专利名称:一种带夹套的反应釜温度控制系统及其温度控制方法
技术领域:
本发明涉及工业自动化控制领域,尤其涉及应用在精细化工类,高分子聚 合物反应中的带夹套的反应釜温度控制系统及其温度控制方法。
背景技术:
随着科技和经济的发展,精细化工,高分子聚合物在各个领域得到了十分 广泛的应用,同时也对聚合物的产品质量和生产过程自动化提出了更高的要求。 目前聚合物生产中的聚合反应主要是在间歇式反应釜中进行,反应釜是任何化
学品生产过程中的关键i殳备,决定了化工产品的品质、品种和生产能力。在生 产中影响聚合反应的参数(如温度、压力、流量、速度等),最重要的A^应器的 温度控制,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产 过程的安全性。
聚合反应过程既是化学反应过程,又是物理变化过程,聚合机理复杂。聚 合反应过程具有非线性、时变、有噪声干扰、有纯滞后等特点。
常规方法对釜式反应器的控制效果不是很理想,现有的控制方法很多只是 控制了夹套的温度,进行单个的PID的调节,它的根本在于控制夹套的温度, 而不是控制反应釜内部温度,所以如果反应剧烈,就很难保证反应釜内温度的 可控性。
发明内容
本发明提供的一种带夹套的反应釜温度控制系统及其温度控制方法,可有 效提高化工产品的质量和生产效率,严格控制反应釜内部温度,解决了在精细 化工在反应釜反应过程中的温度控制这一难点。
为了达到上述目的,本发明提供一种带夹套的反应釜温度控制系统,包含
夹套,所述夹套包围着反应釜;
循环泵,分别连接夹套的进水管道和出水管道,让夹套中的水不停的循环,
均匀混合;
射流混合器,其设置在循环泵与夹套之间的进水管道上,冷却水和蒸汽在 射流混合器中混合;
蒸汽调节阀,其一端通过管道连接射流混合器,另一端管道连接中压蒸汽 产生装置,让蒸汽和水在射流混合器中混合成为热水,从而提升反应釜中的物 料的温度;
冷却水调节阀,其一端通过管道连接循环泵,另一端管道连接冷却水进水 口,用于冷却夹套内部的水温,从而降低反应釜中物料的温度; 测温装置,所述测温装置包含
第一测温装置,设置在反应釜上,记录反应釜内的实时温度; 第二测温装置,设置在夹套的进水管道上,记录夹套内的实时温度; 温度控制装置,其电路连接所述的蒸汽调节阀、冷却水调节阀和测温装置, 该温度控制装置包括串级的两层PID (比例、积分、微分)控制, 一个作为主 PID控制装置, 一个作为从PID控制装置;
温度控制装置控制夹套内的温度,从而最终控制反应釜内的温度,当测温 装置测得的温度低于设定值时,打开蒸汽调节阀,加热夹套内部水温,提升反 应蒼中的物料的温度,当测温装置测得的温度高于设定值时,打开冷却水调节 阀,冷却夹套内部的水温,降^^应釜中物料的温度,从而将反应釜内的温度 稳定在一定温度范围之内,让反应顺利进行。本发明还提供一种温度控制方法,包含以下步骤
步骤l、调试PID的参数,PID的参数确定后,启动整个串级的PID模式;
步骤1.1、确定Kp值,把Kp值设定在8以下,得到PID快速的温度响应 速度和温度的稳定性;
步骤1.2、确定Ki的值;根据实际工艺设备的情况,反复多设定几次数值, 一般先设定为0.5看实际的曲线,再慢慢调整;
步骤1.3、确定Kd的值; 一般很少用到Kd,所以Kd的值为0;
步骤1.4、确定BLAS的初始值为50;
步骤2、主PID控制装置设定需要的反应釜内温度Master PID SP;
步骤3、主PID控制装置对第一测温装置读得的温度过程值Master PID PV
进行PID调节运算,得到的结果为Master PID Control Output ( CV1 , 0%《CV1
< 1000/0);
五=Master PID SP - Master PID P V
步骤4、确定夹套内温度Slave PID SP;
因为正常反应温度为75。C左右,同时夹套的温度不能超过95C (超过95匸 之后有可能夹套中的水全部蒸发为水蒸气,加热效果相反会比90多度的水要小 得多);
将步骤3得到的CV1代入函数运算y=k*CVl(l《k《2)得到y的值(限定10 《y《95 ),以y的值作为从PID控制装置设定的夹套内温度Slave PID SP;
步骤5、从PID控制装置对第二测温装置读得的温度过程值Slave PID PV进
行PID调节运算,得到的结果为Slave PID Control Output (CV2) (0%《CV2《
100%);
五=Slave PID SP — Slave PID PV
,^蕴vePIDPV …。 CT2 =《,+A; --—
0J 力 步骤6、规定一个死区Dead band,死区的范围为2%~0%; 当CV2的值处于50%-Dead band ~50%+Dead band范围内时,既不需要开蒸 汽调节阀,也不需要开冷却水调节阀;
当CV2的值大于50°/。+Deadband,进行步骤7; 当CV2的值小于50°/o-Deadband,进行步骤8; 步骤7、温度控制装置打开蒸汽调节阀;
中压蒸汽阀的开度%={ [CV2-(50%+Dead band)]/(50%-Dead band)} * 100% 步骤8、温度控制装置打开冷却水调节阀;
冷却水阀开度%={ [ (50%+Dead band)-CV2]/(50%-Dead band)} * 100%。 在应用本发明提供的温度控制方法的过程中,先单独调试从PID的参数, 让从PID能有一个快速响应时间和一个稳定的响应过程,既是让夹套中的温度 負M艮好的跟随Slave PID SP,当完成此过程后,启动整个串级的PID模式,当这 个串级的主PID给出的CV1变化时,y=l*CVl也会随之变化,也就是说从Slave
已经在单独的测试中拥有^艮好的跟随性,所以整个系统的冷却水调节阀和蒸汽 调节阀也能按预期的设定进行很好的工作。
本发明提供的一种带夹套的反应釜温度控制系统及其温度控制方法,是一
个简单有效的带夹套的反应釜温度控制方案,是一种基于Rockwell RSlogix5000 PLC系统的一种串级PID调节系统,只需要通过实际工况调整具体的PID参数
就能很好的控制反应釜的温度,而且反应釜的温度可以控制在士rc之内,从而
可有效提高化工产品的质量和生产效率,解决在精细化工在反应釜反应过程中 的温度控制这一难点。
附困说明
图1是本发明提供的一种带夹套的反应釜温度控制系统的结构示意图; 图2是本发明提供的一种温度控制方法的步骤6中死区的范围以及对应的 步骤7和8中调节阀开度示意图。
具体实施例方式
以下根据图1和图2具体说明本发明的较佳实施方式 如图l所示, 本发明提供一种带夹套的反应釜温度控制系统,包含 夹套IOI,所述夹套101包围着反应釜100;
循环泵102,分别连接夹套101的进水管道1011和出水管道1012,让夹套 1011中的水不停的循环,均匀混合;
射流混合器103,其设置在循环泵102与夹套101之间的进水管道1011上, 冷却水和蒸汽在射流混合器103中混合;
蒸汽调节阀104,其一端通过管道连接射流混合器103,另一端管道连接中 压蒸汽产生装置,用于加热夹套内部的水温,从而提升反应釜中的物料的温度;
冷却水调节阀105,其一端通过管道连接循环泵102,另一端管道连接冷却 水进水口,用于冷却夹套内部的水温,从而降低反应釜中物料的温度;
测温装置,所述测温装置包含
第一测温装置1061,设置在反应釜100上,记录反应釜内的实时—温度; 第二测温装置1062,设置在夹套101的进水管道1011上,记录夹套内的实
时温度;
温度控制装置,其电路连接所述的蒸汽调节阀104、冷却水调节阀105和测 温装置,该温度控制装置包括串级的两层PID (比例、积分、微分)控制, 一个 作为主PID控制装置, 一个作为从PID控制装置;
温度控制装置控制夹套内的温度,从而最终控制反应釜内的温度,当测温 装置测得的温度低于设定值时,打开蒸汽调节阀,加热夹套内部水温,提升反 应釜中的物料的温度,当测温装置测得的温度高于设定值时,打开冷却水调节 阀,冷却夹套内部的水温,P务低反应釜中物料的温度,从而将反应釜内的温度 稳定在一定温度范围之内,让反应顺利进行。
本发明还提供一种温度控制方法,包含以下步骤
步骤l、调试PID的参数,PID的参数确定后,启动整个串级的PID模式;
步骤1.1、确定Kp值,把Kp值设定在8以下,得到PID快速的温度响应 速度和温度的稳定性;
步骤1.2、确定Ki的值;根据实际工艺设备的情况,反复多设定几次数值, 一般先设定为0.5看实际的曲线,再慢慢调整;
步骤1.3、确定Kd的值; 一般很少用到Kd,所以Kd的值为0;
步骤1.4、确定BLAS的初始值为50;
步骤2、主PID控制装置设定需要的反应釜内温度Master PID SP;
步骤3、主PID控制装置对第一测温装置读得的温度过程值Master PID PV
进行PID调节运算,得到的结果为Master PID Control Output (CVl, 0%《CV1
《100%);
<formula>formula see original document page 9</formula>步骤4、确定夹套内温度Slave PID SP;
因为正常反应温度为75'C左右,同时夹套的温度不能超过95。C (超过95。C 之后有可能夹套中的水全部蒸发为水蒸气,加热效果相反会比90多度的水要 小);
将步骤3得到的CV1代入函数运算y=l*CVl得到y的值(限定10 < y《95 ), 以y的值作为从PID控制装置设定的夹套内温度Slave PID SP;
步骤5、从PID控制装置对第二测温装置读得的温度过程值Slave PID PV进
行PID调节运算,得到的结果为Slave PID Control Output (CV2) (0%《CV2《
100%);
五=Slave PID SP - Slave PID PV
" ^'r广j ^必lavePIDPV …。 0J 力
步骤6、规定一个死区Dead band,死区的范围为2%~0o/o; 当CV2的值处于50M-Deadband~50%+Deadband范围内时,既不需要开蒸 汽调节阀,也不需要开冷却水调节阀;
当CV2的值大于50%+Dead band,进行步骤7; 当CV2的值小于50%-Deadband,进行步骤8; 步骤7、温度控制装置打开蒸汽调节阀;
中压蒸汽阀的开度o/^([CV2-(50T(H"Dead band)/(50o/o-Dead band)}*100% 步骤8、温度控制装置打开冷却水调节阀;
冷却水阀开度%={[ (50%+Dead band)-CV2]/(50%-Dead band)}* 100%。
权利要求
1.一种带夹套的反应釜温度控制系统,包含夹套(101),所述夹套(101)包围着反应釜(100);循环泵(102),分别连接夹套(101)的进水管道(1011)和出水管道(1012),让夹套(1011)中的水不停的循环,均匀混合;射流混合器(103),其设置在循环泵(102)与夹套(101)之间的进水管道(1011)上,冷却水和蒸汽在射流混合器(103)中混合;蒸汽调节阀(104),其一端通过管道连接射流混合器(103),另一端管道连接蒸汽产生装置,用于加热夹套内部的水温,从而提升反应釜中的物料的温度;冷却水调节阀(105),其一端通过管道连接循环泵(102),另一端管道连接冷却水进水口,用于冷却夹套内部的水温,从而降低反应釜中物料的温度;其特征在于,还包含测温装置;温度控制装置,其电路连接所述的蒸汽调节阀(104)、冷却水调节阀(105)和测温装置,温度控制装置控制夹套内的温度,从而最终控制反应釜内的温度。
2. 如权利要求1所述的带夹套的反应釜温度控制系统,其特征在于,所述的测 温装置包含第一测温装置(1061),设置在反应釜(100)上,记录反应釜内的实时 温度;第二测温装置(1062),设置在夹套(101)的进水管道(1011)上,记 录夹套内的实时温度。
3. 如权利要求l所述的带夹套的反应釜温度控制系统,其特征在于,所述的温 度控制装置包括串级的两层PID控制, 一个作为主PID控制装置, 一个作为 从PID控制装置。
4. 如权利要求2所述的带夹套的反应釜温度控制系统,其特征在于,所述的蒸 汽调节阀(104)为中压蒸汽调节阀。
5. —种温度控制方法,其特征在于,包含以下步骤步骤l、调试PID的参数,PID的参数确定后,启动整个串级的PID模式;步骤2、主PID控制装置设定需要的反应釜内温度Master PID SP;步骤3、主PID控制装置对第一测温装置读得的温度过程值Master PIDPV进行PID调节运算,得到的结果为MasterPIDControlOutput-CVl; 五=Master PID SP 一 Master PID PV<formula>formula see original document page 3</formula>步骤4 、确定夹套内温度Slave PID SP;步骤5、从PID控制装置对第二测温装置读得的温度过程值Slave PID PV进行PID调节运算,得到的结果为Slave PID Control Output=CV2; 五=Slave PID SP - Slave PID PV<formula>formula see original document page 3</formula>步骤6、规定一个死区Dead band,死区的范围为2%~0%; 当CV2的值处于50%-Dead band ~50%+Dead band范围内时,既不需要 开蒸汽调节阀,也不需要开冷却水调节阀;当CV2的值大于50%+Dead band,进行步骤7; 当CV2的值小于50%-Dead band,进行步骤8; 步骤7、温度控制装置打开蒸汽调节阀; 步骤8、温度控制装置打开冷却水调节阀。
6. 如权利要求5所述的温度控制方法,其特征在于,所述的步骤l包含以下步 骤步骤l.l、确定Kp值,把Kp值设定在8以下,得到PID快速的温度响 应速度和温度的稳定性; 步骤1.2、确定Ki的值;根据实际工艺设备的情况,反复多设定几次数值,先设定为0.5;步骤1.3、确定Kd的值为0;步骤1.4、确定BLAS的初始值为50。
7. 如权利要求6所述的温度控制方法,其特征在于,所述的步骤1,2中,所述 的Ki的值继续根据实际的曲线慢慢调整。
8. 如权利要求5所述的温度控制方法,其特征在于,所述的步骤4中,将步骤 3得到的CV1代入函数运算y^l^CVl(l《k《2)得到y的值(l(Ky《95),以 y的值作为从PID控制装置设定的夹套内温度Slave PID SP。
9. 如权利要求5所述的温度控制方法,其特征在于,所述的步骤7中,蒸汽阀 的开度。/。-([CV2-(50。/。+Dead band)〗/(50°/。-Dead band)}*100%。
10. 如权利要求5所述的温度控制方法,其特征在于,所述的步骤8中,冷却水 阀开度%={[ (50%+Dead band)-CV2〗/(50%-Dead band)}*100%。
全文摘要
一种带夹套的反应釜温度控制系统及其温度控制方法,用夹套将反应釜包围起来,并设置连接蒸汽产生装置的蒸汽调节阀和连接冷却水的冷却水调节阀,通过测温装置测得的反应釜和夹套内的实时温度,温度控制装置采用温度控制方法,控制夹套内的温度,从而最终控制反应釜内的温度,当测温装置测得的温度低于设定值时,打开蒸汽调节阀,加热夹套内部水温,提升反应釜中的物料的温度,当测温装置测得的温度高于设定值时,打开冷却水调节阀,冷却夹套内部的水温,降低反应釜中物料的温度,从而将反应釜内的温度稳定在一定温度范围之内,让反应顺利进行。本发明可有效提高化工产品的质量和生产效率,解决在精细化工在反应釜反应过程中的温度控制这一难点。
文档编号G05D23/01GK101349925SQ200810042328
公开日2009年1月21日 申请日期2008年8月29日 优先权日2008年8月29日
发明者孙会兵 申请人:上海慧桥电气自动化有限公司;上海路豪电气控制工程有限公司