传感器域选择的制作方法
【专利摘要】本公开的方面总体上涉及对自主车辆的安全和高效使用。更具体地,自主车辆(301、501)能够检测在其的在传感器域(410、411、430、431、420A-423A、420B-423B、570-75、580)内的周围环境中的物体。响应于检测到物体,计算机(110)可以调整自主车辆的速度或改变方向。然而,在一些示例中,传感器域可以基于在车辆的周围环境中的物体或其他特征而改变或变得不那么可靠。结果,车辆的计算机(110)可以计算传感器减弱区域(620、720)的大小和形状以及基于该减弱区域的新的传感器域。响应于识别传感器减弱区域或新的传感器域,车辆的计算机可以改变车辆的控制策略。
【专利说明】传感器域选择
[0001]相关申请的交叉引用
[0002]本申请要求于2011年6月I日提交的、题为“Sensor Field Selection”的美国专利申请N0.13/150, 385的权益,特此通过引用将其公开内容合并入本文。
【背景技术】
[0003]自主车辆使用各种计算系统来帮助将乘客从一个位置运送到另一个位置。一些自主车辆可能需要来自诸如飞行员、驾驶员或乘客的操作者的一些初始输入或连续输入。例如自动驾驶仪系统的其他系统可以仅在该系统已被启用时才被使用,其允许操作者从手动模式(其中操作者实行对车辆的移动的高度控制)切换到自主模式(其中车辆本质上自行驾驶)到介于两者之间的模式。
[0004]这样的车辆装备有各种类型的传感器,以便检测在周围环境中的物体。例如,自主车辆可以包括激光器、声呐器、雷达、相机以及扫描并记录来自车辆的周围环境的数据的其他设备。这些设备相组合(以及在一些情况下,单独)可以用来构建在车辆的周围环境中检测到的物体的3D模型。
【发明内容】
[0005]本公开的一个方面提供了用于控制具有自主操作模式的车辆的方法。该方法包括通过处理器基于第一控制策略来控制车辆的操作;基于车辆的一个或多个传感器的视场来识别传感器域;从一个或多个传感器中的所选择的传感器接收传感器数据;基于传感器数据来识别一个或多个传感器的传感器感知力的改变,传感器感知力的改变包括检测在传感器域内的物体的减弱的能力;基于该改变来确定第二控制策略;以及通过处理器基于第二控制策略来控制车辆的操作。
[0006]在一个示例中,该方法还包括基于所接收的传感器数据来检测物体和该物体在传感器域中的位置,并且识别该改变基于物体的位置。在另一个示例中,识别传感器感知力的改变包括基于物体在传感器域中的位置来计算减弱的传感器感知力的区域,并且确定第二控制策略基于减弱的传感器感知力的区域。在另一个示例中,识别传感器感知力的改变包括基于物体在传感器域中的位置来计算当前传感器域,并且确定第二控制策略基于当前传感器域。在另一个示例中,物体是另一个车辆。在另一个示例中,该方法还包括确定传感器数据指示一个或多个传感器中的给定一个正在提供不可靠信息;以及识别改变基于所确定的指示。在另一个示例中,不可靠信息包括一个或多个相机图像。在另一个示例中,该方法还包括基于传感器数据来确定不再存在一个或多个传感器的传感器感知力的改变;基于不再存在改变的所述确定,控制车辆的操作进一步基于第一控制策略。在另一个示例中,基于第一控制策略来控制车辆的操作包括朝第一方向操纵车辆,以及基于第二控制策略来控制车辆的操作包括朝与第一方向不同的第二方向操纵车辆。在另一个示例中,基于第一控制策略来控制车辆的操作包括以第一速度操纵车辆,以及其中基于第二控制策略来控制车辆的操作包括以与第一速度不同的第二速度操纵车辆。[0007]本公开的另一个方面提供了用于控制具有自主操作模式的车辆的设备。该设备包括用于检测在车辆的周围环境中的物体的一个或多个传感器以及被耦接到该一个或多个传感器的处理器。该处理器可操作来基于第一控制策略来控制车辆的操作;基于车辆的一个或多个传感器的视场来识别传感器域;从一个或多个传感器中的所选择的传感器接收传感器数据;基于传感器数据来识别一个或多个传感器的传感器感知力的改变,传感器感知力的改变包括检测在传感器域内的物体的减弱的能力;基于该改变来确定第二控制策略;以及基于第二控制策略来控制车辆的操作。
[0008]在一个示例中,该处理器可进一步操作来基于所接收的传感器数据来检测物体和该物体在传感器域中的位置,并且该处理器基于物体的位置来识别该改变。在另一个示例中,该处理器可操作来通过基于物体在传感器域中的位置来计算减弱的传感器感知力的区域来识别传感器感知力的改变,并且确定第二控制策略基于减弱的传感器感知力的区域。在另一个示例中,该处理器可操作来通过基于物体在传感器域中的位置来计算当前传感器域来识别传感器感知力的改变,并且确定第二控制策略基于当前传感器域。在另一个示例中,该处理器可进一步操作来将物体识别为另一个车辆。在另一个示例中,该处理器可进一步操作来确定传感器数据指示一个或多个传感器中的给定一个正在提供不可靠信息,并且该处理器基于所确定的指示来识别改变。在另一个示例中,不可靠信息包括一个或多个相机图像。在另一个示例中,该处理器还可操作来基于传感器数据来确定不再存在一个或多个传感器的传感器感知力的改变;并且基于不再存在改变的确定,基于第一控制策略来控制车辆的操作。在另一个示例中,该处理器还可操作来通过朝第一方向操纵车辆,来基于第一控制策略控制车辆的操作,以及通过朝与第一方向不同的第二方向操纵车辆,来基于第二控制策略控制车辆的操作。在另一个示例中,该处理器还可操作来通过以第一速度操纵车辆,来基于第一控制策略控制车辆的操作,以及通过以与第一速度不同的第二速度操纵车辆,来基于第二控制策略控制车辆的操作。
[0009]本公开的又另一个方面提供了其上存储有程序的计算机可读指令的有形的计算机可读存储介质,所述指令当由处理器执行时,促使该处理器执行控制具有自主操作模式的车辆的方法。该方法包括通过处理器基于第一控制策略来控制车辆的操作;基于车辆的一个或多个传感器的视场来识别传感器域,传感器感知力的改变包括检测在传感器域内的物体的减弱的能力;从一个或多个传感器中的所选择的传感器接收传感器数据;基于传感器数据来识别一个或多个传感器的传感器感知力的改变;基于该改变来确定第二控制策略;以及通过处理器基于第二控制策略来控制车辆的操作。
[0010]在一个示例中,该方法还包括基于所接收的传感器数据来检测物体和该物体在传感器域中的位置,并且识别该改变基于物体的位置。在另一个示例中,识别传感器感知力的改变包括基于物体在传感器域中的位置来计算减弱的传感器感知力的区域,并且确定第二控制策略基于减弱的传感器感知力的区域。在另一个示例中,识别传感器感知力的改变包括基于物体在传感器域中的位置来计算当前传感器域,并且确定第二控制策略基于当前传感器域。在另一个示例中,物体是另一个车辆。在另一个示例中,该方法还包括确定传感器数据指示一个或多个传感器中的给定一个正在提供不可靠信息;以及识别改变基于所确定的指示。在另一个示例中,不可靠信息包括一个或多个相机图像。在另一个示例中,该方法还包括基于传感器数据来确定不再存在一个或多个传感器的传感器感知力的改变;基于不再存在改变的所述确定,控制车辆的操作进一步基于第一控制策略。在另一个示例中,基于第一控制策略来控制车辆的操作包括朝第一方向操纵车辆,以及基于第二控制策略来控制车辆的操作包括朝与第一方向不同的第二方向操纵车辆。在另一个示例中,基于第一控制策略来控制车辆的操作包括以第一速度操纵车辆,以及其中基于第二控制策略来控制车辆的操作包括以与第一速度不同的第二速度操纵车辆。
【专利附图】
【附图说明】
[0011]图1是与示例性实施例一致的系统的功能图。
[0012]图2是与示例性实施例一致的自主车辆的内部。
[0013]图3是与示例性实施例一致的自主车辆的外部。
[0014]图4A-D是与示例性实施例一致的自主车辆的图。
[0015]图5A-B是与示例性实施例一致的自主车辆的图。
[0016]图6A-B是与示例性实施例一致的自主车辆的图。
[0017]图7A-B是与示例性实施例一致的自主车辆的图。
[0018]图8A-B是与示例性实施例一致的自主车辆的图。
[0019]图9是与示例性实施例一致的流程图。
[0020]图10是与示例性实施例一致的流程图。
[0021]图11是与示例性实施例一致的流程图。
【具体实施方式】
[0022]如图1中所示,与本公开的一个方面一致的自主驾驶系统100包括带有各种组件的车辆101。虽然本公开的某些方面结合特定类型的车辆尤其有用,然而,车辆可以是任何类型的车辆,包括但不限于:汽车、卡车、摩托车、公共汽车、船、飞机、直升机、剪草机、娱乐车辆、游乐园车辆、农场用具、施工设备、电车、高尔夫球车、火车以及手推车。车辆可以具有一个或多个计算机,诸如包含处理器120、存储器130和典型地存在于通用计算机中的其他组件的计算机110。
[0023]存储器130存储处理器120可访问的信息,包括可以由处理器120执行或另外使用的指令132和数据134。存储器130可以是能够存储处理器可访问的信息的任何类型的,包括计算机可读介质或存储可以借助于电子设备读取的数据的其他介质,诸如硬盘驱动器、存储器卡、ROM、RAM、DVD或其他光盘,以及其他能写和只读存储器。系统和方法可以包括前述的不同组合,借此,指令和数据的不同部分被存储在不同类型的介质上。
[0024]指令132可以是待由处理器直接(诸如,机器码)或间接(诸如,脚本)执行的任何指令集。例如,指令可以作为计算机代码被存储在计算机可读介质上。在这方面,可以在本文中交替地使用词语“指令”和“程序”。指令可以以目标代码格式被存储以供处理器直接处理,或以任何其他计算机语言,包括根据需求被解释或预先被编译的脚本或独立源代码模块集合,被存储。在下面更详细地说明了指令的功能、方法和例程。
[0025]依据指令132,数据134可以由处理器120检索、存储或修改。例如,尽管所主张的主题不受任何特定数据结构限制,然而,数据可以是被存储在计算机寄存器中、作为具有多个不同字段和记录的表在关系数据库中、在XML文档或平面文件中。还可以以任何计算机可读格式对数据进行格式化。仅作为进一步示例,图像数据可以被存储为由像素网格组成的位图,其依据压缩或非压缩、无损(例如,BMP)或有损(例如,JPEG)、和基于位图或矢量(例如,SVG)的格式以及用于绘制图形的计算机指令被存储。数据可以包括足以识别相关信息的任何信息,诸如号码、描述文本、专有代码、对存储在同一存储器的其他区域或不同存储器(包括其他网络位置)中的数据的引用或功能使用来计算相关数据的信息。
[0026]处理器120可以是任何常规处理器,诸如商用CPU。替选地,处理器可以是专用设备,诸如ASIC或其他基于硬件的处理器。尽管图1将计算机110的处理器、存储器和其他元件在功能上图示为在同一块内,然而,本领域技术人员应当理解的是,处理器、计算机或存储器实际上可以包括可以或可以不被存储在同一物理外壳内的多个处理器、计算机或存储器。例如,存储器可以是位于与计算机110的外壳不同的外壳中的硬盘驱动器或其他存储介质。因此,对处理器或计算机的引用应当被理解为包括对可以或可以不并行操作的处理器或计算机或存储器集合的引用。组件中的部分,诸如转向组件和减速组件,每一个可以具有仅执行与该组件的特定功能有关的计算的其自身处理器,而不是使用单个处理器来执行在本文所述的步骤。
[0027]在本文所述的各个方面中,处理器可以位于远离车辆的地方并且与车辆无线地通信。在其他方面中,在本文所述的处理中的部分在被布置在车辆内的处理器上执行,并且其他的由远程处理器执行,包括采取执行单个操纵所需的步骤。
[0028]计算机110可以包括通常结合计算机使用的所有组件,诸如中央处理单元(CPU)、存储数据134和指令一诸如web浏览器一的存储器(例如,RAM和内部硬盘驱动器)、电子显示器142 (例如,具有屏幕的监视器、小型LCD触摸屏或可操作来显示信息的任何其他电子设备)、用户输入140 (例如,鼠标、键盘、触摸屏和/或麦克风)以及用于采集关于人的状态和期望的显式(例如,手势)或隐式(例如“人睡着了”)信息的各种传感器(例如,摄像机)。
[0029]在一个示例中,计算机110可以是并入车辆101中的自主驾驶计算系统。图2描绘了自主车辆的内部的示例性设计。该自主车辆可以包括非自主车辆的所有特征,例如:转向装置,诸如方向盘210 ;导航显示装置,诸如导航显示器215 ;以及齿轮选择器装置,诸如变速杆220。车辆还可以具有各种用户输入设备,诸如变速杆220、触摸屏217或按钮输入219,其用于激活或失活一个或多个自主驾驶模式以及用于使驾驶员或乘客290能够向自主驾驶计算机110提供诸如导航目的地的信息。
[0030]车辆101可以包括一个或多个另外的显示器。例如,车辆可以包括显示器225,其用于显示与自主车辆或其计算机的状态有关的信息。在另一个示例中,车辆可以包括用来指示车辆101的当前状态的状态指示装置138(参见图1),诸如状态栏230。在图2的示例中,状态栏230显示“D”和“2mph”,其指示该车辆目前处于驾驶模式并且正以每小时2英里移动。在这方面,车辆可以在电子显示器上显示文本、照亮车辆101的部分,诸如方向盘210、或提供各种其他类型的指示。
[0031]自主驾驶计算系统可以能够与车辆的各种组件进行通信。例如,返回到图1,计算机Iio可以与车辆的中央处理器160通信,并且可以发送并接收信息到/自车辆101的各种系统,例如制动180、加速182、发信号184和导航186系统,以便控制车辆101的移动、速度等。另外,当被启用时,计算机110可以控制车辆101的这些功能中的部分或全部,因此,是完全或仅仅部分自主的。应当理解的是,尽管各种系统和计算机110被示出在车辆101内,然而,这些元件可以在车辆101外部或在物理上分隔较大距离。
[0032]车辆还可以包括与计算机110通信的地理定位组件144,其用于确定设备的地理位置。例如,定位组件可以包括用来确定设备的纬度、经度和/或海拔位置的GPS接收器。也可以使用其他定位系统,诸如基于激光器的定位系统、惯性辅助GPS或基于相机的定位,来识别车辆的位置。车辆的位置可以包括绝对地理位置,诸如纬度、经度和海拔,以及相对位置信息,诸如相对于直接环绕该车辆的其他汽车的位置,其通常可以被确定具有比绝对物理位置更小的噪声。
[0033]车辆还可以包括与计算机110通信的其他设备,诸如用来确定车辆的方向和速度或对其的改变的加速计、陀螺仪或另一个方向/速度检测设备146。仅作为示例,加速设备146可以确定其相对于重力的方向或垂直于此的平面的俯仰、偏航或滚转(或对此的改变)。设备还可以跟踪速度的增加或减小以及这样的改变的方向。可以向用户、计算机110、其他计算机以及前述的组合自动提供如在本文所阐述的设备的对位置和取向数据的供给。
[0034]计算机110可以通过控制各种组件来控制车辆的方向和速度。作为示例,如果车辆正处于完全自主模式下操作,则计算机110可以促使车辆加速(例如,通过增加向发动机提供的燃料或其他能源)、减速(例如,通过减少向发动机供应的燃料或通过应用制动)以及改变方向(例如,通过使两个前轮变向)。
[0035]车辆还可以包括用于检测在车辆外部的物体一诸如其他车辆、道路中的障碍物、交通信号灯、标志、树等——的组件。检测系统可以包括激光器、声呐器、雷达、相机或记录可以由计算机110处理的数据的任何其他检测设备。例如,如果车辆是小客车,则该汽车可以包括安装在顶部或其他便利位置的激光器。
[0036]如图3中所示,小客车301可以包括分别安装在车辆的前面和顶部的激光器310和311。激光器310可以具有大约150米、三十度垂直视场以及大约三十度水平视场的范围。激光器311可以具有大约50-80米、三十度垂直视场以及360度水平视场的范围。激光器可以向车辆提供计算机可以使用来识别各种物体的位置和距离的范围和强度信息。在一个方面中,激光器可以通过绕着其轴旋转并且改变其俯仰来测量在车辆和面向车辆的物体表面之间的距离。
[0037]车辆还可以包括各种雷达检测单元,诸如用于自适应巡航控制系统的那些。雷达检测单元可以位于汽车的前面和后面以及前保险杠的任一侧。如图3的示例中所示,车辆301包括位于车辆的侧面(仅一个侧面被示出)、前面和后部的雷达检测单元320-323。这些雷达检测单元中的每一个可以具有大约200米、达大约18度视场的范围,以及大约60米、达大约56度视场的范围。
[0038]在另一个示例中,可以将多种相机安装在车辆上。可以以预先确定的距离安装相机,以使可以使用来自2个或更多个相机的图像的视差来计算距各个物体的距离。如图3中所示,车辆301可以包括安装在挡风玻璃340下面后视镜(未示出)附近的2个相机330-331。相机330可以包括大约200米和大约30度水平视场的范围,而相机331可以包括大约100米和大约60度水平视场的范围。
[0039]每一个传感器可以与其中可以使用该传感器来检测物体的特定传感器域相关联。图4A是各种传感器的近似传感器域的自上而下视图。图4B基于这些传感器的视场,分别描绘了激光器310和311的近似传感器域410和411。例如,传感器域410包括大约30度水平视场,达大约150米,以及传感器域411包括360度水平视场,达大约80米。
[0040]图4C基于这些传感器的视场,分别描绘了雷达检测单元320-323的近似传感器域420A-423B。例如,雷达检测单元320包括传感器域420A和420B。传感器域420A包括大约18度水平视场,达大约200米,以及传感器域420B包括大约56度水平视场,达大约80米。类似地,雷达检测单元321-323包括传感器域421A-423A和421B-423B。传感器域421A-423A包括大约18度水平视场,达大约200米,以及传感器域421B-423B包括大约56度水平视场,达大约80米。传感器域42IA和422A延伸,经过了图4A和4C的边缘。
[0041]图4D基于这些传感器的视场,分别描绘了相机330-331的近似传感器域430-431。例如,相机330的传感器域430包括大约30度、达大约200米的视场,以及相机430的传感器域431包括大约60度、达大约100米的视场。
[0042]在另一个不例中,自主车辆可以包括声呐设备、立体相机、定位相机、激光器和雷达检测单元,其每一个具有不同的视场。声呐器可以具有大约60度的水平视场,达大约6米的最大距离。立体相机可以具有与大约50度的水平视场、大约10度的垂直视场以及大约30米的最大距离的重叠区。定位相机可以具有大约75度的水平视场、大约90度的垂直视场以及大约10米的最大距离。激光器可以具有大约360度的水平视场、大约30度的垂直视场以及100米的最大距离。雷达可以具有针对近光束的60度的水平视场,针对远光束的30度的水平视场,以及200米的最大距离。
[0043]在一个示例中,车辆101可以是小车,诸如高尔夫球车。图5A-5B是小车510以及组成该小车的传感器域的示例性视场集的侧面和自上而下视图。小车501可以包括诸如声呐器、立体相机和定位相机的传感器。定位相机可以用来将车辆在地图信息的地图上定位到厘米精度。这些传感器中的每一个可以导致在某一水平和垂直度数延伸某一距离的视场。例如,小车501可以包括安装在该小车前面的定位相机,其导致具有范围在小车前面大约1.5至7米的大约35度的水平视场的传感器域560。该小车还可以具有跨小车前面安装的多个声呐检测设备。这些声呐设备可以用来通过以频率范围的特定频率发射并接收声波来检测物体。这些设备中的每一个可以导致传感器域,诸如传感器域570-575,每一个具有范围在小车前面大约3米的大约35度的水平视场。小车501还可以包括安装在小车前面的立体相机。该立体相机可以导致传感器域580,每一个具有范围自小车前面大约10米的大约30度的水平视场。
[0044]在另一个示例中,其中小车包括定位相机、立体相机和一个或多个声呐检测设备,该小车的定位相机可以包括大约75度的水平视场、大约90度的垂直视场以及大约10米的范围。立体相机的重叠区可以包括大约50度的水平视场、大约10度的垂直视场以及大约30米的范围。声呐检测设备每一个可以具有大约60度的水平视场和大约6米的范围。
[0045]前述传感器可以允许车辆对其环境进行评估并且潜在地对其环境作出响应,以便为乘客以及在该环境中的物体或人最大程度上保障安全。应当理解的是,车辆类型、传感器的数量和类型、传感器位置、传感器视场和传感器的传感器域只是示例性的。也可以利用各种其他配置。
[0046]除上述传感器外,计算机还可以使用来自典型非自主车辆的传感器的输入。例如,这些传感器可以包括胎压传感器、发动机温度传感器、制动器热量传感器、刹车片状态传感器、轮胎面传感器、燃料传感器、油位和质量传感器、空气质量传感器(用于检测温度、湿度或空气中的微粒)等。
[0047]许多这些传感器实时提供由计算机处理的数据,S卩,传感器可以在或超过一定范围的时间持续更新其输出来反映被感知的环境,并且持续或根据需求向计算机提供该更新的输出,以使计算机能够响应于所感知的环境,确定车辆的当时方向或速度是否应当被更改。
[0048]除处理各种传感器所提供的数据外,计算机还可以依赖在先前时间点获取并且预期持续,而不管车辆的在环境中的存在的环境数据。例如,返回到图1,数据134可以包括详细的地图信息136,例如,识别道路的形状和高度、车道线、交叉路口、人行横道、速度限制、交通信号灯、建筑物、标志、实时交通信息、或其他这样的物体和信息的高度详细的地图。例如,地图信息可以包括与各种道路段相关联的明确速度限制信息。速度限制数据可以被手动输入或使用例如光学字符识别从先前拍摄的速度限制标志的图像扫描。地图信息可以包括纳入上面列出的物体中的一个或多个的三维地形地图。例如,车辆可以基于实时数据(例如,使用其传感器来确定另一辆汽车的当前GPS位置)和其他数据(例如,将该GPS位置与先前存储的特定于车道的地图数据进行比较来确定另一辆汽车是否在变向车道内),来确定另一辆汽车预期变向。
[0049]再次,尽管地图信息在本文被描绘为基于图像的地图,然而,地图信息不必完全基于图像的(例如,光栅)。例如,地图信息可以包括一个或多个道路图或诸如道路、车道、交叉路口和在这些特征之间的连接的信息的图网。每一个特征可以被存储为图数据并且可以与信息相关联,所述信息诸如地理位置和其是否被链接到其他相关特征,例如,停车标志可以被链接到道路和交叉路口等。在一些示例中,相关联的数据可以包括道路图的基于网格的索引,用来允许对某些道路图特征的高效查找。
[0050]除上面描述并且在附图中图示的操作外,现将描述各种操作。应当理解的是,下面的操作不必按照下述精确顺序来执行。相反,可以按照不同的顺序或同时处理各步骤,并且还可以添加或删去步骤。
[0051]自主车辆可以通过遵循路线来在两个位置之间运送其自身、乘客和/或货物。例如,驾驶员可以输入目的地并且激活车辆的自主模式。作为响应,车辆的计算机可以基于道路图、其当前位置和目的地来计算路线。基于该路线(或作为路线生成的部分),车辆可以确定用于控制车辆沿着路线到目的地的控制策略。例如,控制策略可以包括何处变向、以什么速度行进、何处查看交通信号灯、何处因交叉路口或停车标志而停车等。
[0052]如在上面所说明的,在遵循路线时,车辆可以检测在其的在传感器域内的周围环境中的物体。响应于检测到物体,计算机可以调整自主车辆的速度或改变方向。然而,在一些示例中,传感器域可以基于在车辆的周围环境中的物体或其他特征而改变或变得不那么可靠。
[0053]物体可以占据车辆的传感器域的部分。例如,如图6A中所示,车辆301可能正沿着诸如牵弓I车拖车610的另一个较大、移动物体侧面驾驶。如图6B中所示,牵引车拖车610占据了在车辆301的传感器域内的区域620。在图7A中所示的另一个示例中,车辆301正沿着建筑物710侧面驾驶并且接近道路的弯道处。这些建筑物占据了在车辆301的传感器域内的区域720。[0054]当物体占据了车辆的传感器域的部分时,该物体的存在可以例如通过限制对其他物体的感知来改变一个或多个传感器的感知力。车辆的计算机可能不再能够准确地检测在该物体后面或不在传感器的检测线内的区域中的其他物体。在一些示例中,如果该物体是半透明或透明的,诸如玻璃,则传感器可以能够检测“通过”一些物体,但是具有比如果该物体不存在少得多的准确性。因此,可能减弱了车辆的传感器域的大小和准确性。结果,车辆的计算机可以计算传感器减弱区域的大小和形状以及基于该减弱区域的新的或当前传感器域。
[0055]例如,返回到图6B,计算机可以将牵引车拖车610识别为物体并且计算区域620的大小和形状、在区域620内的传感器域的大小和形状、和/或不在区域620内的传感器域的大小和形状。在区域620内的任何物体不再是车辆301的传感器可检测的。该区域表示近似“盲”区。计算机可以能够基于来自道路图的信息、或例如如果计算机正在跟踪目前已进入该区域的物体,来估计物体的位置。例如,声呐器、激光器或相机传感器将不能够收集在区域620内的数据,因为牵引车拖车不透明。这阻止传感器“越过”卡车收集信息。
[0056]返回到图7的示例,车辆的传感器域受建筑物影响。车辆的计算机可以将建筑物识别为物体并且计算区域720的大小和形状、在区域720内的传感器域的大小和形状、和/或不在区域720内的传感器域的大小和形状。在该示例中,车辆不能检测到沿着建筑物710侧面但是在区域720内停放的卡车730。例如,在图7B的区域720内也示出了车辆730的位置。
[0057]除物体外,其他情况也可以通过减少或禁止一个或多个传感器的对车辆的周围环境的感知来影响自主车辆的传感器域。例如,在明亮阳光下,相机图像可以变得饱和并且不那么可靠。因此,小车501的传感器域被减弱,因为亮光影响了相机的有效性。因此,如图8a中所指示,由于亮光880,相机传感器的视场560和580不再能够检测物体。因此,以虚线示出了这些视场。正如上述物体示例,可能减弱了小车的传感器域的大小和准确性。小车的计算机然后可以例如仅基于声呐检测设备570或576来计算新的传感器域或可以仅仅确定小车可以仅依赖来自声呐设备的视场的传感器域。
[0058]在另一个示例中,图8B的声音890以或接近小车的声呐设备所使用的频率或频率范围。例如,所述声音可以由在车辆附近的其他声呐设备或噪声生成。这些声音可以导致使声呐数据变得对检测物体不那么可靠的反馈。因此,声呐检测设备的视场570-575不再能够检测物体。因此,以虚线示出了这些视场。小车的计算机可以例如仅基于相机设备560和580来计算新的传感器域或可以仅仅确定小车可以仅依赖其的来自相机的视场的传感器域。
[0059]响应于识别传感器域的改变,车辆的计算机可以改变车辆的控制策略。例如,车辆的计算机可以使车辆减速、维持车道、加速(但是考虑速度限制)或采取其他响应动作,而不是维持车辆的速度和方向。在另一个示例中,计算机可以使车辆减速到第二、低得多的速度,而不是减速到第一速度以采取路线所需的动作,诸如变向。在一些示例中,车辆可以不必采取任何特定动作,而是可以维持其当前速度和方向。
[0060]在一个示例中,返回到图6A,车辆301可能正沿着需要其向左(朝向牵引车拖车610)移动一个或多个车道的路线。通常,如果车辆行进得比牵引车拖车快,则车辆301可以等待直到其已越过牵引车拖车610来改变车道。然而,在车辆的计算机已确定了传感器减弱区域或当前传感器域之后,计算机可以使车辆减速,以使其落在牵引车拖车后面,以便增加传感器域,以使车辆301可以检测在牵引车拖车610左边的物体。
[0061]返回到图7A,在另一个示例中,车辆301可能正沿着需要其遵循围绕建筑物的道路的路线。通常,如果车辆正绕弯道处行进,则计算机可以维持车辆的速度。然而,在车辆的计算机已确定了传感器减弱区域或当前传感器域之后,计算机可以使车辆显著地减速,以使当车辆的传感器域能够检测位于卡车730附近的物体时,车辆可以有足够的时间来采取避开该物体的任何必需动作。
[0062]类似地,在图8A的示例中,如果小车不再能够依赖相机传感器,则其可以显著地减速,使得如果在声呐器视场的大约3米范围内检测到物体,则小车501有足够的时间来停止或绕着该物体移动。如果小车的传感器域被限制在相机视场,如图8B中所示,则小车501可以在转弯之前再次显著地减速。在该示例中,如果小车在声呐检测设备的有效性已变得减弱之前本来会维持其速度,则小车501可以继续维持其速度、稍微减速或甚至增加其速度。
[0063]自主车辆的计算机可以持续或周期性地确定其传感器域是否已改变并且相应地采取动作或改变其控制策略。例如,返回到图7A,如果车辆301已移动绕过了道路中的弯道并且经过了卡车710,则车辆的计算机可以再次返回到原始控制策略并且增加其速度。类似地,如果(图8A的)小车501移动入其中光880不再对相机传感器具有相同影响的阴影区域,则小车的计算机可以再次依赖相机来检测物体、返回到原始控制策略并且增加其速度。这种对速度和操纵的调整以及改变控制策略的循环可以基于车辆的减弱区域或当前传感器域来持续发生。
[0064]图9的流程图900是如上所述的控制自主车辆的另一个示例。在块910,车辆的计算机基于控制策略来控制自主车辆。在块920,基于自主车辆的传感器中的一个或多个的一个或多个视场来识别传感器域。在块930,检测物体和其的在传感器域中的位置。例如,车辆的计算机可以接收并处理来自一个或多个传感器的数据,以便识别物体及其位置。在块940,基于物体的相对于传感器域的位置来计算减弱的传感器感知力的区域。在块950,然后,基于当前传感器域来识别新的控制策略。在块960,计算机然后可以基于减弱的传感器感知力的区域来控制车辆的方向和速度。在块970,计算机然后确定传感器域是否继续被减弱。如果传感器域继续被减弱,则在块980,计算机可以维持新的控制策略或根据需要调整控制策略,然后返回到块970。一旦车辆的传感器域被确定为不再被减弱,则在块990,计算机再次基于原始控制策略来控制自主车辆,并且在新的物体被识别时返回到块930。
[0065]图10的流程图1000是如上所述的控制自主车辆的又另一个示例。在块1010,车辆的计算机基于控制策略来控制自主车辆。在块1020,基于自主车辆的传感器中的一个或多个的一个或多个视场来识别传感器域。在块1030,检测物体和其在传感器域中的位置。例如,车辆的计算机可以接收并处理来自一个或多个传感器的数据,以便识别物体及其位置。在块1040,基于物体的相对于传感器域的位置来计算当前传感器域。在块1050,然后,基于当前传感器域来识别新的控制策略。在块1060,计算机然后可以基于新的控制策略来控制车辆的方向和速度。在块1070,计算机然后确定传感器域是否继续被减弱。如果传感器域继续被减弱,则在块1080,计算机可以维持新的控制策略或根据需要调整控制策略,然后返回到块1070。一旦车辆的传感器域被确定为不再被减弱,则在块1090,计算机再次基于原始控制策略来控制自主车辆,并且在新的物体被识别时返回到块1030。
[0066]图11的流程图1100是如上所述的控制自主车辆的进一步示例。在块1110,车辆的计算机基于控制策略来控制自主车辆。在块1120,基于自主车辆的传感器中的一个或多个的一个或多个视场来识别传感器域。在块1130,识别一个或多个传感器的感知力的改变。例如,车辆的计算机可以接收并处理来自一个或多个传感器的数据,其指示来自传感器中的一个或多个的数据不可靠。在块1140,然后,基于该改变来识别新的控制策略。在块1150,计算机然后可以基于新的控制策略来控制车辆的方向和速度。在块1160,计算机然后例如通过从传感器接收另外数据来确定改变是否仍然生效。如果改变持续,则在块1170,计算机可以维持新的控制策略或根据需要调整控制策略,然后返回到块1160。一旦计算机确定不再存在改变,则在块1180,计算机再次基于原始控制策略来控制自主车辆,并且在新的物体被识别时返回到块1130。
[0067]因为在不背离权利要求所限定的主题的情况下,可以利用上述特征的这些和其他变体及组合,因此,示例性实施例的前面描述应当被当作对权利要求所限定的主题的说明而不是限制。还应当理解的是,在本文所述的示例的提供(以及表述为“诸如”、“例如” “包括”等的子句)不应当被解释为将所主张的主题限制在特定示例;相反,示例意在说明许多可能方面的仅仅部分。
[0068]工业实用性
[0069]本发明享有宽泛工业实用性,包括但不限于对具有自主操作模式的车辆的使用。
【权利要求】
1.一种用于控制具有自主操作模式的车辆的方法,所述方法包括: 通过处理器基于第一控制策略来控制所述车辆的操作; 基于所述车辆的一个或多个传感器的视场来识别传感器域; 从所述一个或多个传感器中的所选择的传感器接收传感器数据; 基于所述传感器数据来识别所述一个或多个传感器的传感器感知力的改变,所述传感器感知力的所述改变包括检测在所述传感器域内的物体的减弱的能力; 基于所述改变来确定第二控制策略;以及 通过所述处理器基于所述第二控制策略来控制所述车辆的所述操作。
2.根据权利要求1所述的方法,进一步包括: 基于所接收的传感器数据来检测物体和所述物体在所述传感器域中的位置;以及 其中识别所述改变基于所述物体的所述位置。
3.根据权利要求2所述的方法,其中识别所述传感器感知力的改变包括基于所述物体在所述传感器域中的所述位置来计算减弱的传感器感知力的区域,并且确定所述第二控制策略基于所述减弱的传感器感知力的区域。
4.根据权利要求2所述的方法,其中识别所述传感器感知力的改变包括基于所述物体在所述传感器域中的所述位置来计算当前传感器域,并且确定所述第二控制策略基于所述当前传感器域。
5.根据权利要求2所述·的方法,其中所述物体是另一个车辆。
6.根据权利要求1所述的方法,进一步包括: 确定所述传感器数据指示所述一个或多个传感器中的给定一个正在提供不可靠信息;以及 其中识别所述改变基于所确定的指示。
7.根据权利要求5所述的方法,其中所述不可靠信息包括一个或多个相机图像。
8.根据权利要求1所述的方法,进一步包括: 基于所述传感器数据来确定不再存在所述一个或多个传感器的传感器感知力的改变; 其中,基于不再存在改变的所述确定,控制所述车辆的所述操作进一步基于所述第一控制策略。
9.根据权利要求1所述的方法,其中基于所述第一控制策略来控制所述车辆的所述操作包括朝第一方向操纵所述车辆,以及基于所述第二控制策略来控制所述车辆的所述操作包括朝与所述第一方向不同的第二方向操纵所述车辆。
10.根据权利要求1所述的方法,其中基于所述第一控制策略来控制所述车辆的所述操作包括以第一速度操纵所述车辆,以及其中基于所述第二控制策略来控制所述车辆的所述操作包括以与所述第一速度不同的第二速度操纵所述车辆。
11.一种用于控制具有自主操作模式的车辆的设备,所述设备包括: 一个或多个传感器,所述一个或多个传感器用于检测在所述车辆的周围环境中的物体;以及 耦接到所述一个或多个传感器的处理器,所述处理器可操作来: 基于第一控制策略来控制所述车辆的操作;基于所述车辆的所述一个或多个传感器的视场来识别传感器域; 从所述一个或多个传感器中的所选择的传感器接收传感器数据; 基于所述传感器数据来识别所述一个或多个传感器的传感器感知力的改变,所述传感器感知力的所述改变包括检测在所述传感器域内的物体的减弱的能力; 基于所述改变来确定第二控制策略;以及 基于所述第二控制策略来控制所述车辆的所述操作。
12.根据权利要求11所述的设备,其中所述处理器可进一步操作来基于所接收的传感器数据来检测物体和所述物体在所述传感器域中的位置,并且所述处理器基于所述物体的所述位置来识别所述改变。
13.根据权利要求12所述的设备,其中所述处理器可操作来通过基于所述物体在所述传感器域中的所述位置来计算减弱的传感器感知力的区域来识别所述传感器感知力的改变,并且确定所述第二控制策略基于所述减弱的传感器感知力的区域。
14.根据权利要求12所述的设备,其中所述处理器可操作来通过基于所述物体在所述传感器域中的所述位置来计算当前传感器域来识别所述传感器感知力的改变,并且确定所述第二控制策略基于所述当前传感器域。
15.根据权利要求12所述的设备,其中所述处理器可进一步操作来将所述物体识别为另一个车辆。
16.根据权利要求11所述的设备,其中所述处理器可进一步操作来确定所述传感器数据指示所述一个或多个传 感器中的给定一个正在提供不可靠信息,并且所述处理器基于所确定的指示来识别所述改变。
17.根据权利要求15所述的设备,其中所述不可靠信息包括一个或多个相机图像。
18.根据权利要求11所述的设备,其中所述处理器可进一步操作来: 基于所述传感器数据来确定不再存在所述一个或多个传感器的传感器感知力的改变;以及 基于不再存在改变的所述确定,基于所述第一控制策略来控制所述车辆的所述操作。
19.根据权利要求11所述的设备,其中所述处理器可进一步操作来: 通过朝第一方向操纵所述车辆,来基于所述第一控制策略控制所述车辆的所述操作;以及 通过朝与所述第一方向不同的第二方向操纵所述车辆,来基于所述第二控制策略控制所述车辆的所述操作。
20.根据权利要求11所述的设备,其中所述处理器可进一步操作来: 通过以第一速度操纵所述车辆,来基于所述第一控制策略控制所述车辆的所述操作;以及 通过以与所述第一速度不同的第二速度操纵所述车辆,来基于所述第二控制策略控制所述车辆的所述操作。
21.一种其上存储有程序的计算机可读指令的有形的计算机可读存储介质,所述指令当由处理器执行时,促使所述处理器执行控制具有自主操作模式的车辆的方法,所述方法包括: 基于第一控制策略来控制车辆的操作;基于所述车辆的一个或多个传感器的视场来识别传感器域; 从所述一个或多个传感器中的所选择的传感器接收传感器数据; 基于所述传感器数据来识别所述一个或多个传感器的传感器感知力的改变,所述传感器感知力的所述改变包括检测在所述传感器域内的物体的减弱的能力; 基于所述改变来确定第二控制策略;以及 基于所述第二控制策略来控制·所述车辆的所述操作。
【文档编号】G05D1/02GK103718124SQ201180071321
【公开日】2014年4月9日 申请日期:2011年9月30日 优先权日:2011年6月1日
【发明者】纳撒尼尔·费尔菲尔德, 朱佳俊, 德米特里·A·多尔戈夫 申请人:谷歌公司