专利名称:飞行器不确定时变模型的控制器设计方法
技术领域:
本发明涉及一种控制器设计方法,特别是涉及一种飞行器不确定时变模型的控制器设计方法。
背景技术:
飞机鲁棒控制是目前国际航空界研究的重 点课题之一,在高性能飞机控制器设计时,必须考虑鲁棒稳定性和鲁棒控制问题;实际飞行器模型是很复杂的未知模型结构的非线性微分方程式,为了描述这种复杂的非线性,人们通常采用风洞和飞行试验得到按离散数据描述的试验模型;为了减少风险并降低试验成本,通常按照不同高度、马赫数进行飞行机动试验,这样,描述飞行器试验模型的离散数据并不是很多,这种模型对静稳定性较好的飞行器很实用。然而,现代和未来的战斗机为了提高“机敏性”都放宽了对静态稳定性的限制,战斗机通常要求在开环临界稳定点附近工作;这样就要求飞行控制系统能良好地处理模型不确定性问题;在实际飞行控制系统设计中要考虑以下几个主要问题(I)将试验得到离散数据用某一逼近模型来描述,模型中存在未建模动态;(2)风洞试验不能进行全尺寸模型自由飞、存在约束,飞行试验离散点选择、初始飞行状态、机动飞行的输入动作选择等不可能将所有的非线性充分激励,采用系统辨识所得模型存在各种各样的误差;(3)飞行环境与试验环境有区别,流场变化和干扰等使得实际气动力、力矩模型与试验模型有区别;(4)执行部件与控制元件存在制造容差,系统运行过程中也存在老化、磨损等现象,与飞行试验的结果不相同;(5)在实际工程问题中,需要控制器比较简单、可靠,通常需要对数学模型人为地进行简化,去掉一些复杂的因素;因此,在研究现代飞机的控制问题时,就必须考虑鲁棒性问题。1980年后,国际上开展了多种不确定系统的控制理论研究,特别是由加拿大学者Zames提出的H-infinit理论,Zames认为,基于状态空间模型的LQG方法之所以鲁棒性不好,主要是因为用白噪声模型表示不确定的干扰是不现实的;因此,在假定干扰属于某一已知信号集的情况下,Zames提出用其相应灵敏度函数的范数作为指标,设计目标是在可能发生的最坏干扰下使系统的误差在这种范数意义下达到极小,从而将干扰抑制问题转化为求解使闭环系统稳定;从此,国内外很多学者展开了 H-infinit控制方法研究;在航空界,该方法一直处于探索阶段,美国NASA,德国宇航研究院、荷兰等国都对鲁棒控制方法进行了研究,取得了很多仿真和实验结果;国内的航空院校也对飞机鲁棒控制方法进行了一系列的研究,如文献(史忠科、吴方向等,《鲁棒控制理论》,国防工业出版社,2003年I月;苏宏业.《鲁棒控制基础理论》,科学出版社,2010年10月)介绍,但这些结果与实际应用的距离还相差甚大,难以直接对实际飞行控制器进行设计并应用;特别是很多研究仅仅根据李雅普诺夫定理给出了鲁棒稳定性条件,不能得到具体实现时变鲁棒控制器设计步骤,没有解决直接设计鲁棒飞行控制器的技术问题
发明内容
为了克服现有鲁棒控制理论缺乏设计步骤难以直接设计飞行控制器的技术不足,本发明提供一种飞行器不确定时变模型的控制器设计方法;该方法提供了实际系统不确定时变模型鲁棒稳定控制器的设计条件,直接利用线性时变系统状态反馈的闭环期望极点选择,并根据所有闭环期望极点的实部全部为负数的特点,给出了限定条件不等式直接设计反馈矩阵,可以对风洞或飞行试验得到的飞行器不确定时变模型直接设计飞行控制器,解决了当前研究只给出鲁棒稳定性不等式而无法直接设计飞行控制器的技术问题。本发明解决其技术问题所采用的技术方案是一种飞行器不确定时变模型的控制器设计方法,其特点是包括以下步骤步骤一、在给定高度、马赫数条件下通过风洞或飞行试验得到含有不确定性的飞行器模型为 X⑴=[A⑴ + ΔΑ(/)]χ(0 + [Β(0 + AB(/)]u(/)(I)式中,x(t) e Rn, u(t) e Rni分别为状态和输入向量,A(t), B(t)为已知的系数矩阵,AA(t)、AB(t)为系数矩阵未知部分;按照已知A(t),B(t)的变化范围分类,即在不同时间段将A (t),B⑴表达成|AW_Ao +^Ao< t <t<t=j =1,2,·· ρ)
[Β(0 = Β0ι+ΔΒ0ι l} ν 13 'J ,,,尸,式中,Αμ、Βμ为已知的常数矩阵,Δ AtliABtli为未知矩阵,Tij为时间常数,r、p为正整数,i、j为下标,不同时间段的A(t),B(t)表达式形式可以相同;在时间段tij ( Ktij+Tij内,飞行控制器为u(t)=-KiX(t)式中,Ki为常数反馈矩阵;带入(I)式中,有x(0= [(A0i -B0iKi)+ (ΔΑ 0. - ΔΒ0 Κ,)]χ ⑴步骤二、选取(Acii-BtliKtli)的特征值各不相同且实部为负,设计反馈矩阵Ki使得满足条件Ai > Mj(AA0i —TM ^(AA0i - AB0iKJM f ;该控制器使得= [(A 0f - BeiKi) + (Δ A 0. - AB0rK ,·)]*(/)鲁棒稳定;式中,Mi为线性变换矩阵,
M ^(aO/ - B0iKi)M * = diaS ση +σ,ι + ./^,2,…,U·/ 」,σ ik,coik(k=l,2, ···, n)为实数,j ω ix(k=l, 2, ···, n)表示虚数,diag 为对角矩阵符号,Ai = diag [σ σ \ …,G1in ];Λ Atli-ΛBtliKi 通常假设为 Λ Atli-ΛBtliKi=HiFiWi,Hi,Wi 均假设为已经矩阵,(KFi ( I,I=diag[l, I,…,I]为单位阵。本发明的有益效果是通过本发明提供的时变系统分段鲁棒稳定可解条件,直接利用线性时变系统状态反馈的闭环期望极点选择,并根据所有闭环期望极点的实部全部为负数的特点,给出了限定条件不等式直接设计反馈矩阵,使得本研究领域的工程技术人员对风洞或飞行试验得到的飞行器不确定时变模型直接设计飞行控制器,解决了当前研究只给出鲁棒稳定性不等式而无法直接设计飞行控制器的技术问题。
下面结合具体实施方式
对本发明作详细说明。
具体实施例方式本发明飞行器不确定时变模型的控制器设计方法具体步骤如下I、在给定高度、马赫数条件下通过风洞或飞行试验得到含有不确定性的飞行器模型为X(/) = [ A ( /) + Δ A (O]X (/) + [B (/) + ΔB (O]u (O(I)式中,x(t) e Rn, u(t) e Rni分别为状态和输入向量,A(t), B(t)为已知的系数矩阵,AA(t)、AB(t)为系数矩阵未知部分;按照已知A(t),B(t)的变化范围分类,即在不同时间段将A (t),B⑴表达成
权利要求
1.一种飞行器不确定时变模型的控制器设计方法,其特征在于包括以下步骤 步骤一、在给定高度、马赫数条件下通过风洞或飞行试验得到含有不确定性的飞行器模型为
全文摘要
本发明公开了一种飞行器不确定时变模型的控制器设计方法,用于解决现有的鲁棒控制理论缺乏设计步骤难以直接设计飞行控制器的技术问题。技术方案是给出时变系统分段鲁棒稳定可解条件,直接利用线性时变系统状态反馈的闭环期望极点选择,并根据所有闭环期望极点的实部全部为负数的特点,给出了限定条件不等式直接设计反馈矩阵。使得本研究领域的工程技术人员对风洞或飞行试验得到的飞行器不确定时变模型直接设计飞行控制器,解决了当前研究只给出鲁棒稳定性不等式而无法直接设计飞行控制器的技术问题。
文档编号G05B13/04GK102929142SQ20121038126
公开日2013年2月13日 申请日期2012年10月10日 优先权日2012年10月10日
发明者史忠科 申请人:西北工业大学