mi>&omega;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>D</mi><mo>-</mo><msub><mi>C</mi><mi>k</mi></msub><msub><mi>d</mi><mi>k</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mover><mi>&omega;</mi><mo>&OverBar;</mo></mover><mi>k</mi></msub><mrow><mo>(</mo><mi>D</mi><mo>-</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup><msub><mi>d</mi><mi>k</mi></msub><mo>)</mo></mrow></mrow>]]></math></maths>故有<mathsid="math0004"num="0004"><math><![CDATA[<mrow><msub><mover><mi>&omega;</mi><mo>&OverBar;</mo></mover><mi>k</mi></msub><mo>=</mo><mfrac><mrow><mo>(</mo><mi>D</mi><mo>-</mo><msub><mi>C</mi><mi>k</mi></msub><msub><mi>d</mi><mi>k</mi></msub><mo>)</mo></mrow><mrow><mo>(</mo><mi>D</mi><mo>-</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup><msub><mi>d</mi><mi>k</mi></msub><mo>)</mo></mrow></mfrac><msub><mi>&omega;</mi><mi>k</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow>]]></math></maths>因此,钢管增厚端控制调速为<mathsid="math0005"num="0005"><math><![CDATA[<mrow><mi>&Delta;</mi><msubsup><mi>&omega;</mi><mi>k</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mover><mi>&omega;</mi><mo>&OverBar;</mo></mover><mi>k</mi></msub><mo>-</mo><msub><mi>&omega;</mi><mi>k</mi></msub><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup><mo>-</mo><msub><mi>C</mi><mi>k</mi></msub><mo>)</mo></mrow><msub><mi>d</mi><mi>k</mi></msub></mrow><mrow><mo>(</mo><mi>D</mi><mo>-</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup><msub><mi>d</mi><mi>k</mi></msub><mo>)</mo></mrow></mfrac><msub><mi>&omega;</mi><mi>k</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow>]]></math></maths>钢管增厚端控制调速因子为<mathsid="math0006"num="0006"><math><![CDATA[<mrow><mi>&Delta;</mi><msubsup><mi>n</mi><mi>k</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup><mo>-</mo><msub><mi>C</mi><mi>k</mi></msub><mo>)</mo></mrow><msub><mi>d</mi><mi>k</mi></msub></mrow><mrow><mo>(</mo><mi>D</mi><mo>-</mo><msubsup><mi>C</mi><mi>k</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup><msub><mi>d</mi><mi>k</mi></msub><mo>)</mo></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow></mrow>]]></math></maths>对于头端每机架轧辊的工作直径的正常参数为CkH,头端调速因子计算公式为<mathsid="math0007"num="0007"><math><![CDATA[<mrow><msubsup><mi>&Delta;n</mi><mi>kh</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mfrac><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn><mrow><mo>(</mo><mi>p</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfrac><mo>)</mo></mrow><mo>-</mo><msub><mi>C</mi><mi>kH</mi></msub><mo>)</mo></mrow><msub><mi>d</mi><mi>k</mi></msub></mrow><mrow><mo>(</mo><mi>D</mi><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mfrac><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn><mrow><mo>(</mo><mi>p</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfrac><mo>)</mo></mrow><msub><mi>d</mi><mi>k</mi></msub><mo>)</mo></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow>]]></math></maths>式中p为钢管增厚端控制调节的级数;i为1,…,p;对于尾端每机架轧辊的工作直径的正常参数为CkT,则尾端调速因子计算公式为<mathsid="math0008"num="0008"><math><![CDATA[<mrow><msubsup><mi>&Delta;n</mi><mi>kt</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msubsup><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow><mrow><mn>3</mn><mrow><mo>(</mo><mi>p</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfrac><mi>&pi;</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>C</mi><mi>kT</mi></msub><mo>)</mo></mrow><msub><mi>d</mi><mi>k</mi></msub></mrow><mrow><mo>(</mo><mi>D</mi><mo>-</mo><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow><mrow><mn>3</mn><mrow><mo>(</mo><mi>p</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfrac><mi>&pi;</mi><mo>)</mo></mrow><msub><mi>d</mi><mi>k</mi></msub><mo>)</mo></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow></mrow>]]></math></maths>3)构造原始钢管增厚端控制调速因子表由每机架的多级速度调节,根据公式(8)和(9)可以得到原始的头端和尾端钢管增厚端控制调速因子表;4)根据钢管延伸率决定每机架处同时参与钢管增厚端控制作用的机架数;若各机架的延伸率为λi,i=1,2,…,m,此处,延伸率理解为钢管从第1机架到第i机架时,钢管的延伸比率,则延伸率的计算公式为<mathsid="math0009"num="0009"><math><![CDATA[<mrow><msub><mi>&lambda;</mi><mi>L</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><msub><mi>&omega;</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>D</mi><mo>-</mo><msub><mi>C</mi><mi>k</mi></msub><msub><mi>d</mi><mi>k</mi></msub><mo>)</mo></mrow></mrow><mrow><msub><mi>&omega;</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>D</mi><mo>-</mo><msub><mi>C</mi><mn>1</mn></msub><msub><mi>d</mi><mn>1</mn></msub><mo>)</mo></mrow></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>13</mn><mo>)</mo></mrow></mrow>]]></math></maths><mathsid="math0010"num="0010"><math><![CDATA[<mrow><msub><mi>m</mi><mi>k</mi></msub><mo>=</mo><mfrac><mrow><msub><mi>L</mi><mi>Ve</mi></msub><mo>*</mo><msub><mi>&lambda;</mi><mi>L</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow><mrow><msub><mi>&lambda;</mi><mi>L</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>*</mo><msub><mi>C</mi><mi>d</mi></msub></mrow></mfrac></mrow>]]></math></maths>mk-第k机架处同时参与CEC作用的机架数LVe-增厚端长度(14)λL(k)-第k机架的延伸比率n-参与CEC控制的所有机架数,1,2...nCd-平均机架间距5)结合每机架处同时参与钢管增厚端控制作用的机架数,修正原始钢管增厚端控制因子表;结合步骤4)得出的每机架处同时参与CEC作用的机架数,根据“速度系列同比改变轧制壁厚不变原理”对原始CEC因子按同比修正,得出全新CEC因子表;该因子表考虑了每机架处应该同时参与CEC作用的机架数的计算,能根据钢管在机架中的延伸来增加同时参与CEC作用的机架数。2.根据权利要求1所述的张减机钢管增厚端控制方法,其特征是基础调速等级对于小口径薄壁管钢管延伸较大,选五个机架作为1号机架的的头端和尾端同时参与机架数;小口径中厚壁管延伸稍小点,选择四个机架或三个机架作为1号机架的同时参与机架数;大口径管子减径量少,延伸最小,选择二个机架作为1号机架的同时参与机架数。3、根据权利要求1所述的张减机钢管增厚端控制方法,其特征是钢管头尾增厚端长度计算公式根据平均轴向张力系数进行选用,当参加轧制的机架娄大于等于12,平均张力系数为0.0-0.3,选用瓦伦特公式,艮P:<formula>formulaseeoriginaldocumentpage5</formula>式中《——荒管直径(mm);《——热轧管直径(mm);其余符号的意义同洛特尔公式当参加轧制的机架娄大于等于12,平均张力系数为0.3-0.65,选用舍甫琴科公式,艮口该式各符号的意义同洛特尔公式当参加轧制的机架娄大于等于12,平均张力系数为0.65-0.75,选用洛特尔公式,艮P:<formula>formulaseeoriginaldocumentpage5</formula>或者由下式表示:<formula>formulaseeoriginaldocumentpage5</formula>式中<formula>formulaseeoriginaldocumentpage5</formula>-相对减壁:<formula>formulaseeoriginaldocumentpage5</formula>-在张减机中的延伸系数;-平均机架间距(mm);-荒管米重(kg/m);-热轧管米重(kg/m);&~^荒管壁厚(mm);——热轧管壁厚(mm);当参加轧制的机架娄小于12,选用瓦伦特公式,即:<formula>formulaseeoriginaldocumentpage6</formula>(11)全文摘要本发明涉及无缝钢管张力减径过程的钢管头尾增厚端切损控制技术。一种张减机钢管增厚端控制方法,是根据张减机管端壁厚分布规律计算钢管增厚端控制因子表,利用此因子表能根据增厚端长度在轧制过程的变化而自适应的增减参与CEC作用的机架数,配合作用在钢管头尾增厚端的附加张力的调整实现缩短头尾增厚端;计算张减机CEC因子表的步骤是根据平均张力决定基础调速等级和最大调速等级;根据轧辊工作直径变化计算原始CEC调速因子;构造原始CEC调速因子表;根据钢管延伸率决定每机架处同时参与CEC作用的机架数;结合每机架处同时参与CEC作用的机架数,修正原始CEC因子表。本发明可有效的缩短钢管增厚端长度,提高钢管成材率。文档编号G05D5/00GK101274335SQ20071003859公开日2008年10月1日申请日期2007年3月29日优先权日2007年3月29日发明者古云波,王超峰,薛建国申请人:宝山钢铁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1