具有自动运行能力的工业控制器性能监控、诊断与维护方法
【专利摘要】本发明涉及一种具有自动运行能力的工业控制器性能监控、诊断与维护方法,包括以下步骤:S1、分别采集控制回路设定值变量SP、控制器输出变量OP、过程输出变量PV、执行器状态变量AV、冗余测量变量SV、相关过程变量RV的数据样本并存储;S2、根据上述变量的数据样本辨识过程模型、评估或者诊断控制器性能以获取控制器的工作状态;根据预设处理策略并结合所获取的工作状态调整所述控制器中对应于该工作状态的变量参数。本发明能够自动分析日常工业操作数据,自动提取过程信息,并针对动态特性的变化不断自动更新性能基准,从而保证控制器性能的实时监控。
【专利说明】
具有自动运行能力的工业控制器性能监控、诊断与维护方法
技术领域
[0001] 本发明涉及工业控制技术领域,具体涉及一种具有自动运行能力的工业控制器性 能监控、诊断与维护方法。
【背景技术】
[0002] 在常见的过程工业领域例如炼油厂、化工厂等场合,控制回路的数量较大,相关工 业控制器的运行状态与产品质量以及生产安全密切相关。然而,实际控制器的工作状态并 不是让人满意,其控制性能还具有很大提升空间。对于实际过程操作人员而言,人工维护这 些控制器的工作量十分巨大,因此过程工业迫切需求一套具有自动运行能力的工业控制器 性能监控、诊断与维护系统。
[0003] 自1989年Harris提出的控制器性能评估技术以来,得到大量的研究和广泛的应 用。但是,在实际应用中,发明人发现该性能评估技术的实施仍然存在以下问题:第一,性能 基准与实际控制器可以达到的最优性能之间的差距过大,导致实际控制器的性能难以被准 确评估。第二,对于不同回路,可以决定控制器性能下降的阈值具有较大差异,因此需要由 人工确定不同回路的阈值,导致工作配置成本快速上涨。第三,部分监控方法需要通过特定 的辨识实验以获取必要的过程模型信息,辨识实验也会大幅增加实施成本。第四,随着监控 对象的动态特性的变化,部分性能评估方法需要由人工干预以保证控制器监控的实时有效 性。
【发明内容】
[0004] 针对现有技术中的缺陷,本发明提供一种具有自动运行能力的工业控制器性能监 控、诊断与维护方法,能够自动分析日常工业操作数据,自动提取过程信息,并针对动态特 性的变化不断自动更新性能基准,从而保证控制器性能的实时监控。
[0005] 本发明提供了一种具有自动运行能力的工业控制器性能监控、诊断与维护方法, 包括以下步骤:
[0006] S1、分别采集控制回路设定值变量SP、控制器输出变量0P、过程输出变量PV、执行 器状态AV、冗余测量变量SV、相关过程变量RV的数据样本并存储;
[0007] S2、根据上述变量的数据样本辨识过程模型、评估或者诊断控制器性能以获取控 制器的工作状态;根据预设处理策略并结合所获取的工作状态调整所述控制器中对应于该 工作状态的变量参数。
[0008] 可选地,所述步骤S1之前包括:
[0009] 选取变量并设置变量组态;该变量组态包括控制回路设定值变量SP、控制器输出 变量0P、过程输出变量PV、执行器状态变量AV、冗余测量变量SV和相关过程变量RV;
[0010] 设置监控报警状态变量的初始值,包括:底层执行器报警状态变量AlarmE、底层变 送器警状态变量Alarm D以及控制对象动态特性变动报警状态变量Alarms初始值均为0;
[0011] 设置状态变量Flagi,用来标记控制对象动态特性的漂移,初始值为0;
[0012] 为控制对象配置一个初始模型集合;该初始模型用于近似监控对象在初始工作点 预设范围内的动态特性;
[0013] 创建系统事件报告,所述系统事件报告用于记录回路故障报警事件与监控对象动 态特性漂移事件。
[0014] 可选地,所述步骤S2包括动态特性漂移检测的步骤S21,所述步骤S21进一步包括:
[0015] 从辨识的历史过程模型中获取最后一次所辨识的历史过程模型;
[0016] 利用所述历史过程模型结合所述0P与所述PV的数据样本计算该历史过程模型的 模型残差;
[0017] 根据所述模型残差及其统计特性判断控制对象的动态特性是否发生漂移。当控制 对象的动态特性发生漂移时,在所述系统事件报告中记录该动态特性漂移事件以及发生时 亥|J,同时将控制对象的布尔变量Flagi设置为1。
[0018] 可选地,所述步骤S2包括样本数据可辨识性分析和模型辨识的步骤S22,所述步骤 S22进一步包括:
[0019] 根据报警状态、控制器的工作状态以及所述SP、PV和0P的数据样本的激励阶次特 性,判断所述SP、PV和0P的数据样本是否满足预设可辨识条件;
[0020] 采用预设辨识算法在满足预设可辨识条件的数据样本中辨识过程模型,并存储所 获取的过程模型的参数、工况属性以及时间属性和模型质量标签。
[0021] 可选地,所述步骤S2包括控制器在线维护的步骤S23,所述步骤S23进一步包括:
[0022] 当AlarmG= 1、AlarmD = 0并且AlarmE = 0时,则控制器需要重新维护;
[0023] 判断是否已经存储符合控制器重新维护要求的历史过程模型;
[0024] 如果是,则利用所对应的历史过程模型重写计算基准控制器;
[0025] 利用所述基准控制器计算基准模型并在线整定所述控制器参数,并将Alarms置为 0〇
[0026] 可选地,所述步骤S2包括控制器性能在线评估的步骤S24,所述步骤S24进一步包 括:
[0027]根据所述SP、PV、0P数据和基准模型,计算控制器性能监控的性能基准Ibench;
[0028] 利用SP、PV和0P数据获取当前回路性能Iactuai; /
[0029] 当^1 < Thves时,则当前回路监控出现性能下降并诊断控制器故障;其中 ^ actual T h r e s为预先设定的小于1的阈值。
[0030] 可选地,所述步骤S2包括执行器诊断的步骤S25,所述步骤S25进一步包括:
[0031] 若AV不是缺省值,且0P与AV之间呈非线性关系,则判定当前回路执行器出现故障; [0032]如果AV是缺省值,则利用非线性时间序列分析方法获取所述0P或者所述PV数据样 本的非线性程度,若所述0P与所述PV呈现非线性关系,则当前回路执行器出现故障,设置 AlarmE=l,并在创建系统事件报告中记录故障报警类型和报警时间。
[0033] 可选地,所述步骤S2包括变送器诊断的步骤S26,所述步骤S26进一步包括:
[0034] 若SV不是缺省值,且PV和SV的数据样本不符合期望的线性关系,则判断变送器出 现故障;
[0035] 若SV是缺省值,通过时间序列分析的方法估计测量噪声方差判断变送器是否产生 测量噪声过大故障,并且根据PV的相关统计特征,判断所述变送器是否出现测量信号静止 故障;
[0036] 若回路变送器出现故障,设置AlarmD=l,并在创建系统事件报告中记录故障报警 类型和报警时间。
[0037] 可选地,所述步骤S2还包括判断控制对象动态特性是否发生变化的步骤S27,所述 步骤S27进一步包括:
[0038] 若RV不是缺省值,且RV变量状态与模型集合中线性模型的工况属性标签具有差异 时,则判定控制对象的动态特性发生了变化;
[0039] 若RV为缺省值,执行器无故障且变送器无故障,则从所述模型集合中选取拟合所 述PV和所述0P数据样本满足预设拟合条件的过程模型,并获取该过程模型的模型残差;利 用所述模型残差的统计特性判断所述控制对象的动态特性是否发生变化;
[0040] 若RV为缺省值,执行器故障或者变送器故障,不诊断控制对象的动态特性变化,此 时设置AlarmG=0;
[0041 ]若判定控制对象动态特性发生了变化,则设置Alarme= 1,并在创建系统事件报告 中记录故障报警类型和报警时间。
[0042]与现有技术相比,本发明具有以下优点:第一,配置成本低。对于过程工业大量控 制回路的性能监控,能够按照统一的方式进行配置初始参数,从而大幅度降低了该系统初 始配置成本。第二,能够自动分析日常工业操作数据,并自动提取对控制器监控以及维护有 益处的过程信息,从而实现自动运行,进而需要较少的人工干预,降低人工成本。第三,在初 始组态之后,本方法能够不断地自动提取关键过程信息,并针对动态特性的变化不断自动 更新性能基准,从而保证控制器性能的实时监控。第四,能够自动诊断控制器性能下降的可 能根源,包括外部扰动的诊断、执行器的诊断以及控制器的诊断。若控制器性能下降的根源 是控制器问题,还能够对控制器进行维护。
【附图说明】
[0043]通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理 解为对本发明进行任何限制,在附图中:
[0044] 图1是本发明实施例提供的一种具有自动运行能力的工业控制器性能监控、诊断 与维护方法的流程示意图;
[0045] 图2是图1所示方法的具体流程示意图。
【具体实施方式】
[0046] 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例 中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是 本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员 在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0047] 本发明实施例提供了一种具有自动运行能力的工业控制器性能监控、诊断与维护 方法,如图1所示,包括以下步骤:
[0048] S1、分别采集控制回路设定值变量SP、控制器输出变量0P、过程输出变量PV、执行 器状态变量AV、冗余测量变量SV、相关过程变量RV的数据样本并存储;
[0049] S2、根据上述变量的数据样本辨识过程模型、评估或者诊断控制器性能以获取控 制器的工作状态;根据预设处理策略并结合所获取的工作状态调整所述控制器中对应于该 工作状态的变量参数。
[0050] 为体现本发明实施例提供的具有自动运行能力的工业控制器性能监控、诊断与维 护方法的优越性,下面结合实施例对本发明实施例的控制器在线监控、诊断与维护的流程 作进一步说明,参见图2:
[0051 ]首先,介绍S1、分别采集控制回路设定值变量SP、控制器输出变量0P、过程输出变 量PV、执行器状态AV、冗余测量变量SV、相关过程变量RV的数据样本并存储的步骤。
[0052]需要说明的是,本发明实施例中步骤S1之前还需要对系统进行初始化,包括:
[0053] (1)变量组态。对于每个监控回路,需要为以下三类控制回路监控变量进行组态: 控制回路设定值变量SP、控制器输出变量0P、过程输出变量PV。SP、0P与PV变量用于辨识过 程模型、评估控制器性能以及诊断可能出现的控制器性能下降的根源等情况,因此不能为 空缺。另外,本发明实施例还对三类辅助诊断变量进行组态:反映执行器工作状态的执行器 状态变量AV、过程输出的冗余测量变量SV以及反映工况和动态特性变化的相关过程变量 RV^VdV与RV用于辅助诊断导致控制器性能下降的根源,默认空缺。
[0054] (2)设置监控报警状态变量的初始值。监控回路的底层执行器报警状态变量 AlarmE、底层变送器警状态变量AlarmD以及控制对象动态特性变动报警状态变量Alarmc均 为布尔类型变量,分别用来产生监控回路执行器报警、回路变送器报警以及被控对象动态 特性变化报警,取值为1时输出相应的报警信号。Alarm E、AlarmD和Alarmc初始值均为0,即初 始化时不产生报警信号。
[0055] (3)为控制对象初始配置一个模型集合?,用于近似监控对象在初始工作点预设 范围内的动态特性;?初始为空集。
[0056] 本发明实施例中模型集合采用一阶含延时连续线性动态模型(First-order plus delay model,F0PTD)集合:
[0058] 为控制对象配置布尔变量Flagcur指示其动态特性是否出现了漂移,取值为1表示 监控对象动态特性发生了漂移,初始值为〇。
[0059] (4)创建系统事件报告。所述系统事件报告用于记录回路故障报警事件与监控对 象动态特性漂移事件,包括:回路故障报警事件以及触发时间信息的记录;监控对象动态特 性漂移事件以及触发时间信息的记录。
[0060] 在完成初始变量组态以及相关初始配置之后,本发明实施例从组态为SP、PV、0P、 AV、SV和RV过程变量分别采集数据样本r (k)(对应SP变量),y (k)(对应PV变量),u (k)(对应 0P变量),P(k)(对应AV变量),m(k)(对应SV变量)以及d(k)(对应RV变量)。
[0061] 需要说明的是要,本发明实施例中存储装置中具有满足过程模型辨识的预设可辨 识条件的若干个过渡过程时间的数据段。
[0062] 其次,介绍S2、根据上述变量的数据样本辨识过程模型、评估或者诊断控制器性能 以获取控制器的工作状态的步骤。
[0063] 本发明实施例中,所述步骤S2包括动态特性漂移检测的步骤S21,步骤S21进一步 包括:
[0064] S211、从辨识的历史过程模型中获取最后一次所辨识的历史过程模型Pu。如果没 有存储历史过程模型,则将量Flag eur设置为1,并直接进入步骤S22
[0065] S212、利用历史过程模型Pu结合所述0P与所述PV的数据样本计算该历史过程模型 的模型残差e(k):
[0066] e(k) =y(k)-Puu(k) (2)
[0067]之后根据PV和SP数据,估计扰动真实残差eo(k):
[0068] y(k) = Y^aly(k-i)-Y^blr(k -i)+e()f^) (3) /-I i^l
[0069]其中(na,nb)为历史过程模型的阶次。
[0070] S213、根据所述模型残差及其统计特性判断控制对象的动态特性是否发生漂移。
[0071] 如果观测到:
(4)
[0073] 判断动态特性发生了漂移。在系统事件报告中记录此次动态特性漂移事件以及发 生漂移的时刻,并将Flag?r赋值为1;否则将Flag? r赋值为0。其中var(e)为序列e(k)的方 差,var(eo)为序列eo(k)的方差,TLS为预先设定的阈值。
[0074] 本发明实施例中还包括样本数据可辨识性分析和模型辨识的步骤S22,所述步骤 S22进一步包括:
[0075] S221、根据监控系统的状态AlarmE、AlarmD、控制器的工作模式以及SP、PV和0P数据 的激励阶次特性,分析储存于监控系统内部数据的可辨识性:
[0076]如果AlarmE=l或者AlarmD=l,说明被监控回路相关的底层设备处于异常,数据不 满足可辨识条件;
[0077] 如果AlarmE = 0并且AlarmD = 0,系统处于开环状态,通过分析0P数据样本是否处于 平稳态,判断数据样本的可辨识性条件。利用0P数据样本建立如下自回归模型AR: n,a
[0078] AR : U(k) = [k - i) +e{k) ( 5 ) i=l
[0079] 其中na为模型阶次,e(k)为模型残差。然后根据模型AR计算u(k)的趋势变化
[0080] G (/c)=(/(- /) ( 6 )
[0081 ]若var( 则判定OP数据处于稳态,数据不满足可辨识条件;反之,数据满足 可辨识条件;其屮var( 为序列的方差,TU为系统预先设置的阈值;
[0082] 如果AlarmE = 0并且AlarmD = 0,系统处于闭环状态,根据采样的SP数据样本,计算 其持续激励阶次nr;如果nr满足最低激励的要求,判定系统满足可辨识条件;反之判定数据 不满足可辨识条件;最低激励阶次要求如下:
[0083] 在控制器为PI控制器的情况下:nr彡3-nk;
[0084] 控制器为PID控制器的情况下:nr彡2-nk;
[0085] 其中nk为监控对象时延相对于过程数据采样周期的倍数;
[0086] S222、如果数据不满足可辨识性条件,且此时未存储历史模型,回到步骤S1重新采 集数据;否则进入步骤S23。
[0087] S223、如果SP、PV和0P的数据样本满足预设可辨识条件,则采用采用预设辨识算法 在满足数据样本中辨识当前工作点的过程模型,并在存储过程模型的参数以及相关的"工 况属性"、"时间属性"标签和"模型质量"标签。
[0088] 例如,本发明实施例中辨识过程包括:
[0089] 首先利用PV数据样本y(k)以及0P数据样本u(k)利用最小二乘类方法辨识如下离 散形式模型:
[0091]其中,Pu为过程模型,为扰动模型,(nc;,nd)为扰动模型的阶次,n k为输入时延,e (k)为模型残差。之后将离散模型Pu转化为连续F0PTD模型。
[0092]评估辨识模型的质量。利用已经辨识的过程模型Pu和扰动模型He,以及对应的0P和 PV数据,计算模型残差e(k):
[0093] e{k) = H~](y(k)-Pu(k)) (8)
[0094] 利用PV数据和SP数据,建立对比模型H,估计真实扰动残差eo(k)。
[0095] H :y{li) = %a,y(k - i) +y\b,r(k - i) + e0 (k) ( 9) ^1 / 二1
[0096] 其中(na,nb)为模型的阶次。定义如下模型质量指标:
(10)
[0098] 其中L为建模数据长度。并根据QI的数值大小,对模型进行评分,并对模型进行级 别为A~D等级的评级:
[0099] D:0^QI<mi%
[0100] C:mi%^;QI<m2%
[0101] B:m2%^;QI<m3%
[0102] A:QI^m3%
[0103] 其中nu%(i = l~3)为预先设定的阈值,A~D表示模型的质量依次从最高降为最 低。
[0104] 如果RV变量不是缺省值,则根据与辨识数据相对应的RV变量的状态,为辨识的模 型标记工况属性dtag,否则,则根据与辨识数据相对应的CV变量的状态,为辨识的模型标记 工况属性dt ag。并根据辨识数据所对应的时刻,为模型标记时间属性ttag。之后,将辨识的模 型参数以及质量标签qt ag、工况标签dtag和时间标签ttag-同存储于存储设备内。
[0105] 本发明实施例中还包括样本数据控制器在线维护的步骤S23,所述步骤S23进一步 包括:
[0106] S231、当存储有历史过程模型时,且当Alarmc = 1、AlarmD = 0并且AlarmE = 0时,贝1J 判定控制器需要重新维护并进入步骤S232,否则进入步骤S24。
[0107] S232、判断系统是否已经存储合适的历史过程模型以实现控制器维护。根据系统 事件记录表,查询此次动态特性报警时刻^。如果系统第一次运行,则将ta置为当前时刻。从 时刻ta开始往前回溯查询距离^时刻第1近的动态特性漂移事件,并查询该事件发生的时 亥Ijt。。其中1为预设值,反映了系统对控制对象的动态特性在一定范围内漂移的容忍度。
[0108] 从系统储存的历史过程模型中搜索满足如下条件的模型:其时间标签ttagG[t。, ta],其质量标签qtag*B或者为A级。将满足上述条件的历史过程模型Pu组成一个集合Q :
[0109] Q ={Pu| ttagG [tc,ta] ,qtag = B or A} (11)
[0110] 如果为Q空集,则系统并未存储合适的模型,直接进入步骤S24。
[0111] S233、按照如下方式构建模型集合0 :
[0113] 其中Kmin为Q中的元素的最小增益,Kmax为Q中的元素的最大增益,Tmin为Q中的元 素的最小时间常数,T max为Q中的元素的最大时间常数,中的元素的最小时延,Lmax 为Q中的元素的最大时延。SK、ST和为预设值,反映了系统对于过程模型参数摄动的容忍 度。
[0114] 基于模型集合?,利用鲁棒整定的思想,实现控制器维护与性能基准的更新。求解 基准控制器f(s),利用As)实现控制器的在线维护,并更新基准模型T ref(s)。基准控制器 c' S)和基准模型Tref (S)的求解采用min-max优化方法:
[0118]公式(13)中,优化参数(KpMd)为PID控制器参数(控制器增益,积分时间常数以 及微分时间常数);G(c,Pu)表示当控制器为c(s),过程模型为Pu(s)时,所对应的从设定值到 过程输出的闭环伺服传递函数,e(t)为当设定值经历单位阶跃变化,闭环伺服模型G(c,P u) 的控制误差;u(t)为当设定值经历单位阶跃变化,控制器c(s)的输出。公式(13)的最优解f (s)即为基准控制器,并记录d)在模型集合?中控制效果最差的模型艮据所述 < 和f (s)更新基准伺服模型Tref (s):
(14)
[0120] 根据f (s)在线整定控制器参数,并将Alam;置为0。
[0121] 本发明实施例中还包括控制器性能评估的步骤S24,所述步骤S24进一步包括:
[0122] S241、计算性能基准以误差平方积分(integrated squared error,ISE)为性能 指标,Ibendi计算方式如下:
[0123] 4^ = £[r_-,⑷]( 15 ) k=i
[0124] 其中,N为监控对象过渡过程时间,1^为过程数据采样时间,r(k)为采集的设定值 数据,为以r( k)为输入作用于所述基准模型Tw(s)所对应的输出。
[0125] S242、计算当前回路性能。当前回路性能Iac;tual计算方式如下:
[0126] 4涵1 =Z[厂⑷-,'⑷代 (16 ) k=l
[0127]其中,N为监控对象过渡过程时间,r(k)为采集的设定值数据,y(k)为采集的过程 输出数据。如果观测到:
(17)
[0129] 则判定当前监控回路出现了性能下降,并诊断控制系统故障,其中Thres为预先设 定的小于1的阈值。
[0130] 需要说明的是,当公式(17)不成立时即当前监控回路未出现性能下降,则返回步 骤S1重新采集数据样本。
[0131] 本发明实施例中还包括执行器诊断的步骤S25,所述步骤S25进一步包括:
[0132] 若AV不是缺省值,且AV与0P之间具有明显的非线性特性时,则判定回路执行器出 现了故障。利用0P和AV数据样本建立如下带有记忆环节的非线性模型: p(k)^ f(u(k),p(k-\),d)
[0133] /;(/c - 1),//' i?(/v ) - p[k - l)|<£/ ( 18 ) u[k ), if \u[k) - p(k - i)| > t/
[0134] 其中参数d用以表征执行器粘滞情况。如果观测到:
[0135] d>TLai;
[0136] 其中TLal为预设的阈值,则判定回路执行器出现问题。
[0137] 如果AV为缺省值,利用PV和0P数据样本构建Hammer stein模型。则Hammers te in的 非线性部分反映了执行器的非线性程度:
[0138] 非线性环节采用以下公式表示: :v(A) = f(u[k j,x[k - l),c/)
[0139] x(k - 1 )Jf \u[k)- x(k - ( 19 ) u (k), if j? (A') - x(k - 1)| > d
[0140] 其中参数d用以表征执行器粘滞系数。
[0141] 线性动态环节采用以下公式表示:
[0143]其中,(na,nb,nc)为线性模型阶次,nk为线性模型的时延,x(k)为所述非线性环节 的输出,e(k)为模型残差。如果观测到:
[0144] d>TLa2 (21)
[0145] 其中TLa2为预设的阈值,则认定回路执行器出现问题。
[0146] 如果判定回路执行器出现了故障,系统设置AlarmE=l,产生相应的故障报警,并 在系统内部记录故障报警类型和报警时间信息。否则系统置Alarm E = 0。
[0147] 本发明实施例中还包括变送器诊断的步骤S26,所述步骤S26进一步包括:
[0148] 若冗余测量变量SV不是缺省值,利用PV数据和SV数据不符合期望的线性关系,则 判断变送器出现故障。利用y(k)和m(k)建立如下线性回归模型:
[0149] m(k)=ay(k)+b (22)
[0150] 其中a、b为回归系数。如果发现上述回归模型的拟合度r小于预先设定的阈值TLml; 或者回归系数与期望值具有较大差异,则PV和SV不满足期望的线性关系,判定变送器出现 故障。
[0151]若冗余测量变量SV是缺省值,利用PV数据样本建立如下自回归模型: na
[0152] AR: v(A:) = ^a:y(k - i.) +e{k) { 23 ) f 二1
[0153] 其中na为模型阶次,e(k)为模型残差。计算y(k)序列的方差var(y),如果var(y)小 于预设的阈值TL m2,判定变送器出现了测量信号静止故障;计算e(k)序列的方差var(e),如 果var(e)超过预设的阈值TL m3,判定变送器出现测量噪声过大故障。
[0154] 当判定回路变送器出现了故障时,系统置AlarmD=l,产生相应的故障报警,并在 系统内部记录故障报警类型和报警时间信息,否则系统置Alarm D = 0。
[0155] 本发明实施例中还包括判断控制对象动态特性是否发生变化的步骤S27,所述步 骤S27包括
[0156] 若RV变量不是缺省值,标记当前RV变量状态为cUr。如果观测到cUr与构成模型集 合?的线性模型所覆盖的工况具有较大差异:
[0157] dcm<d^-S or dcm>d^+S (24)
[0158] 其中S为预先设置的正实数,用以表征对工作点变动的容忍度,则判断被控对象动 态特性发生了变化。
[0159] 若RV变量为缺省值并且执行器无故障(AlarmE = 0),变送器无故障(AlarmE = 0),贝lj 根据以下优化问题,从模型集合?中搜索对采集到的PV和0P数据具有最好拟合效果的过程 模型g*(s)。
[0160] min Z|eW「
[0161] s. t .e(k) =y(k)-gd(z_1)u(k) (25)
[0162] gd(z_1) =Dis(g(s))
[0163] g(s)G 0
[0164] 其中,N为数据长度;gd(厂qzDiMgb))表示g(s)经过离散化后的离散模型;e(k) 为模型残差序列。
[0165] 上述优化问题的最优解为f(s),并计算对应的模型残差序列,(k)。之后根据离散 化的PV和SP数据样本,计算扰动真实残差eo(k): nQ nb
[0166] H : v(/v) = v(/c-/) +^\br^k-/) + ( 26 ) i=l M
[0167] 其中(na,nb)为模型的阶次。如果观测到:
(27)
[0169] 则模型集合?难以近似控制对象在当前工作点的动态特性,并判断被控对象动态 特性发生了变化。其中var( eQ)为序列eo(k)的方差,var(e*)为序列e*(k)的方差,TLg为预先 设定的阈值。
[0170] 若RV变量为缺省值,但是执行器发生了故障(AlarmE=l)或者变送器发生了故障 (AlarmD = 0),则不具备诊断动态特性变化的条件,系统置A1 armt; = 0。
[0171] 如果判定控制对象动态特性发生了变化,系统置AlarmG=l,产生相应的故障报 警,并在系统内部记录故障报警类型和报警时间信息,否则系统置Alarm c=0。
[0172] 本发明实施例提供的一种具有自动运行能力的工业控制器性能监控、诊断与维护 方法,通过采集变量数据样本,然后根据变量数据样本进行辨识过程模型,评估或者诊断控 制器性能,并根据预设处理策略与控制器的工作状态调整所述控制器对应工作状态的变量 参数。与现有技术相比,本发明具有以下优点:需要较少的人工参与,配置成本低。第二,本 方法能够不断地自动提取关键过程信息,并针对动态特性的变化不断自动更新性能基准, 从而保证控制器性能的实时监控。第三,能够自动诊断控制器性能下降的可能根源,包括外 部扰动的诊断、执行器的诊断以及控制器的诊断。若控制器性能下降的根源是控制器问题, 还能够对控制器进行维护。
[0173] 在本发明中,术语"第一"、"第二"、"第三"仅用于描述目的,而不能理解为指示或 暗示相对重要性。术语"多个"指两个或两个以上,除非另有明确的限定。
[0174]虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发 明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求 所限定的范围之内。
【主权项】
1. 一种具有自动运行能力的工业控制器性能监控、诊断与维护方法,其特征在于,包括 以下步骤: 51、 分别采集控制回路设定值变量SP、控制器输出变量0P、过程输出变量PV、执行器状 态变量AV、冗余测量变量SV、相关过程变量RV的数据样本并存储; 52、 根据上述变量的数据样本辨识过程模型、评估或者诊断控制器性能以获取控制器 的工作状态;根据预设处理策略并结合所获取的工作状态调整所述控制器中对应于该工作 状态的变量参数。2. 根据权利要求1所述的工业控制器监控、诊断与维护方法,其特征在于,所述步骤S1 之前包括: 选取变量并设置变量组态;该变量组态包括控制回路设定值变量SP、控制器输出变量 0P、过程输出变量PV、执行器状态变量AV、冗余测量变量SV和相关过程变量RV; 设置监控报警状态变量的初始值,包括:底层执行器报警状态变量AlarmE、底层变送器 警状态变量AlarmD以及控制对象动态特性变动报警状态变量Alarms初始值均为0; 为控制对象配置一个初始模型集合;该初始模型用于近似监控对象在初始工作点预设 范围内的动态特性;该模型集合初始设置为空集; 设置状态变量Flag?r,用来标记控制对象动态特性的漂移,初始值为0; 创建系统事件报告,所述系统事件报告用于记录回路故障报警事件与监控对象动态特 性漂移事件。3. 根据权利要求2所述的工业控制器监控、诊断与维护方法,其特征在于,所述步骤S2 包括动态特性漂移检测的步骤S21,所述步骤S21进一步包括: 从辨识的历史过程模型中获取最后一次所辨识的历史过程模型; 利用所述历史过程模型结合所述OP与所述PV的数据样本计算该历史过程模型的模型 残差; 根据所述模型残差及其统计特性判断控制对象的动态特性是否发生漂移;当控制对象 的动态特性发生漂移时,在所述系统事件报告中记录该动态特性漂移事件以及发生时刻, 同时将控制对象的布尔变量Flagi设置为1。4. 根据权利要求2所述的工业控制器监控、诊断与维护方法,其特征在于,所述步骤S2 包括样本数据可辨识性分析的步骤S22,所述步骤S22进一步包括: 根据报警状态、控制器的工作状态以及所述SP、PV和OP的数据样本的激励阶次特性,判 断所述SP、PV和OP的数据样本是否满足预设可辨识条件; 采用预设辨识算法从满足预设可辨识条件的数据段中辨识过程模型,并存储所获取的 过程模型的参数、工况属性以及时间属性和模型质量标签。5. 根据权利要求2所述的工业控制器监控、诊断与维护方法,其特征在于,所述步骤S2 包括控制器在线维护的步骤S23,所述步骤S23进一步包括: 当Alarmc= 1、AlarmD = 0并且AlarmE = 0时,则控制器需要重新维护; 判断是否已经存储符合控制器重新维护要求的历史过程模型; 如果是,则利用所对应的历史过程模型重写计算基准控制器; 利用所述基准控制器计算基准模型并在线整定所述控制器参数,并将Alarms置为0。6. 根据权利要求5所述的工业控制器监控、诊断与维护方法,其特征在于,所述步骤S2 包括控制器性能在线评估的步骤S24,所述步骤S24进一步包括: 根据所述SP、PV、OP数据和基准模型,计算控制器性能监控的性能基准Ibench; 利用PV、SP和OP数据计算当前回路性能Iactuai;,则当前回路监控出现性能下降并诊断执行器故障;其中Thres为预 先设定的小于1的阈值。7. 根据权利要求6所述的工业控制器监控、诊断与维护方法,其特征在于,所述步骤S2 包括执行器诊断的步骤S25,所述步骤S25进一步包括: 若AV不是缺省值,且0P与AV之间呈非线性关系,则判定当前回路执行器出现故障; 如果AV是缺省值,则利用非线性时间序列分析方法获取所述0P或者所述PV数据样本的 非线性程度,若所述0P与所述PV呈现非线性关系,则当前回路执行器出现故障,设置Alan? =1,并在创建系统事件报告中记录故障报警类型和报警时间。8. 根据权利要求6所述的工业控制器监控、诊断与维护方法,其特征在于,所述步骤S2 包括变送器诊断的步骤S26,所述步骤S26进一步包括: 若SV不是缺省值,且PV和SV的数据样本不符合期望的线性关系,则判断变送器出现故 障; 若SV是缺省值,通过时间序列分析的方法估计测量噪声方差判断变送器是否产生测量 噪声过大故障;并且根据PV的相关统计特征,判断所述变送器是否出现测量信号静止故障; 若当前回路变送器出现故障,设置AlarmD=l,并在创建系统事件报告中记录故障报警 类型和报警时间。9. 根据权利要求1所述的工业控制器监控、诊断与维护方法,其特征在于,所述步骤S2 还包括判断控制对象动态特性是否发生变化的步骤S27,所述步骤S27进一步包括: 若RV不是缺省值,且RV变量状态与模型集合中线性模型的工况属性标签具有差异时, 则判定控制对象的动态特性发生了变化; 若RV为缺省值,执行器无故障且变送器无故障,则从所述模型集合中选取拟合所述PV 和所述0P数据样本满足预设拟合条件的过程模型,并获取该过程模型的模型残差;利用所 述模型残差的统计特性判断所述控制对象的动态特性是否发生变化; 若RV为缺省值,执行器故障或者变送器故障,不诊断控制对象的动态特性变化,此时设 置 AlarmG=0; 若判定控制对象动态特性发生了变化,则设置AlarmG=l,并在创建系统事件报告中记 录故障报警类型和报警时间。
【文档编号】G05B23/02GK105929814SQ201610327151
【公开日】2016年9月7日
【申请日】2016年5月17日
【发明人】黄德先, 高莘青, 沈文祎, 杨帆
【申请人】清华大学