专利名称:能源管理系统和方法
技术领域:
本发明总体涉及商品供给,更具体而言,本发明涉及一种商品如电、天然气、蒸汽、水、冷却或加热水、或饮用水或循环水的供给和使用系统及方法。
背景技术:
传统上,公用设施在为消费者提供安全可靠的能源方面已经作出了极好的工作。公用设施的作法是先准确预测消费者的需求,然后保证他们产出足够的资源来满足这些需求。历史上,尖峰供热和供冷月份的电力需求逐年增加,导致需要不断提高总发电能力。对尖峰时间需求的回顾清楚表明,如果有一种方式能够将一些需求从峰时转移到非峰时,则有可能消除对新发电资产基本量的需求。
电力工业的反常已经引起了对停电、价格变化,以及关注最终结果将怎样影响经济和我们的生活方式的高度关注。
例如,最近在加利弗尼亚发生的事件已经占据了报纸头条,并加强了这些关注。加利弗尼亚10年来一直承受着负荷不断增长而又没有新建发电厂来满足这种需求的痛苦。如在San Jose的一个因特网数据中心表示,意料之外的一天24小时的新电力需求等于60000户的电力需求。国家托管反常活动迫使大多数公用设施全部售出他们的发电资产,致使他们不得不从他人那里购买过去常常自行生产的电力。
现在已经提出了需求减少供应方案和更先进的控制来帮助减少峰时需求。
目前,公用设施确实为他们的消费者提供了需求减少供应方案(program)。这些供应方案设计用来通过提供财政鼓励,鼓励消费者将负荷移出峰时,将负荷转移到花费更少的时间,从而使公用设施(utility)产生或获得电力。日时费率(rate)是这种供应方案的一个实例。
由公用设施提供的另一种供应方案是传统需求方管理(DSM)供应方案。这种供应方案为消费者提供月贷,从而允许公用设施在高峰和紧急状态下中断向消费者家庭的大部分负荷的供电。
虽然这两种供应方案都已经投入使用,但是每种都存在问题。日时费率供应方案很难得到消费者理解。因此这些供应方案在消费者中的参与率很低。另一方面,DSM供应方案的参与率比较高。但是,DSM负荷卸载很少被公用设施采用。并且,当公用设施进行负荷卸载时,产生的电力中断会影响消费者的舒适感,从而造成大量的消费者退出该供应方案。此外,现行的DSM供应方案不能够区分对负荷控制有贡献的和没有贡献的消费者,而给所有签约的消费者提供鼓励信贷。
虽然日时费用供应方案和DSM供应方案都是有效的,但是每种供应方案在影响消费者使用的满意度方面都存在问题。此外,公用设施从这些供应方案中不能获得收益,因此指望新发电力作为一种更经济可行的选择。
调温器、温度调节控制设备和环境控制系统已经设计、生产并投入使用很多年了。这些设备最初是设计用来检测消费点1.04的的温度,并根据居住者指定的设定值激活一个或数个采暖和/或空调系统,保持居住者指定的舒适级。这些设备主要有两种设计标准单一控制设备和双套控制系统。
标准单一控制设备可以设置成通过手动开关激活采暖或制冷系统,根据温度是否低于或高于居住者指定的设定点来选择所需的温度进行加热或冷却。双套控制系统连接具有两个设定点的既采暖又制冷的系统,一个控制系统用于采暖系统激活,另一个用于制冷系统激活。采用这种类型的控制,用户设定一个所需的最低温度,在冬季温度低于该温度时采暖系统被激活,并设定一个最高温度,在夏季温度高于该温度时制冷系统被激活。
这种类型的控制设备给居住者提供了便利,使他们不必手动选择采暖或制冷系统,就象标准单一控制设备的情况一样,并允许居住者确定他们感到舒适的温度范围。以这两种主要设计为基础可以有很多种变换,这些变换已经随时间而改进。这些年来,这些检测和控制设备已经从传统的双金属收缩器发展到更高级的电子设备,并具有可编入多个采暖和制冷设定点的能力,以及具有根据日时、周日和/或公用设施公司产生的外部控制信号激活这些设定点的能力,其中外部控制信号表明正在实行的固定消耗情况,如低、中、高和临界,从而与红外运动传感器连接,使温度自动回到人出现区域的预定点。但是,大多数终端用户没有时间、经验和/或存取数据来检测、跟踪和使用这些设备。
本发明的目的是解决上述的一个或多个问题。
发明内容
本发明的一方面是提供一种从配送网到一个或多个场所的能源供给管理系统和方法。每个场所有至少一个连接该配送网的设备。该至少设备可控地消耗能源。该系统包括一个网点和一个控制系统。该网点连接至少一个用于检测和控制供给该设备能源的设备。一个控制系统连接该网点和配送网,给该网点供给配送网的至少一个特征。该节点根据该至少一个特征来控制向该设备的能量供应。
本发明的另一方面是提供一种从第一时期转移能源需求的方法。该方法包括步骤检测消费者使用的控制设备的能源使用情况,在第一时期内切断控制设备的能源供应,根据第一时期、检测的能源使用情况和已知的电力需求,基于实际节能情况为消费者提供折扣。
本发明的又一方面是提供一种通过与用户交互来控制采暖和/或制冷系统的自动调温设备(thermostat)。该采暖和/或制冷系统通过电力配送网而供给能源。该调温器包括一个接收用户输入的控制面板和一个连接该控制面板并给用户提供可视信息的显示器。该自动调温设备适合于接收正在供应的能源特征,并将该特征显示在显示器上。
通过参照下面结合附图的详细描述,本发明的其它优点将将更加清楚和更好理解。
图1A是本发明一个实施例的能源管理系统框图;[19]图1B是图1A中能源管理系统一个实施例的示意图;[20]图1C是本发明一个实施例的能源供给管理流程图;[21]图2A是图1A的能源管理系统中使用的网关型网点框图;[22]图2B是图1A的能源管理系统中使用的计量网点[23]图2C是图1A的能源管理系统中使用的控制网点框图;[24]图2D是图1A中能源管理系统使用的负荷控制网点框图;[25]图2E是图1A中能源系统设备消费点处的框图;[26]图3A是本发明一个实施例中改进的自动调温设备示意图;[27]图3B是图3A中改进的自动调温设备框图;[28]图3C-3G是本发明一个实施例中一例经济和舒适的管理控制策略示意图;[29]图4A是本发明一个实施例中GUI的示意图;[30]图4B是图4A中GUI控制面板示意图;[31]图4C是图4A中GUI的一个虚拟调温器的示意图;[32]图4D是图4A中GUI的一个占用模式屏示意图;[33]图4E是图4D中占用模式屏的第二示意图;[34]图4F是图4D的GUI占用模式屏第三示意图;[35]图4G是图4A的GUI的调温器计划日程表; 图4H是图4A的调温器计划日程表面板示意图;[37]图4I是图4A中GUI的选择日型降低目录示意图;[38]图4J是图4A中GUI的一个配置报警屏示意图;[39]图4K是图4A中GUI的报告屏示意图;[40]图4L是图4A中GUI的日温度报告突现屏示意图;[41]图4M是图4A中GUI的日电量报告突现屏示意图;[42]图4N是图4A中配置数据屏示意图;[43]图40是图4A中GUI的调温器数据屏示意图;[44]图4P是图4A中GUI的采暖减少目录示意图;[45]图4Q是图4A中GUI的制冷减少目录示意图;[46]图4R是图4A中GUI的供应方案分隔屏示意图;[47]图5A是本发明一个实施例中公用设施GUI示意图;[48]图5B是图5A中GUI的即时供应屏示意图;[49]图5C是图5A中GUI的可用供应方案容量突现示意图;[50]图5D是图5A中GUI的计划日程供应屏示意图;[51]图5E是图5A中GUI的发现合格供应方案对话示意图;[52]图5F是图5A中GUI的供应方案总结表;[53]图5G是图5A中GUI的确定供应方案屏示意图;[54]图5H是图5A中GUI的报告屏示意图;及[55]图5I是图5H中部分报告屏示意图。
具体实施例方式1、能源管理系统和方法—概述[57]参见附图,本发明在实施时总体涉及一种电、天然气、蒸汽、水、冷水或热水等商品供给和使用的管理系统1.02和方法。更具体而言,该系统1.02适用于管理如电和天然气等能源的供给和使用。虽然下面的讨论针对电的供给和/或使用的管理,但是本发明不限于电的供给和/或使用。
总的来说,系统1.02允许位于消费点(由附图标记1.04表示)的至少一个消费者(或用户)和/或一个公用设施(由附图标记1.06表示)管理给消费点1.04的电力供给或使用。公用设施可以包括如通过电厂的发电和/或对消费点1.04的电力供给。
消费点1.04包括至少一个用电设备1.08和至少一个网点1.10。在所述实施例中,消费点1.04包括三个设备一个计量设备1.08A,一个受控设备1.08B,和一个待计量和控制设备1.08C。每个设备1.08都可以有一个相连的网点1.10。
如下面所详细讨论的那样,在所述实施例中,有四个不同类型的网点1.10一个负荷计量网点1.10A,一个控制网点1.10B,一个负荷控制网点1.10C,和一个网关型网点1.10D。
该网关型网点1.10D在该网关型网点1.10D和每个网点1.10A,1.10B,1.10C之间,及在该网关型网点1.10D和一个公用控制系统1.12之间提供两条通信线路。显然,虽然每个设备1.08A,1.08B,1.08C只表示了一个,但是每种设备1.08A,1.08B,1.08C可以是任何数目(包括零)。
负荷计量网点1.10A通常测量供给相关计量设备1.08A的瞬时电力(通常用kWh表示)。该负荷计量网点1.10A还可以确定预定时期如每15或20分钟内供给计量设备1.08A的总电力。有关瞬时电力和累计电力的信息通过网关型网点1.10D供给公用设施1.06。例如,计量设备1.08A可以是计量供给消费点1.04的总电力的电表。
通常,控制网点1.10B用于控制受控设备1.08B。在最简单的形式中,控制网点1.10B可控制对受控设备1.08B的供电和断电。例如,如果受控设备1.08B是用于过滤水池(未表示)的水泵,那么控制网点1.10B可以简单地对该水泵供电和断电。换言之,控制网点1.10B可以控制受控设备1.08B的特性,如启动时间,结束时间,持续时间等。
负荷控制网点1.10C通常用于测量供给控制和计量设备1.08C的瞬时电力,及控制设备1.08C。负荷控制网点1.10C还可以确定预定时间时期如每15或20分钟内供给计量和控制设备1.08C的总电力。
网点1.10可以与需要控制和/或测量电力使用情况的任何类型的设备1.08一起使用。例如,网点1.10可以联系整个消费点1.04、一个水泵、一个HVAC系统、一个水加热器及任何家用电器,如冰箱、洗碗机、热浴盆、灌溉和水井泵、矿泉水机、煮咖啡机等,或者其它电或电子设备如电视、音响等。
与设备1.08一起使用的这种网点1.10依赖该设备,而不管需要测量设备的用电量,并控制设备或者控制设备与网点。在本发明的一方面中,网点1.10可以与设备1.08分离。例如,在每个设备1.08中,也许需要测量整个消费点1.04的能源使用情况。因此,负荷计量网点1.10A可以连接消费点的电表。
网点1.10可以与相应的设备1.08合并或分开。例如,负荷计量网点1.10A可以是一个与电表连接的分离设备(出于后适目的)。或者,网点1.08可以设计和制造成与该设备1.10成一个整体。
消费者可以通过用户界面1.14(见下面)访问和控制该系统1.02。用户界面1.14可以并入另一个设备,如并入一个调温器(见下面)。此外,可给消费者提供通过外部设备进入该系统的入口,例如移动电话、私人数字助手(PDA)、膝上型计算机、台式计算机、或者其它适当的设备。这种设备可以通过互联网、无线数据网或其它适当的系统连接该系统1.02。
该系统1.02还可以通过公用设施界面1.16(见下面)在公用设施1.06处得到许可和控制。
在本发明的另一方面中,负荷计量网点1.10A、控制网点1.10B和负荷控制网点1.10C与网关型网点1.10D进行通讯。在本发明的另一方面中,负荷计量网点1.10A、控制网点1.10B和负荷控制网点1.10C和网关型网点1.10D全都可以相互进行通信。在所述实施例中,网点1.10通过网络1.18互相连接。网络1.18可以是一个有线网,例如一个以太网,或一个无线网。
该系统1.02的一个示例表示在图1B中。在所述实施例中,网关型网点1.10D通过一个电缆调制解调器、DSL调制解调器或其它适当的装置(未表示)经由一个常开的有线或无线安全网络1.20与公用设施控制系统通讯。该公用设施控制系统1.12可以在后端服务器1.12(见下面)上的软盘中实现。
在本发明的一方面中,公用设施控制系统1.12和后端服务器1.22可以由一个第三方即服务供应商1.24提供和/或服务、和/或维修。
公用设施控制系统1.12的入口可以在公用设施1.06处通过安全网络1.26如一个虚拟的私人网络(VPN)提供。
该系统1.02的远程入口可以经由互联网1.28通过后端服务器1.22提供给消费者。
在所述实施例中,消费点1.04包括一个计量设备1.30A,所示为一个电表;一个控制设备1.30B,所示为一个水泵(图示为一个水池);以及一个计量和控制设备1.30B,所示为一个水加热器。但是显然任何特定点包括的每种类型的设备数量可以是零、一、二或两个以上。在所述实施例中,该系统1.02还包括一个先进的自动调温设备1.30D。每个设备1.30A、1.30B、1.30C、1.30D可以与一个网关型网点或网关1.10D通讯。
如在下面更详细讨论的那样,消费者有进入系统1.02的入口,并能够通过用户界面1.14监测和控制网点1.10和/或设备1.08。
公用设施1.06还可以监测和控制网点1.10和/或设备1.08的用电。更具体而言,公用设施1.08可以确定、修改、执行和从理用于减轻或减少高峰期能源需求的一个或多个供电供应方案(以后称为PSP或PROGRAM或PROGRAMS)。PROGRAM可以是强制的,也可以是可选择的。用户能够通过用户界面1.14签名或签约一个或多个可选择的PROGRAMS。在出现预设状态如日时时,根据电力需求PROGRAM可以自动执行,或者通过公用设施1.06接合。
例如,PROGRAM可以自动将任意的住宅负荷从高峰需求时期转移出来,根据实际(测量或核实)贡献给参与的消费者提供KWH折扣。在一个实施例中,该折扣应该与转移期间的燃料或电费直接相关。该PROGRAM传送与日时费率所设计成传送的相同的结果,而无变化KWH费用设计成分。与高峰时期较高费用相比,转移需求的折扣给消费者提供了奖励。此外,PROGRAM根据消费者的实际贡献提供可变的而非固定的折扣。
参见图1C,在本发明的一个实施例中,提供了一种从第一时期转移能源需求的方法。该方法包括步骤测量由消费者使用的设备1.08的能源使用情况(第一步1.32A)。该设备1.08具有已知的额定功率。在第二步1.32B,在第一时期切断设备1.08的能源供给。在第三步1.32C,根据第一时期、测量能源使用情况、及已知电力需求,依据实际能源节约给消费者提供折扣。
例如,再回到图1B,PROGRAM可以确定为包括如某一个消费点给定用户的所有水泵。该PROGRAM还可以确定为不允许这些水泵在指定日期内运行。具有水泵的消费者可以签约或签定PROGRAM。消费者的水泵的额定功率必须是已知的,并存贮在系统1.02内。负荷控制网点1.10C可以与水泵连接成一体,也可以分开连接到水泵上。该负荷控制网点1.10C接收公用设施控制系统1.12发出的信号,在第一时期内停止水泵的运行。负荷控制网点1.10C还测量水泵在第一时期内的能源使用情况,确认水泵停止运行。
另一个PROGRAM还可以通过修正调温器设定点、使用温度匀变和限制热带及二级压缩机(见下面)的使用,在HVAC系统上实现软负荷控制(舒适级控制)。
在本发明的一方面中,该系统1.02设计成象电厂一样工作,在正常工作日转移峰值负荷,而在周末或节假日不工作。此外,通过PROGRAM约定节约的能源可以看作与电厂容量相同方式的容量。
在本发明的一方面中,系统1.02根据要求记录给定实体或消费者、及实体内每个设备1.08或附属设备的实际间隔数据。例如在实体为一户的情况下,可以收集每个家电,和/或选择家电的实际能源间隔数据。网关型网点1.10D和其它网点1.10A,1.10B,1.10C之间的通信可以通过有线或无线方式实现,包括微波、红外、射频(RF)或其它无线通信方式。实际间隔数据可以作为计算消费者折扣的基础。此外网关型网点1.10D还能够收集有关能源设备卫生和维护的信息并进行通信。因此,网关型网点1.10D和其它网点1.10A,1.10B,1.10C还可以设置成基于有线或无线通信信道进行通信。此外,通信可以是双向的,可以被编码。网关型网点1.10D还可以与至少一个服务器进行通信,反之亦然。网关型网点1.10D因此可以包括一个处理器和一个以太网连接器。与服务器的通信可以通过电缆调制解调器、DSL、电力线载体调制解调器或另一个双向有线或无线安全通信连接。
在一个实施例中,网关型网点1.10D可以包括存储定价和计划信息的存储器(见下面)。例如,在设备1.08每天给出96个读数时,一个网关型网点1.10D可以存储十五天的数据。
例如可以根据总用量提供折扣。在一个示例中,如果水加热器在历史上有三分之一的时间是接通的,那么根据水加热器在整个高峰期断开的情况,消费者可以在非高峰期获得水加热器用量的三分之一折扣。
该系统1.02还可以适用于接收消费者在特定时期例如一个月的预算目标。如果确定在预定时期内将超过该具体预算目标,那么该系统1.02可以监测消费者的使用量,发送电子邮件或其它通知书给消费者。
如上面说明和下面将要详细描述的那样,该系统1.02还可以包括一个先进的调温器设备1.30D。该系统1.02可以具有监测当前室内温度的能力,并能够提供最小值、湿度检测、外部温度、UV强度、风向和风速、相对湿度、湿球温度计、露点和局部天气预报数据或编码信号,以及用于计算和维持居住者舒适的其它模拟或数字输入。最基本的形式是,系统1.02将管理室内空气温度。采用任选强化系统输入,系统1.02还可以通过控制适当加热、过滤、空调和制冷设备,以及加湿器、新鲜空气输入通道、静电过滤器和电离设备的运行来管理该消费点的空气质量和湿度,从而优化舒适性和提高室内空气质量。该系统1.02可以根据用户确定的最小和最大舒适指数和能源价格指数管理可获得的环境调节资源的运行,保持最佳温度、湿度和空气质量状态。在一个更精心设计的实施例中,该系统1.02还可以具有切换能源类型的能力,如把电加热切换为燃气加热,如果有能源经纪人服务项目,该系统还可以具有根据当地能源供应商的要价变换供应商的能力。
在本发明的一方面中,该系统1.02均衡两个因素。第一,该系统1.02至少将环境保持在居住者限定的可接受的温度最小值和最大值范围内,该系统还能够扩展到能够控制湿度和空气质量。第二,该系统1.02可以根据最小值、用户确定的优选值、价格点、和历史数据(这些数据的采集和保留将在后面描述)改变这些可以接受的参数,来获得最佳环境状态。为了给消费者提供反馈,系统1.02还可以记录单位能源数(这里使用的能源单位包括如千瓦时、BTU、大卡和焦耳,但不限于这些),作为系统1.02监测和/或控制的每个负荷时间函数,系统还能将返回详细消耗数据作为时间函数,概括这些细节,提供最小值、任何确定时期的日平均数、月总量,以及跟踪单位时期消耗的单位能源费用,并提供任何用户限定时期内的日平均费用以及月总量。该系统1.02可以允许监测使用量,如果超过这些量则提供可视和可听警报,从而提供更改系统设定的机会,以便获得要求的经济效益。该系统1.02还能够采用用于管理主要功能的相同经济模型技术和控制来控制负荷,超出其环境空气管理系统的原始管理功能。它还可以管理、报告和跟踪全部消费点1.04的能源使用量,并通过通信信道与能源供应商连接。而不管实际位置和距消费点1.04的距离如何,该系统控制将位于消费点1.04,而用于调制解调和管理能源及待用、待输送能源单位类型的处理器都将在整个通信网络内分布(在能源经纪人、ESP’s和公用设施)和运行。
总之,如下面详细描述的那样,该系统1.02支持和提供了一种宽组合的监测和控制点,包括[90]整个房屋间隔计量;[91]HVAC调温器监测和控制;[92]其它主要负荷(如泵和电热水器)的辅助计量和控制;及[93]用于有效管理分配发电资产的净计量。
在一个实施例中,系统1.02设计成提供对主要负荷如总电负荷、HVAC系统、水加热器和水泵(如果存在)的监测和控制。在另一个实施例中,该系统1.02提供对使用电力或燃气等能源的大部分设备的监测。
该系统1.02“始终接通”,将网点1.10连接到公用设施控制系统1.02。这就允许系统1.02对负荷提供更高级的监测和管理。‘始终接通’的连接允许公用设施1.06准确获知从消费点1.04每个参与的终端使用设备可以获得多少负荷,及允许公用设施1.06将负荷累计到电路、分站,或累计成任何其它需求合并总量。当削减指令启动时,公用设施1.06可以通过核实控制需求,更精密地针对具体负荷或地理区域。该公用设施1.06能够将详细的负荷削减数据传送给公用设施的事务部门票据程序,给消费者提供相当于其贡献的信贷票据。
在本发明的另一方面中,系统1.02能够监测和控制远程发电容量,如可以位于消费点1.04的光电系统(未表示)。正如该系统能够监测和核实负荷控制削减一样,它也同样能够监测、计划和核实远程发电容量。
在本发明的又一方面中,该系统1.02允许公用设施1.06对额外的电力供应作出响应。例如,当公用设施1.06要求增加电力供应时,公用设施1.06将能够调查载流容量,和在瞬时供应请求中要求一些或全部容量。采用该系统1.02,公用设施1.06可以指令一个或多个满足具体规则如加入特定PROGRAM的消费点1.04,将他们的电力贡献提供给系统发电供应部。网关型网点1.10D将用可获信息形式的当前需求信息不断更新该系统1.02。该信息以及分布配置(profile)数据能够提供给系统操作者,帮助他们给需求者提供最好的供应。
在本发明的一个实施例中,公用设施界面1.16和用户界面1.14可以通过一个网络浏览器(见下面)提供,例如可以从位于WashingtonRedmond的微软公司获得的该公司出品的WEB浏览器。
公用设施界面1.16可以显示确定系统1.02内电力供应供应方案(PSP或PROGRAMS)的能力,及激活时将要参加该PROGRAM的选择供应分站和电路。该系统1.02到公用设施界面1.16可以包括下面的能力。
该系统1.02可以允许公用设施1.06的操作者选择涉及一个具体PROGRAM的指定设备1.08。一个或多个分站和/或电路可以包括在该PROGRAM内。
当需要辅助电力供应时,该系统1.02可以接收和产生一个瞬时供应请求(ISR)。该瞬时供应请求可以包括起始时间和供应请求时期。
一个采用公用设施界面1.16响应ISR激活一个或多个PROGRAMS的操作器。一个或多个PROGRAMS可以随时或在将来按计划激活。为了激活一个PROGRAM,可以将一个PROGRAM供应方案下载到相关的每个网关型网点1.10D或网点1.10。在一个实施例中,该PROGRAM供应方案可以在供应方案运行时间之前下载到相应网关型网点1.10D或其它网点1.10。
在本发明的另一方面中,系统1.02可以跟踪、记录、存储、计算哪些消费者实际参与了一个PSP,及在PROGRAM期间该户减少了多少需求。
公用设施界面1.16还可以显示从现有系统1.02获得的当前可用负荷。例如,可以提供公用设施公司的当前电力分布图,包括传输分站(TSS)、分布分站(DSS)、电路。该图适当标注有每个网络(TSS,DSS和电路)的每个分支识别信息。该图可以显示当前可获得的网络分支的累计容量。该图还可以表示在该系统1.02的一个分支上该PROGRAM是否正在使用。对于在用的电力供应方案,还可以显示供应方案结束时间。
该系统1.02还可以连续累计容量和配送网络的当前状态,并提供更新信息显示在公用界面1.16上。
在本发明的又一方面中,公用设施界面1.16可以允许操作者分析家庭或个人负荷类型分布配置。该数据允许公用设施1.06评定应该减少哪个负荷,以便获得必要的需求减少。该系统1.02可以根据从负荷计量网点1.10A和/或负荷控制网点1.10C接收的信息,计算户负荷分布配置。这可以包括HVAC分布配置。采用该数据,网点负荷分布配置数据可以累计成电力分布配置网络布局。
该网络布局负荷分布配置可以作为一个瞬态图(snapshot)提供给操作者。操作者还可以回顾一天中任何时间该系统1.02内可获得的负荷分布配置。
配置数据从系统1.02下载到每个网关型网点1.10D。例如,可以在下面一种或多种情况下这样做在预定时间,在网关型网点1.10D请求时,和/或在发生如PROGRAM激活等的变化时。
例如,配置数据可以包括但不限于系统部件的通信参数,计划和电力供应供应方案。在一个实施例中,每个设备1.08有一个唯一的识别符,例如一个MAC地址或一个RF逻辑地址。预定设备1.08的给定信息可以包括在从系统1.02接收的信息内。
在本发明的一方面中,与网关型网点1.10D和其它网点1.10的通信往来是保密的。例如,这些通信可以通过保密插口层(SLL)加密。
在本发明的另一方面中,如果系统1.02在预定时间内不能够与网关型网点1.10D进行通信,那么该系统1.02可以产生一个服务报告。
在本发明的一发明面中,当控制设备1.08状态变化,改变其贡献的供电超出预定范围即实时需求范围时,网关型网点1.10D可以产生一个信息。系统1.02可以使用这些更新,保持整个电力配送网的有效可供总运行量,并使这些值可在公用设施界面获得。在本发明的另一方面中,该系统保留消费费率的历史记录作为时间的函数,根据设备类型产生历史使用量,以便依据设备类型来帮助制定计划和预报需求。这些值可以在公用设施界面1.16获得。在一个实施例中,该系统1.02可以忽略来自网关型网点1.10D的、比例如30分钟的预定时期更长的供应值。
该系统还可以接收网关型网点1.10D在预定时间间隔如15分钟发出的信息,接收负荷变化与否的信息。这些信息包括(a)PROGRAM内一个设备1.08产生的需求,及(b)PROGRAM内设备1.08产生的总需求。在一个实施例中,这些信息还可以包括一个网关型网点ID、一个公用设施ID信息串、时间/日期印戳、每个可控制设备1.08的当前电力图以及整个房屋需求。
通过用户界面1.14,消费者可以享有本地和远程入口多个功能和特征。一些或所有这些功能和特征都可以通过调温器1.30D和/或通过网络1.28(通过一个网络浏览器)获得。
采用用户界面1.14,消费者可以直接进入并控制室内设备1.08。例如,对于调温器,消费者可以查看当前温度,查看当前加热或制冷设定点,过热或过冷设定点,恢复确定好的加热或制冷设定点,查看加热/制冷/自动模式,改变加热/制冷/自动模式。
关于电表1.30A,消费者可以查看当前电表累计消耗(kWh),查看当前电表需求(kW),查看历史表数。
关于计量控制设备1.08C,例如水加热器1.30C,消费者可以查看当前设备负荷状态(接通/切断数据),控制继电器的输出状态(接通/切断),查看设备1.08C的过度减少状态,和/或查看当前需求和设备1.08C的消耗数据。
在本发明的一方面中,用户界面1.14包括一个计划特征。该计划特征允许消费者定制设备1.08,根据个人喜好(并非缺省配置)运行。
在一个实施例中,下面的计划特征可以通过用户界面1.14获得。
关于调温器,消费者在使用日计划中可以确定多个居住模式,例如8个,采用数目无限的日型确定日计划,采用月历指定日型。
关于控制和待测设备1.08C,例如消费者可以确定运行操作和/或预期启动时间。
采用用户界面1.14,消费者可以查看并产生多个报告,查看他们家及设备1.08内的历史信息。例如,其中一些可获得的报告包括[123]以如15分钟的间隔显示温度和设定点的日温度报告。
显示日低、高和平均温度的月温度报告。
以如15分钟的间隔显示时电力消耗和电费的日电力报告。
显示日低、高和平均能源消耗的月电力报告。
显示日低、高和平均能源费的月费用报告。
显示日能源消耗和费用的月消耗报告。
显示月能源消耗和费用的年消耗和费用报告。
在本发明的另一方面中,消费者还可以查看与电力供应方案有关的信息。例如,消费者可以产生或者查看一个涉及公用设施1.06提供的有关PROGRAM的报告。此外,消费者可以选择他们想参与的PROGRAMS。
采用用户界面1.14,消费者可以进入他们的帐户和家庭属性。例如,消费者也许能够查看和修改有关他们的用户分布的各种参数。这类参数可以包括姓名、地址、家庭、工作和移动电话号码、第一和第二电子邮件地址、关键词(仅供修改)和关键词录忘手册、和/或预算阈值。此外,消费者或许也能够查看和修改各种有关调温器1.30D和HVAC系统的参数。这类参数可以包括调温器名称、加热类型和阶段、制冷类型和阶段、安全、警报、加热和制冷极限。
采用用户界面1.14,消费者还能够查看和修改有关任何计量和控制设备的各种参数。这类参数可以包括如设备名称和说明书。
采用用户界面1.14,消费者还能够查看和修改与他们家庭有关的各种参数。这类参数可以包括年龄和尺寸、构造特征、水加热器容量和类型及有关家庭附属设备的能源。
当系统1.02激活一个PROGRAM时(或者自动激活或者手动激活),供应需求被播出。该供应需求可以包括一个缩减ID,一个公用设施ID辅助信息串,有贡献设备的设备类型识别符,交易标识符,和表示起始时间和时期的计时元件。在一个实施例中,供应需求被传递给所有网关型网点1.10D和其它网点1.10,供应需求也可以被重复,以确保所有网关型网点1.10D和其它网点1.10都将接受该需求。每个网关型网点1.10D和其它网点1.10接收该需求,并在启动时间出现时开始供应需求交易。
在一个实施例中,网关型网点1.10D提取整户表读数(需求和消耗),并回报给已经接受该需求和正在参与的系统1.02。在所述实施例中,每个信息包括缩减ID,以便系统1.02能够收集所有对供应需求的响应,并为激活的PROGRAM提供精确的分析和结帐/贷款信息。
网关型网点1.10D和其它网点1.10继续控制具体设备1.08,在进行处理时将每个设备1.08的状态回报给系统1.02。
目前正在取电的设备1.08报告贡献的总瓦数,并继续打开受控设备1.08B和/或控制和计量设备1.08C的继电器。如果受控设备1.08B正在使用,那么可以将有关的电费用作贡献电力值。控制设备1.08可以被关闭即切断,或者被控制为某种预定状态,如加热/制冷偏移可以设定为HVAC系统的最大值(见下面)。
目前没有取电的设备1.08将报告贡献零瓦,并让继电器闭合。随着继电器闭合,一旦设备1.08开始取电,那么网关型网点1.10D将测量其需求,接着打开继电器测量和报告其贡献。
在一个实施例中,设备1.08的贡献等于方案激活PROGRAM的预定时间之前的电力贡献率,即节约的能源量。
如果设备1.08是一个HVAC系统,那么调节设定点或许不能够保证该系统根本不运行。如果HVAC不运行,其提供的贡献信息报告为零。设定点得到补偿,温度得到监测。当温度超过适当的加热或冷却原始设定点(在补偿变化之前),那么网关型网点1.10D也许表明贡献量。这表示设备已经出现,而没有削减。通过调节调温器1.30D的设定点,作为加热或冷却设定点较高的结果,HVAC系统的实际消耗应该减少。可以知道和/或取样一个网点1.04的特定设定点异端时间的实际用量,然后能够根据需要计算和核实补偿,以便确保计算的减少是正确的。该系统1.02因此能够测量HVAC系统的较短和低频循环,产生总节能源。例如,如果单元消耗5千瓦时设定在72,使用4.6千瓦时设定在76,那么节约量是每小时0.4千瓦时。
在供应请求时期的终点,网关型网点1.10D能再激活设备1.08,给系统1.02报告完成信息,包括整个房屋的需求数据和总消耗数据。对于调温器或调温器设备,能够启动一个相反,的匀变来减少削减或控制时期终端产生高峰需求的可能性。该相反匀变可以包括二级压缩机阶段限制以及取决于具有调温器的模式(加热或制冷)的加热带。
该系统1.02还可以发送供应请求取消信息,以便放弃PROGRAM。当收到供应请求取消信息后,网关型网点1.10D将运行,就象上述的时间已经超过、已经完成所有必须的清除、完成和报告一样。
除了报告每个设备1.08在PROGRAM期间贡献的个人需求之外,网关型网点1.10D还可以给系统1.02发送PROGRAM的所有设备1.08产生的总需求。
在本发明的另一方面中,网关型网点1.10D可以接收公用设施产生的预定供应请求。网关型网点1.10D能够负责管理消费点1.04内的PROGRAM。例如,网关型网点1.10D可以在预定操作之前接受或从系统1.02下载预定PROGRAM。网关型网点1.10D可以监测和控制受影响的设备1.08,执行PROGRAM。
在该PROGRAM期间,网关型网点1.10D可以报告在PROGRAM中每个设备1.08产成的电力需求。
网关型网点1.10D还可以从该系统接收住宅设备计划。设备计划用于消费者的设备1.08,如水加热器,水泵、热浴盆和矿泉水机。网关型网点1.10D可以负责管理消费点的设备计划。该设备计划可以由网关型网点1.10D在预定操作之前接收。网关型网点1.10D可以按照下载设备计划监测和控制受影响的设备1.08。
在本发明的另一方面中,如果网关型网点1.10D在预定时间内与系统1.02失去联系,那么网关型网点1.10D能够在使设备1.08运行(水加热器,水泵、热浴盆和矿泉水机)。显然,网关型网点在计划上可以有多日,例如三日。水加热器可以回到运行模式,但是水泵、矿泉水机、热浴盆和灌溉及水井泵不行。后面的这些设备也许不得不根据一些程序的时间间隔循环,例如一天8小时。其它设备1.08如灌溉泵不能够简单地默认为“on”,或者它可以启动但决不停止。这种接收和运行计划的能力不限于网关型网点1.10D。根据系统的执行需求,计划、循环运行次数和其它操作指令可以下载到控制网点1.10,这些网点将按照他们自己的计划运行。设计这种能力用来在网关型网点1.10D失效或网关型网点1.10D和控制网点1.10失去通信联系时,允许网点1.04的正常运行。
参见图3A,在一个实施例中的调温器1.30D是一种壁装式设备,具有一个带有显示屏3.04的控制面板3.02,和多个输入键3.06。在所述实施例中,输入键3.06包括一个系统键3.06A,一个风扇键3.06B,一个停留键3.06C,和一个保持/恢复键3.06D。输入键3.06还包括一个第一控制键3.06E和一个第二控制键3.06F。
采用输入键,消费者能够控制HVAC系统和系统1.02的其它部件(见下面)。该调温器1.30D与网关型网点1.10D进行通信(见上面),网关型网点1.10D能够查询当前温度和调温器1.10D的设定值。此外,网关型网点1.10D能够改变加热和制冷设定点及调温器1.30D的补偿值(见下面)。
在本发明的一方面中,调温器1.30D可以在其继电器输出或接触输入状态变化时通知网关型网点1.10D,或者网关型网点1.10D能够查询该状态。当发生这种情况时,网关型网点1.10D能够查询调温器1.30D,并发送当前温度和相应的输入或输出状态给系统1.02。
一旦与网关型网点1.10D失去通信联系,调温器1.30D可以以后退模式运行。当通信恢复时,网关型网点1.10D能够查实调温器1.30D的状态,并恢复所需的功能性。
在调温器1.30D查询期间,调温器1.30D作出的所有改变都能够传递给网关型网点1.10D并由其接收。在一个实施例中,下面的功能可以直接从调温器1.30D获得[153]查看当前温度。
查看当前加热或制冷设定点。
过载加热和制冷设定点。
恢复预定加热和制冷设定点。
查看接热制冷/自动模式。
改变加热/制冷/自动模式。
激活/停止风扇。
如上所述,负荷控制网点1.10C提供两个主要功能1)测量连接的负荷的电力消耗和瞬时需求,及2)控制负荷。在一个实施例中,该负荷控制网点1.10C包括一个诸如一个或多个允许与主电源连接或断接的设备。换言之,该负荷控制网点1.10C包括可以连结和/或连接控制其功能的负荷控制器。
在一个实施例中,负荷控制网点1.10C可以在接到网关型网点1.10D的供应请求指令时断开负荷,在接到网关型网点1.10D的取消供应请求指令时再连接负荷。当收到网关型网点的状态请求指令时,该负荷控制网点1.10C还可以提供状态信息,如负荷控制设备的状态。
在本发明的一方面中,一个负荷计量网点1.10A连接网点电表1.30A。该负荷计量网点1.10A可以累计预定时期如15或20分钟内的时戳累计消耗数据(千瓦时),并能够存储与预定时期如10天数据价值相当的数据。
该负荷计量网点1.10A与网关型网点1.10D通信。网关型网点1.10D可以从计量表1.30A查询当前的累计消耗(千瓦时),和/或按照要求从表中查询瞬时负荷测量值(千瓦)。瞬时可以通过计量表的能力确定。网关型网点1.10D可以查询15分钟的间隔数据。数据值可以带着时戳返回。
2.网点[165]特别参见图2A、2B、2C、2D,与位于消费点1.04的设备1.08相互联系的是网点1.10。网点1.10允许系统1.02集中在整个供应链上,从良好的前端产品和发电到终端消费点。网点1.10设计成在必要时能给每个耗能设备1.08提供与整个供应链通信的能力,以及公用设施供应和需求平衡控制逻辑的能力,提高终点设备1.08、端点设备组和整个供应链的运行效率。这可以通过给每个终端点有关具有改变操作能力的整个供应链上的当前需求的知识,来帮助管理和平衡供给系统的总需求。该信息交换在常开宽带、高速、点到点、点到多点或网状网络范围内执行(见上面)。
消费点1.04内的能源消耗设备1.08可以具有可变的运行智能级。家电和其它公用设施消耗设备1.08包括从嵌入微处理器的高能效冰箱单元,到水加热器和水泵等采用简单的开或关状态运行、并使用传感器或计时器控制运行状态的简单设备。网点1.10给每个终端设备1.08提供了一种全新级的智能,并设计成实际上的模块形式,以便不用负担比需要的性质或功能更多的终端点控制。
网点1.10可以设计成能够更新现有设备1.08,以及在设备1.08制造时完全并入端点。
在一个实施例中,有三种类型的网点1.10一个负荷计量网点1.10A,一个控制网点1.10B,和一个负荷控制网点1.10C,以及网关型网点1.10D。每种类型的网点1.10有几个共同的基本特定以及任选摸块,如界面、计量或控制模块(见下面)。
网点1.10设计为通过给连接的整个公用设施提供供应链的知识,使终端使用设备1.08更有效和经济地实现给定功能,甚至能够提高最智能化的终端使用设备1.08的运行效率。
如所示的那样,每个网点1.10包括一个网点处理器2.02。在一个实施例中,该网点处理器2.02是一个微处理器。该网点1.10还包括一个存储设备2.04,例如非易失性存储器,用于根据需要存储程序和其它数据。每个网点1.10还包括一个与系统1.02内其它部件通信的双路通信2.06信道。该通信信道2.06可以是硬连线的或着无线系统。任何适当的通信设备都可以用于与预定设备通信。例如,该双路通信信道2.06可以提供一种设备,与其它网点1.10或编程设备2.08进行通信。该编程设备2.08可以用在网点1.10制造点或现场,来构造和/或对网点1.10编程。在一个实施例中,编程设备2.08通过一个通信口(未表示)连接网点1.10。该双路通信信道2.06还可以提供与关型网点1.10D和/或其它网点1.10A、1.10B、1.10C的通信。网点1.10可以通过双路通信信道2.06连接在网络内。网络可以是有线、无线或组合网络。
在本发明的一方面中,网点1.10给系统1.02提供了监测和控制现场分布的发生源如光电系统(未表示)运行的能力。这在需求和经济良好或需求超过供应而产生短缺时,允许该系统1.02现场进行分配。系统1.02可以在连接有用于激励任何其它公用设施能源如天然气或丙烷时这样做。通过网点1.10连接多个其它类似网点1.10,或直接或间接连接该系统1.02的任何其它控制、监测、构造或管理网点,采用唯一决策标准维持多个消费点1.04或任何其它控制球,例如多个网点1.10跨越多个消费点,同时管理总需求、经济运行和终端使用设备,来在很多设备1.08中共享能源管理过程的能力,这种能力得到进一步加强。
在本发明的另一方面中,该系统1.02允许消费点1.04外的通信,允许个别网点1.10或聚集的多个网点1.10与其它控制点相互通信,这些控制点可以包括但不限于包括公用设施公司、能源供应商、其它消费点或消费点组、权属相同的其它消费点和运行点、能源和公用设施经纪人、能源和公用设施服务供应商、独立的电力和公用设施制造商、分配分站、供给分站、燃气和水井操作者以及与消费点1.04有关的任何其它控制、管理或服务组织点、端点设备或为之服务的公用设施配送网。
如上所述,每个网点1.10包括一个双路通信信道2.06,允许网点1.10与系统1.02内的任何其它一个或多个点进行通信。这种通信可以发生在系统1.02的任何其它点,但是也可以但不限于发生在相关的另一个网点1.10,一个聚集点或一个与消费点1.03、或控制构造、检测或管理点有关的象能源或公用设施供应点那样的外部点。系统1.02直接或间接连接多个网点1.10和有关的供应、监测、构造和管理点,形成一个安全的普遍存在的通信信道,在该信道范围内能够出现宽带、点到点、网状或点对多点通信,以及需要实现能源管理功能的任何其它通信。由于能够发生数据通信的多个通信协议和物理媒介,网点1.10可以具有多个双路通信信道,允许执行最好的媒介和协议,来获得必要的结果。
特别参见图2B,其中表示一个示例负荷计量网点1.10A。如上所述,该负荷计量网点1.10A检测供给计量设备1.08A的瞬时电力,还可以确定预定时期如15或20分钟内供给计量设备1.08A的总电力。负荷计量网点1.10A包括一个连接计量设备1.08A,用于测量供给计量设备1.08A的电力的计量模块2.10。该信息通过网关型网点1.10D经双路通信信道2.06延迟发送给公用设施控制系统1.12。在一个实施例中,检测模块2.10包括一个检测处理器和存储器,用于计算和存储电力数据,例如累计电力消耗。
在一个实施例中,计量模块2.10包括如一个或多个变流器的设备,用于测量供给(或送来)有关设备1.08的电力。
特别参照图2C,一个示例控制网点1.10B通过控制设备通信信道2.12连接受控设备1.08B。在一个实施例中,控制网点.10包括一个或多个用于连接和断开受控设备1.08B电力的继电器(未表示)。在另一个实施例中,控制网点1.10连接受控设备1.08B的随机控制。在该实施例中,控制网点1.10B直接控制受控设备1.08B的运行。
特别参见图2D,其中表示一个示例负荷控制网点1.10C。如上所述,该负荷控制网点1.10C完成负荷计量网点1.10A和控制网点1.10B的计量功能。因此,该负荷控制网点1.10C包括计量模块2.10和控制设备通信信道2.12。
如上所述,每个网点1.10最简单的形式也包括一个控制逻辑驻留和运行的处理器2.20和存储设备2.04。该控制逻辑、处理器2.02和存储器2.04给网点1.10提供必须的控制智能,来管理有关负荷或发电资源,作为一个孤立点或与多个其它网点1.10位置关联,以及管理整个控制设备通信信道2.12(用于控制和负荷控制网点1.10B,1.10C)和整个双路通信信道2.06的通信。
在本发明的一个方面中,该网关型网点1.10D用做一个中心控制网点,在消费点1.04提供其它网点1.10之间的相互通信。
在本发明的一方面中,可以位于单个消费点1.04或跨越多个消费点.04的多个网点1.10可以由于特定目的而成组,例如在确定地区内所有水泵的控制,或在确定地区内一个PROGRAM内所有水泵的控制。对于多个网点1.10,可以选择一个单独的网点作为中心控制网点,该网点可以是一个网关型网点1.10D。
在本发明的一个实施例中,处理器2.02和控制逻辑给网点1.10提供了检测其当前运行状态应该是什么的能力,基于来自中心控制网点或网关型网点1.10D的指令,或者在消费点1.04内,或者在中心控制网点的集中控制球内,并将基于该控制状态管理有关设备1.08。每个网点1.10还可以将有关设备1.08的状态、他们的能源使用量或其它公用设施消费费用(根据计量模块2.10的测量结果)回报给指定的中心控制网点1.10。
采用该构造,网点1.10可以使用但不限于使用树枝或星状网络从中心主控制点串联到该系统1.02内终端的最低控制级,但是加深建筑学指令,来获得必要的控制级。每个辅助控制级将收到来自其下一个较高级网点1.10的控制参数和指令,或者直接控制连接它的负荷,或者指令网点1.10把它放在次要位置,以获得必须的控制制或管理状态。通过将控制空能串入指令链,较高级的网点1.10能够更有效地管理多个设备1.08,而不会遭遇通常与管理来自中央处理器的多个负荷自动控制系统有关的定标限制。借助其设计特点,以上述串联控制网络运行的网点1.10将不限于其本身的结构,网点1.10能够从一个组动态地迁移到另一个组,或者在串联结构中上移或下移,以便允许不同的控制球和控制算法。这种唯一的构造允许每个网点1.10具有定制的过程控制程序和数据收集准则,允许其控制级和与有关负荷或发电容量的相互作用设计成能够满足管理控制程序目标。
此外,如果受到控制网点或负荷控制网点1.10B,1.10C控制的负荷或发电容量具有其自己的运行控制处理器(未表示),这些处理器通过控制设备设备通信信道2.12与网点1.10B和1.10C互相连接,提供运行状态和控制指令,运行诊断和测试,运行卫生和性能数据,及报警状态。来自控制或控制和计量设备1.08B,1.08C的数据与该系统1.02有关的其它网点1.10或控制或检测或测量网点可直接使用或传递给网络外的网点,数据传送设备最适合该数据类型和优先级。
参见图2C和2D,为了管理通常由调温器、阀门和继电器控制的基本消耗点如泵、电机或加热元件的运行,控制网点或负荷控制网点1.10B,1.10C可以包括一个主耦合器2.14,允许控制网点1.10B和负荷控制网点1.10C使负荷或发电容量连接或不连接由终端设备1.08B和1.08C使用或产生的公用设施产品的主要或配送网络。
在本发明的另一个实施例中,网点控制逻辑或程序将能够接收和处理来自中心控制点的数据,不依赖具体控制,根据但不限于根据公用设施产品的需求、公用设施产品费用、供给系统的拥挤级,和/或他们的有关的费用,至少能够监测和控制有关负荷或发电容量的工作,对于电,至少但不于限于监测需求、用量、标记波频、电压,对于其它公用设施例如但不限于燃气、蒸汽或水,将不限于测量管路压力、环境温度和任何其它因素,及确定有关负荷的或发电资源的最佳运行模式,采用与公用设施供给系统有关的多个测量、监测和控制点的参数,对网络上所有网点都可行,该网点1.10能够根据控制其运行的控制参数,管理通过控制点构成界面2.16提供的公用设施供给系统上的有关消耗或发电需求及负荷,将任何和所有运行数据、状况和状态通过控制点构成界面回报给一个或多个有关的测量、监测和控制点。控制点构成界面的一个实例是位于设备1.08。
在最简单的形式,或在上述强化实施或任何其它网点1.10和控制点的组合形式中,个别网点1.10能够控制有关负荷或发电容量的运行,来转移、减少或自家对供给系统的需求,或在在发电的情况下分配可能的容量,帮助满足该需求,保证供给系统的完整性和可靠性。根据启动参数,这些参数包括但不限于包括日时、对供给系统的总需求、公用设施的实时费用、包括密集负荷的总供给费、有关负荷或发电资源的最小运行特性、消费点1.04的的总需求、群组内个别网点1.10的总需求,外界因素如天气因素和历史用量以及个别网点的需求模式,和/或其网点1.10的群组,个别网点1.10将确定他们的最佳运行特性,并将操作有关的负荷或发电资源,来改善那些运行或执行特性。
如上所述,在本发明的一个实施例中,负荷计量、控制和负荷控制网点1.10A,1.10B,1.10C与网关型网点1.10D通过无线或射频通信方式进行通信。参见图1D,当网点1.10A,1.10B,1.10C正在加入该系统1.02时,必须执行初始化过程1.32。第一步1.32A,网关型网点1.10D发出信标信号。通常,网关型网点1.10D连续发出信标信号。在第二步1.32B,网点1.10A,1.10B,1.10C接收信标信号,作出响应,产生一个响应信号。在第三步1.32C,正在初始化的网点1.10A,1.10B,1.10C通过网关型网点1.10D和正在初始化的网点1.10A,1.10B,1.10C之间的信号交换路线连接网点1.10A,1.10B,1.10C的网络。
在本发明的另一方面中,控制和负荷控制网点1.10B,1.10C连接到整个分布信道直到公用设施1.06。控制和负荷控制网点1.10B,1.10C可以通过和/或从网关型网点1.10D接收数据、控制参数和PROGRAN供应方案。基于接收的数据,控制参数和/或规划进度,控制和负荷控制网点1.10B,1.10C可以控制有关设备1.08的运行。
参见图2E,用于一个特定消费点即一个住宅和住户的系统实例将用于说明该系统1.02的几个功能。在所述实施例中,住户2.18包括连接八台设备2.22的八个网点2.20。
一个负荷计量网点2.20A连接总户表2.22A。总户表2.22A可以与年度电力(电)、燃气或水有关。但是为了说明的目的,总户表2.22A与供给户2.18的电有关。该负荷计量网点2.20A监测和报告总的户电消耗。该负荷计量网点2.20A测量和报告总消耗以及瞬时需求,并记录和报告总消耗。此外,负荷计量网点2.20A可以根据工艺标准和整户到户2.18内其它控制网点2.20和/或任何与群组有关的任何其它网点、供给供应链或需要或授权接受或进入其中的任何其它网点的系统管理要求,在非易失性存储器(见上面)存储间隔数据。
此外,户2.18具有于其加热和空调系统有关的第一和第二负荷控制网点2.20B,2.20C,一个网点控制主要居住空间,及第一层HVAC系统2.22B,另一个网点控制第二层卧室空间即第二层HVAC系统2.22C。
第三、第四和第五负荷控制网点2.20D,2.20E,2.20F分别与冰箱/冷冻机2.22D、电热水器2.22E、及水泵(用于灌溉庭院)2.22F相连。第六、第七负荷控制网点2.20G、2.20H与顶棚安装的光电系统2.22G(包括蓄电池组和变换器,能够在12小时中产生240伏特60赫兹的25瓦电)和洗碗机2.22H相连。
虽然系统1.02将以任何公用设施提供的产品工作,这些产品例如包括但不限于燃气、水、电或蒸汽,为便于说明,该例中仅采用电这种公用设施产品。该实例中每个网点2.20经常有存储在其相关存储器内的控制参数,网点2.20的控制供应方案使用这些参数确定管理其相关负荷或发电容量的最佳运行特性。
在本发明的一个实施例中,可以利用网关型网点12.24来聚集房屋网点2.20和在系统1.02中直接或间接集中较高级网点2.20和任何其它网点的通信过程和/或控制过程。
这些网点连接在一个网络中(如上所述),但是可以自动运行或要求直接的指令,来改变他们的运行状态。在一个实施例中,这些网点2.20包括基本逻辑,以便在网点2.20得到网络的预定或偶然服务,网点2.20能够根据与相关公用设施供应链的最后已知状态,继续完成管理和监测功能,从而优化他们连接的负荷性能。
在其最简单的形式中,户2.18可以参与任何数量的会话或需求限制供应方案,即节电供应方案或PROGRAMS。下面将描述网点2.20怎样支持这些PROGRAMS。但是,下面的描述将不解释为将本发明局限于任何这种PROGRAM。
就具有一个处理器2.02、存储器2.04、计量模块2.10、主耦合器2.14、控制设备通信信道2.12、双路通信信道2.06、控制点构造界面2.16、及在多个端点中的通信能力和协作运行和负荷管理过程本身而言,网点2.20可以编制和构造成能够完成多个控制和界面功能,并在其能力范围内不受限制或局限。
例如,网点2.20可以构成在负荷限制或负荷帽方案(Load CapProgram)中。该项负荷限制或负荷帽可以在该示例中解释为平均对千瓦需求或总运行费用的限制或帽,使该实例成为一个物理能源使用或经济控制过程。由于每个网点2.20的选择计量能力和从服务的供应链接收经济数据的能力,网点2.20能够根据消耗费用以及在任意点产生的费用及时作出决定。
采用负荷限制或负荷帽方案,消费者将承诺在与供应商达成的协议中将他们对任何公用设施供应产品的总需求保持为最大需求级。在该供应方案中,消费者将承受作为产品总需求增加的开单率增加。结果,将需求维持在平坦模式的消费者的公用设施产品总费用比具有高峰和低谷的不规律使用模式总费用低很多。这种供应方案的原因是公用设施产品供应商必须满足对其系统的所有需求,因此他们能够以较低费用、以连贯的管理消费模式回报消费者,因为要满足他们的需求他们不必保持大的准备金余额。在标度的相反侧,他们装载较高的“需求装载”给不管理负载的消费者。结果,消费者能够通过保持连贯的平坦负荷分布来降低他们的费用。
在我们的实例中,假定消费者已经就50瓦或5千瓦的最大需求与供应商、公用设施达成协议。如前所述,该需求可能容易变成一个基于给消费点供给公用设施产品总负荷费的财政限制,也可以由业主、消费者或希望维护公用设施产品费用控制的任何其它与消费点1.04有关的实体设定。
网关型网点2.24作为使用和监测和报告处于总预定级的能源消耗和需求的的社会观察人员。网关型网点2.24可能但不限于是专用于该消费点的单个点网点,作为树枝控制构造的一部分,或者可能是一个作为星状网络内群组部分的一个网点。就其本身而言,网关型网点2.24将监测和存储消耗和需求信息,并报告给户2.18内网络中的其它网点2.20,以及户2.18外部的网点如户2.18的中心控制网点或群组、能源供应商、能源经纪人、能源服务供应商、ISO或其它授权代理人。当户2.18的总需求达到协议的5千瓦的能源消耗极限时,消耗费用数据通过双路通信信道2.06从网关型网点2.24的流通将由户2.18内的个别网点2.20或由更精心设计的实施例中的中心群组网点接收为最小。根据通过控制点构成界面2.16提供给每个网点2.20的参数,或通过控制点构成界面2.16提供给群组控制网点的主控制网点参数,负荷减少、转移和管理过程将被初始化。根据必要的负荷减少量,应该采取不同级的行动来减少使用优先权分散参数,这些参数在运行时将导致群组中最不重要的负荷来完成减少功能,并报告群组中下一个高级之前的结果,直到消费点1.04的总需求降低到一个可接受的级。相反的过程可以启动作为跌落到个别负荷消耗费用已知级以下的消费点1.04的总负荷,允许提前分散和减少的负荷恢复正常运行,不超过协议需求帽。此外,由于其在需求优先权顺序中靠后而被分散的任何设备2.22能够根据其最小运行控制参数而改善其优先顺序,使其优先顺序提前到到一个点,在该点将迫使更高的优先顺序负荷次于它,从而与等于或大于负荷值的设备2.22交换分散状态,来满足最小运行要求。
该简单的实例仅用于说明怎样采用网点2.20实现简单的负荷减少。在该实例中,从光电系统2.22G蓄电池中可获得的存储能源最有可能被首先分配,以便在能够获得足够的储存能源时补偿表格提供的能源用量,来满足消费点1.04能源需求与补偿负荷。为了完善该实例,现在将逐个检查户2.18内每个网点2.20处作出的行动。应该指出,如该实例所述的那样控制可以存在于个别网点级,也可以存在于群组网点级或存在于整个网点格栅内的任何高级处,这取决于配置的建筑结构和网点处理器控制编程和执行者选择的控制参数。
HVAC系统2.22B、2.22C的第一和第二负荷控制网点2.20B,2.20C监测和控制压缩机、有阻力的加热元件的运行,以便保持室温。如果户2.18的自动温度调节控制单元有通信界面,那么它还具有与HVAC系统2.22B,2.22C直接通信,控制温度设定,及采用控制设备通信信道2.12直接控制多速压缩机和应急热带运行的能力。如果HVAC系统2.22B,2.22C的任何片段故障,通信信道2.12还允许采用双路通信信道2.06或者直接或者报告系统2.22B,2.22C的运行特性,和接触消费者、外部服务供应商或制造商。HVAC系统2.22B、2.22C的负荷控制网点2.20B,2.20C竟利用计量模块2.10监测和报告系统用能单元的消耗费用,但如果它正通过控制设备通信信道2.12管理该系统2.22B、2.22C的运行,那么将不需要主耦合器2.14。根据户2.18能源单元的总需求,网点2.20有能力基于消费者通过控制点构成界面2.16提供的参数管理户2.18内的温度,使HVAC系统2.22B、2.22C减少总需求,并能根据优先权设置,根据日时和居住状态维持每个HVAC2.22B、2.22C系统的单独的控制参数。为了进一步提高运行效率,与每个HVAC系统2.22B、2.22C有关的负荷控制网点2.20B,2.20C可以抑制次级压缩机运行阶段的运行,并限制有阻力热带的应急使用,假定消费点1.04内的温度恢复以一种满意的速度进行。当能源供应和有关的能源费用低时,该能力使得系统1.02以标准效率运行,而当能源供应和相应费用高时又提供系统2.22B、2.22C的运行效率。采用消费者、能源供应商和网关型网点2.24提供的多个任选参数,系统2.22B、2.22C将能够确定应该执行哪种运行模式,及控制HVAC系统2.22B、2.22C,来达到必要的控制目标。通过改变控制系统的运行参数,负荷控制网点2.20B,2.20C可以选择但不限于选择舒适和费用较高的级;根据费用和居住状态分别改变温度变化率;根据能源供应商的临界负荷级信号或总预测消耗帽级收益,总体限制压缩机运行次级状态的运行或应急热带;在能源供应商临界负荷状态或总预测消耗帽级收益下,修改温度设置或在特定时期内中止系统2.22B,2.22C的运行;交替地循环消费点1.04内的多个单元,避免多个单元同时运行;在高定价或正在执行需求时期之前进行预冷或预热;在中度提高需求或价格期间进行平缓或渐进温度变化设置;优先所有控制,正常运行,使其它网点2.20负载任何负荷减少需求的全部负担;在室内环境状态达到参数设置最大临界级或任何其它动作编入网点2.20B,2.20C之后,结束运行。由中心控制点或网关型网点2.24监测并报告户2.18内的控制网点2.20之间或控制群组通过的负荷削减和控制的这种或其它组合,来警告户2.18内的网点、或总负荷级群组有关需求、能源和供给费用、拥挤费或其它有关控制参数触发器的情况。
用于冰箱/冷冻机2.22D的第三负荷控制网点2.20D采用计量模块2.10监测冰箱/冷冻机2.22D的消耗,还采用控制设备通信信道2.12直接与控制冰箱/冷冻机2.22D的处理器直接通信,来确定冰箱/冷冻机2.22D的运行状态,在他们可能延时以便减少总需求提供正常故障如除霜循环的过载控制。该通信信道2.12还允许第三负荷控制网点2.20D在其故障时,采用双路通信信道报告冰箱/冷冻机2.22D的运行特性,并接触外部服务供应商或制造商。
用于水加热器2.22E的第四负荷控制网点2.20E采用计量模块2.10监测和报告水加热器2.22E的消耗和需求,并能控制何时水加热器2.22E连接公用设施供应链,或不使用允许第四负荷控制网点2.20E与公用设施供应连接或断接的主耦合器2.14。在更精心设计的实施方案中,第四负荷控制网点2.20E可以使用控制设备通信信道2.12和计量模块2.10监测用水量、进水温度和水加热器2.22E内的储水温度。这些先进的特性增加了水加热过程的智能,提高了水加热过程的运行效率,改善了水加热器2.22E的能源需求模式。如果这样设置,那么水加热器2.22E可以连接HVAC系统2.22B,2.22C的热回收系统,如果能够通过热回收系统实现加热水和直接为水加热器内的加热元件提供能源的需求,那么这些设备2.22的网点2.20或户2.18内的中心控制网点将协作和协同作用,减少户2.18的总需求。
显然,在该点水加热器可以采用来自热或燃料电池或其它现场发电单元的废热以多种方式再补充。南方更先进的水加热系统将从使用与其它再生形式结合的太阳能电池板中获益,来消除能源供给系统上的任何负荷。重要的是要注意到如果使用太阳能电池板和丙烷的情况下,供应链限于房屋布局,但是在太阳能电池板的情况下将受到天气的影响和受到丙烷市场价格的影响。在丙烷的情况下,其它因素如现场数量和交付时期,来预定由供应商再填充平衡供应方案的消费点1.04丙烷量,将消耗在实时和预定再填充供应方案时间之间,所有这些因素都必须考虑进选择的燃料用量中,作为供应链平衡逻辑的一部分。
用于井泵2.22F的的第五负荷控制网点2.20F直接控制泵2.22F的运行,并根据通过控制点构成界面2.16提供的参数操作水泵2.22F。这些参数可以包括运行时间需求和用户提出的优选运行次数,以及网络网点更新,可能包括与局部降水有关的天气信息。可以采用本地通信信道(控制设备通信信道2.12)提供传感器输入,还将提供降水输入或地面水分含量。重要的是要注意在该点控制设备通信信道2.12不仅可以用来与嵌入有关负荷或发电的其它网点处理器2.02通信,还能够与类似数字处理器或设备、或任何其它形式的通信传感器或网点连接,给网点2.20E提供输入。信道2.12加强了水泵等无嵌入式处理控制器或传感器的运行控制逻辑。但是该通信信道和通信传感器可以以相同的方式与嵌入的处理控制器结合使用,改善运行和性能,达到实际上的更高级。
现在现场发电虽然不盛行,但是正得到州和联邦管理机构、公用设施、DOE和与电力供给系统保持高可靠性和完整性的其它部门的提倡。具体而言,可再生的发电资源被提倡,因为他们没有环境影响,不消耗任何自然资源。太阳和风力是这些发电资源中最常用的。由于太阳和风力发电资源输出容量较低,可以有效偏移高峰需求,因此它们必须有一个能够存储较低输出量的电力、在必要时由能够重新大量得到的相应存储系统。批量电力存储当今最常用的形式是湿电池、深循环、活性玻璃毡垫、铅酸蓄电池,它们可以并联和串联连接,形成一个实际上具有任何容量和电压的电存储装置。这些年来,在电池和转换器/充电器技术领域已经作出了巨大的改进。如Hart,Signwave,Balmar and Trace等公司是电池充电器/转换器市场的先锋。通过采用嵌入式处理器、传感器和固态功率转换器,这些公司具有能够将DC功率存入12,24,36和48伏特的电池充电系统,然后根据需要取回,并转换成具有使用质量和可靠性频率为60hz的120V或240VAC功率。如Trace等公司已经制造和出售管理连接电池储蓄系统的光电序列的转换器系统,不仅能够提供或补充住户的需求,而且能够安全地同步连接有用格网,而且可以在能级和业主确定的时间时期,将电力回售给公用设施。
虽然光电系统在过去的15年内已经走了很长的路,但是它们仍然受到能源管理容量的限制,需要补充本发明来管理从DC到AC的存储和转换过程,使其成为整个整体能源管理系统的一部分。该负荷控制网点2.20G具有与其它网点2.20通信,共享负荷和控制数据及管理消费点1.04内或其它组需求的能力,它允许现场发电资源如Trace功率转换器给消费者、能源工业和环境提供最大益处。
用于洗碗机2.22H的第七负荷控制网点2.20H计量和监测洗碗机2.22H,并与其嵌入式控制处理器通过控制设备通信信道进行通信,但在大多数情况系不需要主耦合器2.14。加入第七负荷控制网点2.20H,洗碗机2.22H能够在最佳时间以最有效凡是完成预定功能,以便在必须运行时满足能源需求帽的契约义务。在该实例中,网点2.20G可以是一个连接洗碗机2.22H的嵌入式控制器的可缩回设备,也可以全部整装在嵌入式处理器内,从而通过共享处理器和存储器元件减少组合系统的总费用。
如上所述,该系统设计成集成多个网络媒介上的所有公用设施消耗和发电资源,并设计成能够产生自动确定的和可重构的任何尺寸的组,并能够协作和相互通信,以便管理对供给系统和公用设施供应商和其产品的供应链的需求。
如下面更充分描述的那样,可以给公用设施1.06和/或消费者(通过电子邮件或消费者界面1.14)和或服务供应商和/或维修供应商发出警报或信息。
在本发明的另一方面中,该控制和/或负荷控制网点1.10B,1.10C接收公用设施1.02提供的商品特性的信息,即电,并控制控制和计量设备1.08B,1.08C的运行。在一个实施例中,该特性涉及电可用度。在另一个实施例中,该特性涉及电费或相对电费。
例如,采用上例户2.18,如果冰箱2.22D预定或者需要启动或执行除霜循环,那么机上冰箱控制可以查询有关负荷控制网点2.20D,来确定电费或相对电费。作为一个实际值即每度电的美元数,或者作为一个相对分类如高或低或高峰对非高峰时期,该费用有可能超出。根据接收的费用或相对费用,冰箱2.22D的机上控制器可以决定是否执行除霜循环或者延迟除霜循环。在一个实施例中,该决定可以基于实际费用和也许已经由消费者输入的预定值再的一个简单比较。换言之,如果实际费用高于预定值,那么将推迟预定操作。
在本发明的一个实施例中,每个设备1.08都有一个集成网点1.10。利用正从供应链即公用设施输入信息的网点1.10,考虑到能源的可用度和/或费用,该设备1.08可以根据该信息作出决定。例如,设备1.08的功能可以被延迟和重新预定在另一个时间。或者可以选择一个效率更高的不同能源模式。
在本发明的另一方面中,设备1.08的能源消耗可以趋向或与预定阈值相比,以检测和/或预测故障或维护需要。例如,如果能源消耗增加,那么增加率可以与预定值相比较,如果该增加率超过预定值,那么将产生一个报警或信息。换言之,消耗率可以直接与预定值相比,以便确定是否存在误差或故障。在另一个实例中,如果水泵1.30B的过滤器堵塞,那么水泵1.30B要更卖力地工作。这还可以通过分析水泵1.30B的能源消耗看出。
在本发明的又一个实施例中,控制网点1.10B或负荷控制网点1.10C可以连接检测相应设备1.08B,1.08C参数的一个或多个传感器(未表示)。这些传感器可以是现有的,或者是设备1.08B,1.08C的一部分,或者附加于设备1.08B,1.08C上。例如,上例的水加热器1.30C可以有一个水温传感器。水温传感器的读数可以由控制网点1.10B或负荷控制网点1.10C接收,并用于确定如何控制水加热器1.30C。例如,如果水加热器1.30C的控制是指令水加热器1.30D加热其中含的水(至少部分基于水温),那么水加热器1.30C首先与有关负荷控制网点相协调,来确定是否进行处理。负荷控制网点1.10C可以根据上述几个因素认可或不认可,这些因素包括供电特性和/或电费或相对电费,以及户2.18内其它设备(或其它消费点的设备1.08)的能源需求。
在本发明的另一方面中,设备1.08可以是一个存储系统或一个转换器系统。例如,设备1.08可以包括通过负荷控制网点1.10C连接电力供给网的一个或多个电池(未表示)。当能源费用较低或更容易获得时,例如在非高峰时期,负荷控制网点1.10C可以控制主耦合器2.14,给电池提供能源。在高峰时期,负荷控制网点1.10C可以控制主耦合器2.14,将电池的能源逆转或直接给其它设备1.08。
在本发明的另一方面中,系统1.02允许设备1.08与其相应网点1.10一起工作,根据从供应链接收的信息联合作出决定。例如,如果削减PROGRAM影响某一地区的一组水泵,那么就将每个水泵的运行时间限制在每小时15分钟。每个水泵和/或相应负荷控制网点1.10C可以确定在每小时的每15分钟时段内哪个水泵运行。
在本发明的又一方面中,消费者可以在任何给定时期内给户2.18设置总电力需求限制,如50瓦。网关型网点1.10D依据实时基础接收总电流需求,即正使用的电力。因此,如果户2.18内的另一个设备1.08想要实现一个功能,那么设备1.08(通过有关网点1.10)可以查询网关型网点1.10D的许可。如果要求的功能会引起总需求超过该量(或进入预定阈值范围),那么网关型网点1.10D可以不允许设备1.08实现该功能。
在本发明的又一方面中,消费者或系统1.12可以为特定设备1.08设置一个需求运行参数。例如,消费者可以指出他想要水泵1.30B在每天如八小时的给定时期内运行。在一个实施例中,该系统1.12将根据从供应链接收的信息如电费和可用度,预先设定水泵1.30B的运行。
3.先进的自动温度调节控制设备 如所述的那样,在本发明的一个方面中,该调温器1.30D是一个连接电力配送网络的先进的自动温度调节控制设备。该调温器1.30D还直接或通过网关型网点1.10D连接消费点1.04内的网点1.10,并接收发自和涉及电力配送网络和设备1.08的信息。作为来自供应链上下的信息可用性的结果,调温器1.30D可以更有效地管理和为用户提供附加功能。
在本发明的一方面中,该调温器设备1.30D接收有关供给能源特性的信息,并在显示器3.04上显示该信息。在一个实施例中,该特性涉及能源可用度。例如,该特性可以是高峰、或非高峰时间。如果电力配送网络在高峰时间运行,那么“PEAK”可能显示在显示器3.04上。或者如果电力配送网络在非高峰时间运行,那么“NON-PEAK”就会显示在显示器3.04上。
在本发明的另一个实施例中,该特性可以涉及供应的能源或电力费用。例如,该特性可以是特定能源单位的实际费用。该实际费用可以显示杂器显示器3.04上。或者,该特性可以是相对费用,即是接近或大约为基本费用,或者高于或低于基本费用的实际费用。
特别参见图3A,在所述实施例中,该费用或相对费用可以以图形方式显示给用户。换言之,给费用可以使用一个或多个符号显示(显示为“$”)。符号数目涉及费用,即更多的符号表示实际或相对费用越大。例如,调温器1.30D可以使用的范围是从1到X个符号。X可以是任何数,例如4或10。
看到该信息,用户能够决定采用控制面板3.02将需求温度设置在哪。
特别参见图3B,在本发明的另一方面中,调温器1.30D形成温度和环境检测和控制系统3.08的一部分。爱本发明的该方面中,调温器1.30D是一个具有网点处理器2.02、存储器2.04和双路通信信道2.06的网点。如所述实施例所示那样,调温器1.30D通过网关型网点1.10D连接消费点1.04处的网点1.10。该调温器1.30D还连接一个或多个适合检测涉及室内或室外空气质量的一个或多个参数的传感器3.10。根据检测数据,调温器1.30D可耻其它设备1.08,管理空气质量。受管理的设备可以包括一个或多个HVAC系统,空气净化器或静电过滤器、风扇、加湿器、除湿器、加湿器和新鲜空气输入通道,及离子发生设备或能够影响空气质量的所有类型的设备。
在一个实施例中,传感器3.10包括一个室内温度传感器3.10A和一个湿度传感器3.10B。在另一个实施例中,调温器1.30D还可以包括用于测量和/或检测下述一个或多个因素的传感器3.10C包括外部温度、UV强度、风向和风速、相对湿度、湿球温度计、露点等。在又一个实施例中,该调温器1.30D可以通过网关型网点1.10D接收外部信息,如涉及当地天气预报的信息。
在本发明的第一实施例中,温度和环境检测和控制系统3.08将管理室内空气温度。在第二实施例中,采用传感器数据和/或外部信息,该温度和环境检测和控制系统3.08将通过控制组合有加湿器和新鲜空气输入通道、静电过滤器和离子设备的适当的加热、过滤、调节和制冷设备,管理消费点1.04的空气质量和湿度,从而使舒适度和室内空气质量达到最佳。
在本发明的一方面中,该系统3.08将根据用户确定的最小和最大舒适指标值和能源指标价格,管理可获得的环境空调设备1.08,保持最佳温度、湿度和空气质量状态。
在本发明的另一方面中,该系统能够在能源类型如用于环境加热的电和燃气之间进行切换,还能够根据能源供应商的要价或当地经纪人的要价切换供应商。
在本发明的又一方面中,系统3.08将平衡两种主要因素。首先,系统3.08将环境保持在用户确定的可接受的一个或多个空气质量参数的最小和最大值内,例如空气温度和湿度。其次,系统3.08还根据用户确定的优选和或价格点及和或历史数据改变这些可接受的参数(见下面),以便获得最佳环境状态。
为了反馈给用户,系统3.08还可以记录用作时间函数的能源单位的数目(这里使用的能源单位包括如千瓦时、BTS’s、Therms和焦耳,但不限于这些),用于受系统3.08监测和/或控制的每个设备1.08。此外,系统3.08可以回报详细的消耗数据作为时间的函数,并概述这些详细资料,为任何用户提供最小量,确定时期内的日平均量,月总量,以及示踪没时期内消耗的每能源单位的费用,及为任何用户提供确定时期内详细的和平均日费用,以及总量。
在本发明的一方面中,系统3.08能够与具有相应控制或负荷控制网点1.10B,1.10C的设备1.08进行通信,除了环境空气管理系统主要管理功能外,还允许消费点1.04内每个控制网点或其它控制球,并包括整个公用设施供应链,以便使用相同的经济模型技术和控制用于管理它们的主要功能。
调温器1.30D是与系统3.08相连的消费者或用户的主要界面。如上所述,调温器1.30D将能够给用户显示当前的能源费用,以及把其相对费用作为一个图形或数值(1-10)或($-$$$$$$$$),其中1是低,10是高,或$是低,$$$$$$$是高。
在本发明的另一方面中,系统3.08还可以在显示屏3.04上显示能源效率数据。该能源效率数据还可以用于根据系统3.08内设定的控制参数指示管理协议和控制参数容量的能源效率怎样。该相对效率数据可以涉及处于孤立基的消费点1.04特性,或可以依赖一个比较组,通过该比较组可以确定相对效率。表示相对和实际能源费用和效率的数据还能够传送给其它远程设备1.08,如TV屏幕,或能够传送和显示信息的其它显示设备(位于消费点1.04或远程)。这些设备1.08可以包括但不限于包括这些家电,它们带有显示器或指示器光,能够反射能源费用,或可以在消费点得到的任何其它设备,或孤立设备,以便通知消费者有关相对和实际能源费用和它们的相对能源效率级的信息。该系统3.08还可以管理、报告和示踪其能源单位用量,并通过通信信道连接能源单位供应商。在一个实施例中,系统3.08的控制将位于消费点.04,而用于成型和管理资源的处理器和待使用和承诺的能源单位类型可以是当地的或分配的,并可以不顾实际位置和距离消费点1.04的距离在整个通信网络上运行。
在本发明的一方面中,用户可以设定一个温度设定点,即一个需求温度,系统3.08可以根据温度设定点、检测的数据以及系统3.08的用户历史用量确定有效设定点。系统3.08可以象有效设定点的函数那样控制设备1.08。
该温度设定点可以有一个相应的不工作区域(deadband)。例如,温度设定点72度可以有正负5度的不工作区域。在该实例中,系统3.08在实际温度达到77度之前将不会启动制冷,或者在实际温度达到67度之前将不会启动加热。
在本发明的另一方面中,系统3.08运行的不工作区域可以直接依赖能源费用和消费者的意愿来支付费用。例如,可以设置能源费用固定设定点和根据时间和温度差异设置最佳匀变率来获得节约。或者,用户确定匀变率如每30分钟1度,来修改消费点1.04的温度设定点,在能源价格高时减少加热和制冷系统的运行。
在本发明的一方面中,系统3.08通过学习用户的输入或调节系统3.08来改变或修正室内温度来管理消费点1.04的舒适度。该学习过程改变系统3.08的运行,使消费者不必最初变化,以管理室内环境状态。为了达到该目的,系统3.08不仅必须监测和控制户2.18内的温度设置,还必须监测和和积极控制湿度级。
在一个实施例中,系统3.08确定有效温度,适应室内湿度设置的变化。例如,如果消费者开始将调温器设置为72华氏度,那么系统3.08检测室内湿度级,保持检测的温度和湿度级之间的联系。当夏季户2.18内湿度级上升时,设定点保持在72华氏度,但是系统3.08必须保持的有效设定点自动降低,以便保持一致的舒适级。作为一个补偿参数,对于检测的每10%的相对湿度,系统2.18也许必须将消费者建立的有效设定点降低3华氏度,以便保持消费点1.04的舒适级。在控制算法的相反面,作为一个补偿参数,对于检测的户2.18内每10%的相对湿度减少,有效设定点应该上升3华氏度,以便在冬季保持消费点1.04的舒适级。正负3华氏度的碧绿是一个补偿设置,应该根据用户对调温器1.30D设定点的改变根据需要进行修正。由于对有效设定点的改变涉及检测的湿度,因此可以增加或减少补偿比,允许控制算法学习用户的个人爱好,随时间消除消费点1.04住户对作出改变的需求。
在本发明的另一方面中,系统3.08允许有待由用户确定和/或修正和/或使用的一个或多个居住模式。使用不同居住模式将帮助在能源供给系统上获得降低级的需求,以及降低运行点1.04的总费用。在一个实施例中,居住模式可以通过用户界面1.14(见下面)进行确定或修正,及通过调温器1.30D和/或用户界面1.14激活。可能的居住模式实例包括户、远处、周末、周日、假期。也可以为不同用户确定特殊模式。
在所有时期内,通过提供最有效的能源设定点或在居住模式为“空”的有关偏差,及在居住模式为“在家”时提供舒适管理偏差,系统3.08的性能和能源减少能力得到进一步提高。通过附加与系统3.08连接的居住检测设备,这种居住敏感控制得到进一步加强。
在本发明的又一个实施例中,系统3.08可以确定从一种居住模式恢复到另一种居住模式所需的时间。换言之,该恢复时间就是在系统3.08被”恢复”时间比“启动恢复”时间时,转换或恢复过程将要被启动的时间。
系统3.08可以通过具有进入能源定价数据的入口而得到加强。系统3.08使用能源定价信息预测为保持环境舒适而在消费点1.04的总运行费用。前面的定价供应方案能够使系统3.08确定消费点.04能够获得的最佳湿度和温度设置,并在加热的情况下提高湿度级,或在制冷的情况下降低湿度级,允许加热或制冷系统在价格高的时期减少运行。这种针对平均定价上升预先调节消费点的能力将减低消费点1.04的能源消费总费用。
能源定价信息可以通过消费者输入和预先建立,作为能源供应商供应方案的一部分,或者设置成一个补偿值,用于平衡舒适度和节约。
参见图3C-3G,现在将解释上述系统3.08的一个实施方案。图3C的图描绘了但能源价格上升时,系统3.08管理室内温度的能够可以得到管理。在图3C的的图形中,出现了三种情况,但是本发明不限于提供和现有的任何给定实施方案这几种类型的情况。在所述实施例中,这三种情况是最大节约、平衡节约和舒适、最大舒适。对于每个拥护选择的情况,系统3.08有一个预定的补偿残留偏差(它确定不工作区域)。此外,该残留偏差可以作为供应能源特性如使用度和/或价格而改变。在所述实施例中,对能源供应确定的不同补偿分为低、中、高和临界。
由于一些能源供应商在他们的收费中提出已知的日时定价,因此所述价格点应该能够直接依赖能源供应商的收费价格。如果供应商给消费点1.04提供实时定价,那么可以使用相同的温度允许变化来产生节约和减少供应链需求。由能源供应商提供的另一种负荷管理利用用量动态管理的价格等级,来反映供给消费者的能源总费用。这些等级给消费者提供里一种能源价格的相对指示,并通常确定为低、中、高和临界。这四个等级叠加在图3C的图形中,表明能源供应商将怎样使用这些等级来告知消费者和系统有关能源的相对费用。
当使用该固定设定点时该特性能够适用于上述系统3.08,或能够进一步提高系统利用供应方案设定点特性的能力,来提高加热和/或制冷系统的运行效率,同时减少对能源供给系统的总需求。通过使价格数据与消费点温度和湿度级预调节及提供消费点居住模式相结合,可以获得上述附加节约。直接结果是,如果在一个地区进行了足量计划,那么可以降低价格易变性。
一方面,系统3.08基于其学习到的由消费者输入或采用系统补偿的优选设置,通过平衡湿度和温度管理舒适性。通过在系统3.08内构筑经济管理系统,管理温度的能力得到提高,将引导设备1.08的运行,以获得消费者需求的经济目标。有噶系统怎样能够管理费用和舒适性的该实例将不会构筑成限制或限定系统3.08给予附加舒适利益或费用管理的能力。
为了启动该处理进程,系统3.08追踪和学习户2.18的热增益特性。为此,系统3.08对由用户随时间选择的每个设定点追踪和学习户2.18的热增益特性。参见图3D,其中表示了两个设定点的热增益表。图3d表示由调温器1.30D记录的户2.18两个设定点。可以获得数据的第一个设定点是72华氏度。线3.12A,3.12B,3.12C所示的三个趋势绘出不同外部温度下消费点1.04的热增益率。在由线3.12A表示的日子,外部温度是99华氏度。在由线3.12B表示的日子,外部温度是90华氏度。在由线3.12C表示的日子,外部温度是77华氏度。表示了数据的下一个设定点是76华氏度的设定点。线3.12A,3.12B,3.12C所示的三个趋势说明绘入线3.12A,3.12B,3.12C数据点的相同外部温度下户2.18内的热增益率。该描述用于表明设定点与外部温度差对户2.18内热增益率的影响。虽然绘制这些图用于说明热增益率,但是他们并没描绘差别大和热增益慢时较快的起始热增益,这种情况在室内温度达到外部温度时出现。热增益变化时的比率在图3D中用虚线3.16表示,它表明74华氏度的设定点和外部温度为90华氏度的热增益。
第二步是学习HVAC系统运行特性作为热增益的函数。由于外部温度在普通天内连续变化,因此热增益率和HVAC系统运行时间也随这些变化而变化。图1E表示普通天,表明热增益率和相应HVAC运行时间线。应该指出,系统3.08的设定点设置在全天的一个固定点,且不引入使用湿度测量和湿度级控制进行说明,以便该图描绘一个具有普通HVAC控制调温器的普通住户。此外,其中的说明描绘了当外部温度上升和室内设定点与外部温度差增大时,热增益导致HVAC系统跟频繁地循环。在某种程度上,在极热的天气或更重要地在湿度高的时期,采用低设置的设定点,热增益将超过HVAC单元的能力,将室内空气温度恢复到该设定点。当这种情况出现时,HVAC系统运行时间图将平稳在1%的运行,室内空气温度将上升到高于设定点,直到外部温度回落到热增益不超过HVAC单元能力的级,以便恢复室内温度设置;或直到室内湿度级回落到居住者感觉冷和调高设定点的点,允许该单元恢复更正常的循环模式。
第三步是用户从系统3.08提供的多个经济选择中进行挑选。这些选择范围为不考虑任何费用的1%舒适管理到不考虑任何舒适的1%的经济管理。例如,选择在高级,将是但不限于是一个用户从1到10中进行选择的选择方案,其中其实纯舒适管理,10是纯经济管理。虽然这个实例最简单的形式是从10个选项中提供一个的选择,但是系统3.08使用的优选控制选择能够被修改和扩大,以便提供一个无数量限制的选择。为了说明该实例中的选择如何驱动控制逻辑,那么我们现在将回顾受到影响的控制参数和说明得到的控制。主要控制参数将分等级,从消费者可用系统3.08的设定点开始到获得经济利益总共分成数度。该参数将以消费者建立的设定点作为起始(对该实例为72华氏度),且最大舒适设置将不会离开该设定点(见图3F)。在最大节约设置中,设定点补偿将为4华氏度,允许该实例中的系统改变户内温度,形成4华氏度补偿的正常设定点,使系统3.08能接受的温度范围为72到76华氏度,能够管理环境。要用来获得经济目标的下一个参数将是匀变率,系统3.08将在该匀变率下,在温度从一个设定点移动到一个较高或较低设定点时,允许消费点1.04内温度上升,从而获得经济利益。此外,对于最大舒适设置,由于允许的补偿为0,因此匀变率无效。但是在这种情况下,将补偿从系统3.08使用的设定点调节到触发器恢复到该设定点(运行的不工作区域)的另一个参数将是一个可供选择的控制参数。在此情况下,如果正常不工作区域是2华氏度,对于最大舒适范围,这也许可以降低到1度。在允许温度范围有4度变化的最大节约设置中,通过组合改变不工作区域和消费点1.04内热增益率,能够控制匀变率。对于最大节约设置,该实例中不工作区域升高到3华氏度,每小时热增益率将设置为每小时3华氏度。该实例的结果表示在图3F中。这些实例仅用于说明系统3.08怎样使用消费者的输入来改变个别运行参数,如所述那样,保持最佳舒适或最佳节约控制算法,并且不意味着限制控制参数数量,系统3.08可以使用获得不同舒适和节约级的这种方式。在更精心设计的系统事实方案中,还可以有附加参数和控制。下面的段落说明附加控制参数和控制模式,但不能解释为限制这些实例的系统性能。
在本发明的另一方面中,系统3.08使用学习到的消费点1.04的热增益特性以及消费者选择的许可温度变化范围,维持平直的需求好消费级。在该控制方案中,系统3.08使用户2.18的热增益率和相应HVAC系统的运行时间,来产生一个消耗基线。采用该基线,系统3.08受到指令管理需求和消耗率,通过在许可范围内改变室内空气温度,使其保持在平直级或有点降低的级。下面说明该控制供应方案如何工作,但是不能解释为下肢系统3.08的能力,采用不同的控制逻辑或附加检测设备实现这些功能,以便改进该供应方案。对于该实例,调温器的设定点是72华氏度,由用户选择的许可变化是4华氏度,使室内温度可接受范围成为72到76华氏度。从该时刻起,设定时间可以通过多个条件触发,例如用户或供应方案确定的时日,运行时间百分比、给定时期内或有关检测事件的任何其它可测能源消耗率,对于该实例,假定在HVAC单元运行时间达到33%时消费者已经设置基线触发器。在清晨较冷时,在该实例中系统3.08将以10%的循环率运行。当外部温度上升时,连续监测户2.18的热增益以及HVAC循环率。如图3E所示,外部温度上升导致循环时间增加。当系统3.08达到33%循环运行时间级时,建立基线(baseline),系统3.08采用其计算的热增益率和相应HVAC循环运行时间策略,计算所需有效设定点补偿(偏移),将HVAC循环运行时间保持在33%的特定触发器级。通过上调有效设定点,系统3.08能够将HVAC运行施加保持在预定触发器级,直到热增益上升率超过消费点1.04的许可温度变化点。在该点,系统将根据系统内由消费者或用户或任何其它控制实体设定在系统内的控制参数进行选择,以便依据舒适或经济需求是否是消费点1.04、能源供应链或消费点和能源供应链的主要驱动器,超过循环运行时间触发器级,或超过许可温度。图3G说明了这种情况,假定消费点1.04的热增益不会耗尽消费点1.04的许可温度。
显然,在团体而不是消费者的控制下,该触发器点的设置和系统3.08的控制可以用于该实例,或用于任何实例,或用于整个系统,因此其范围不限于住户或商业控制系统。在大规模计划时,系统3.08可以在能源供应商的控制下,且能够用于管理多个连接能源供应链的环境控制设备。显然,系统3.08的控制可以由多个资源共享,每个都具有确定权限级,并根据需要控制个别控制点或控制点组,以便管理、监测和平衡供给供应链的需求。
如上所述,系统3.08的另一个调整是能够接收来自能源供应链的能源费用。价格信号可以采取等级或实际价格。在任意一种情况下,消费者都能够通过从设定点给系统3.08输入系统3.08可以用来管理环境温度舒适范围的多个补偿,给系统3.08指定他们为舒适支付费用或希望节约的愿望。在图3C中描述了几种情况。在第一种情况中,消费者能够通过采用舒适或节约级来指定他们的愿望,基于能源供应链提供的能源费用提供附加温度变化。这三条线一条用于描绘最大舒适,一条用于描绘均衡舒适和节约,第三条用于描绘最大节约。在最大舒适设置中,消费者表明他们不想放弃基于能源价格的任何事情,因此不愿意有任何节约。在均衡舒适和节约设置中,消费者愿意放弃4度的舒适来获得节约。在最大节约设置中,消费者表明他们将放弃8度的舒适来获得节约。这些设置由消费者指定,但是他们可能受到其它因素如能源供应商或其它外部管理实体的控制。其中的一个例子也许是一个实体或其它能源服务公司,这样的实体或者公司给消费者提供一种能源月统一费用,但是在该协议下,消费者将放弃他们对加热和制冷系统提供的控制。
在该实例中,实体管理系统3.08将提供与他们控制户的能力相当的定价,房屋居住者或消费者将支付更少的能源费,例如供应商提供了控制级。正如在所有其它实例中那样,在该实例中,显然系统3.08的这些特性并非独立的,且能够多种结合使用,以便使控制系统能够将利益分配给与能源生产、供给和消费有关的所有团体。在上例中,其中消费者想要获得最大节约,想要放弃8度的舒适来达到该目标,如果消费点1.04设置成能够管理湿度级,那么湿度级也可以受到管理,以便降低20%,为达到消费者的目标,系统3.08可用的实际温度变化将从8度增加到14度,给系统3.08提供了很大的管理范围。
系统3.08提高舒适和能源效率的另一个特性是其能够确定最佳风扇延长运行时间,用于在热回收过程中,迫使空气HVAC系统从吸入风道系统的剩余制冷和加热中获得附加制冷和加热。传统上,一旦达到所需的设定点,加热和制冷系统关闭接热或制冷发生单元,进入非运行状态。在加热的情况下,出于对安全的考虑,强制通风单元内的传感器将迫使风扇继续运行,直到强制通风温度回落到安全级。在该点上,风扇和系统中止运行。在制冷模式中,包括风扇的整个系统3.08通常一达到该设定点就停止运行。在这两种情况下,存在消费点1.04损失的剩余热收益存储在通风管道中。采用传感器,系统3.08将继续让风扇运行,从风道系统中提取剩余热收益,并传给消费点1.04的待空调空间。在加热的情况下,分上将继续运行,直到风道温度降低到等于待调节空间的检测温度为止。在制冷的情况下,风扇将继续运行,直到风道温度升高到等于或稍微补偿而高于待调节空间检测温度的温度点。
在系统3.08的一个更精心设计的实施方案中,环境控制系统将利用附加传感器,控制设备和在某些场合下的辅助湿度控制设备来为消费者进行最大的节约,减少对环境的影响。这可以通过提高系统3.08总能源效率来实现,从而允许发电机减少发电设施运行时间,减少空气污染和限制自然资源消耗。通过均衡热收益和检测的湿度相结合而提高能源效率可以通过多种途径实现。为了进行说明,这里讨论了几种途径,但是不能够解释为限制获得能源消费改善和舒适性提高的途径。
261被调节空间内影响舒适度的两个主要因子是温度和湿度。如前所述,湿度是舒适度中一个较大的因子,通过控制湿度级,能够提高温度,减少运行传统的HVAC从而节约了能源。通过他们的设计,传统的HVAC系统通过制冷盘管去除了空气中作为流动空气函数的湿度。这种湿度的去除产生了更加舒适的环境,但是典型地,湿度的去除仅仅是制冷过程的副产品,是不控制制的。系统3.08能够提供修改现有HVAC系统的能力,以通过加入湿度传感通信网点使其实现湿度控制。这些网点检测被调节空间内的湿度级并输入到系统3.08,从而不仅能够管理消费点1.04处的温度还能管理该处的湿度。然而传感器本身不能执行湿度控制过程。另外,系统3.08支持多个通信控制开关、监控器和计量传感器以完成过程。下面湿度控制的例子能够与新的HVAC系统结合作用或者作为对现有HVAC系统的改进,该湿度控制被设计成用来表示系统3.08是怎样大大提高HVAC单元的运行效率和相关的运行成本。通过提高运行效率,系统能够减少总能耗,提高经济性,降低排放并保护自然能源。
262传统的HVAC强迫通风系统包括加热单元、制冷单元、风机和空气过滤系统。被调节空间内的空气通过返回空气管被吸回,并过滤,然后通过鼓风机室,在那里空气通过冷却室后面的加热室。在热泵中,由使用公共盘管的同一个室执行加热和制冷,在非常冷的天气中热泵在临界状态下运行的气候里,通过耐热带室来进行增补。空气进入供应管系统,在那里通过一系列的管道和调风器被送回到被调节空间。在制冷工况下,加热室不起作用,只进行制冷过程。由于空气通过制冷盘管,制冷盘管通过吸收热量而降低环境空气的温度。同时,空气中的湿气在制冷盘管上凝结,并由于重力作用而从盘管上流下,被收集在室底部的集水盘内,从那里湿气被供给到一个合适的处理点。由于疏忽,如上所述,该过程从空气中去除了湿气。另外一个重要的方面是传统的HVAC单元具有多速风机。该风机被设计成按照设计以几个速度运行,并且当进行加热过程时以低速运行,而当进行制冷过程时以高速运行。这样做是因为被加热的空气较轻,只需较少的动力就可以通过管道系统而使足够的空气进入被调节空间以使温度恢复到设定点。被冷却的空气由于较浓,需要较大的动力使其通过管道系统,从而需要较大的风机速度来通过系统3.08移动等量的空气。因此,传统的HVAC系统具有内置的多速风机,但是主要用于补偿空气浓度。系统3.08利用该能力来使用较低速度的风机来降低室内湿度级。通过使用两路通信控制网点来实现这个任务,两路通信控制网点能够修改风机速度设定从而当需要恢复环境空气温度的时候,使其在通常的高设定下以及在低速设定下运行以降低室内的湿度级。为了使户2.18去湿,系统3.08运行空气调节处理器以使制冷盘管温度下降,并在低速下运行风机以从空气中去除更多的湿气,当空气以较低的速度流过制冷盘管时,允许除去更多的湿气。被冷却的空气通过供应管道系统流过常规的路径,并通过干燥器,然后冷空气进入被调节空间。通过一个熟练过程,系统3.08能够确定并在其存储器中的记录,能够传送与其相关的HVAC单元的去湿速率。在这种情况下,安装有多速压缩机的HVAC单元比标准的单速压缩机单元更高效地运行。对于用多速压缩机的室内去湿,低速压缩机设定用于降低系统3.08使用的能源。为了完成去湿控制过程,需要两个附加的两路通信传感器中的一个或者两个相结合。由于制冷盘管在其将湿气从空气中去除的过程中会超负荷而冷凝并开始冻结,因此就需要传感器来检测空气流或者压缩机盘管中冰的存在。系统3.08能够利用这些传感器的输入或者增加风机的风速以使盘管解冻,或者在以高速或者低速运行风机的同时循环压缩机以强迫暖空气通过从而使其解冻。在供暖季节里,由于室外温度下降,从而湿度级下降,导致相对低的湿度级。正是由于在夏季去除了湿气使得空气感觉更凉,在冬季去除湿气具有同样的效果。在冬季的主要不同点在于产生的凉的感觉产生了不希望的室内空气舒适级,用户在湿度级下降时提高温度以维持一个更舒适的环境。这种状况使木质门和地板以及人的瘘变干,导致木制品皱缩和流鼻血。通过增加消费点1.04处的湿度级,能够使温度维持在一个较低的级,以及相同的相对舒适级。另外,通过增加湿度级,木制品不会象那样的皱缩,瘘也不会使消费者烦恼。为了在供暖季节里完成湿度控制,在供应空气管道系统3.08中增设加湿器,提高被调节空间的湿度级,允许维持较低的温度设定,从而减少了用于维持令人满意的舒适度级所需的能源。系统3.08能够在制冷过程中使用前面描述的湿度传感网点来管理湿度级,但不需额外的冷冻和解冻传感器。不幸地,传统的加湿系统被设计成仅在进行加热过程时运行。这是由于他们依赖于加热室内被加热的空气通过一系列网格或者浸在水中的薄膜。当被加热的空气通过这些网格或者薄膜时,他们通过蒸发过程吸收湿气,并通过供应管道系统将其传输到被调节空间。为了改善这一过程,系统3.08与一个改进的管道加湿过程相结合,该改进的管道加湿过程加热网格或者薄膜以允许未加热空气通过,并将湿气供给到被调节空间,从而不需进行主加热过程就可以完成此项任务。另外,系统3.08能够远程控制,在消费点1.04内的分布式加湿单元类似于当今在一些零售商店中卖的单元,需要将一个两路通信网点控制器集成到这些加湿单元上。系统3.08支持的这种完全集成方法的一个不太精确的改进是与集成的两路通信控制网点、继电器接触器和可选择湿度传感器一起的插座适配器。该单元能被用于合适的传统加湿单元或者喷雾器,使得他们成为湿度控制系统的一个集成部分。附加的传感器设备被用于测量表面湿度,这些表面直接暴露在外界,例如玻璃窗。当消费点1.04处的湿度级升高时,过多的湿气会聚集在这些冷表面上导致冷凝积聚。为了处理这种状态,在系统3.08中包括可选择的通信传感器来检测湿气积聚。
263在制冷季节控制消费点1.04处的湿度级的由系统3.08支持的另一种方法是,改进冷却室盘管以与热管技术一起使单元的去湿能力平均增加两倍。如果使用低速风机运行模式,就仍然需要上述的通信传感器,然而由于热管制冷盘管改型设备,经常不需运行额外的去湿设备就能维持湿度级。湿度减少量以及系统3.08有效运行的能力必须平衡,才能节约能源并且舒适。制冷盘管热管改型设备可从全世界的很多公司获得,例如佛罗里达的盖恩斯维尔热管技术有限公司。象热管技术这样的公司也制造与改型去湿设备一起的架,从而能够直接装入现有住宅的HVAC系统中,允许使用现有的室内管道来执行去湿过程,来分布被去湿的空气而不需要运行现有的空气调节压缩机。由于改型附加的去湿单元与整个户压缩机相比使用相当少的能源而使得该过程效率很高,但由于需要前端的基本建设投资,对一些消费者来说可能兴趣不大。系统3.08也支持其它形式的去湿,象干燥系统和其它形式的吸湿技术。
264在能源供应链上预料出现要求或者需求减少的情况下,在系统3.08更精细执行中的去湿控制可以用于预处理消费点1.04。一个简单的例子是,使用日收费时间的能源供应供应方案鼓励在高峰期间减少系统需求量。在这些预料的情况中,系统3.08能够对家庭进行预处理以降低夏季的湿度级或者提高冬季的湿度级,从而允许当环境空气温度升高的时候维持舒适级以降低需求量和总消费量。在此描述的并由系统3.08支持的这种预处理过程作为供应方案的“一经要求”或者“应要求”类型,可以被用作系统缺省设定,会导致对系统3.08需求量的永久降低以及能源使用的总体降低。消费点1.04处的用于处理湿度级的资金总额代表年度能源帐单的大约20%,但是能够通过在局部气候条件下导致年度能源使用量降低直到14%的湿度处理而容易地收回。这种情况的反面是会影响许多不同能源供应链和自然资源的加热负荷的降低。这里,假定由系统3.08管理以获得作为相对湿度级的函数的较低的加热设定点,在供暖季节里加湿消费点1.04以增加湿度级的设备能够在18至24个月内恢复。
265附加的两路通信传感器通过提供附加的输入数据也会改善系统3.08的运行能力。例如占用传感器在消费点1.04处有人的情况下会告知系统3.08。系统3.08能够从授权实体得到授权,以根据占用者的存在或者缺席来执行不同的匀变、设定点改变或者去湿。如果没被占用,系统3.08能够直接采取更节约的相关行动并服从舒适控制选择。这种能力能够增强其传送节约和减少对供应链需求的能力而不影响占用者的舒适级。
266附加的两路通信传感器由系统3.08支持以维持室内空气质量。这样的传感器例如CO2、NOX、氡、煤气、甲醛和CO探测器。这些传感器向系统3.08提供输入,并且如果这样配置,将会触发空气置换系统的运行以降低消费点1.04处的煤气级或者触发器和报警条件。其它的用于检测烟气或者火焰的通信传感器也由系统3.08支持,并在检测到上述情况时,被许可执行紧急关断空气处理器和其它设备。具有这些保险和安全特征,作为系统通信性能的直接结果,系统3.08具有与多个端点接合并报告报警状态的能力。这些端点的例子包括但不仅限于网络电话、寻呼机、监控中心、当地和远程报警器、电铃和灯以及数字显示设备例如个人电脑(PC)、电话亭中的设备、电视屏幕和例如象XM无线电设备和Sirius无线电设备这样的具有数字显示屏幕的个人无线电设备。系统3.08也支持传统的空气过滤器检测,以及更完善的静电过滤系统以及UVG细菌和病毒空气净化系统。在所有情况下,系统3.08使用它的两路通信传感器节点技术来控制和检测这些单元的运行。
267在本发明数据的一个方面,各种数据元件被存储在系统1.02中。在一个实施例中,数据可以被存储在网关型网点1.10D中。然而,系统1.02中的每个网点包括一个网点处理器2.02和存储器2.04。因此,在网关型网点1.10D被禁止时,系统中的任何网点1.10可以假定一个或者多个设备的处理和/或控制和/或系统数据1.02的存储。在一个实施例中,下面的数据可以由系统1.02来维持或者储存。
2681.能源单元的当前供应方、包括传送的每单位能源的当前价格。
2692.以正在使用的能源单元的价格和成本为基础的每小时当前运行成本。
2703.供应方今天、本周和本记帐时期以及过去的14个记帐时期使用的总能源和他们的成本以及能源类型,如果使用了多种类型。
2714.过去14个记帐时期的每天、每周和每个记帐时期中使用的每种类型的总能源以及他们的附带成本。
2725.供应方每单位能源可用贷款与代表了用于预付款能源的借方系统3.08是否被使用的买方单位能源的可用小时和天的估计值之间的平衡。
2736.供应方计算的单位能源的平均成本以及包括供给成本在内的从供应方购买的总能源需求的百分比。
2747.如果多路设备控制和测量被激活,单个设备的能源消耗、他们的成本以及供应的衰减。
2758.对于每个能源类型和来源的计划的总记帐时期成本。
2769.能源的类型和来源的汇总。
27710.温度设定点的日记录。
27811.周和记帐时期的温度设定点的平均值。
27912.本月、过去的14个月和本年度截至现在为止的能源使用和成本的历史总量。
28013.用户设定和固定的当前温度设定点。
28114.用户设定和固定的当前无控制作用区的高度和低度分布。
28215.天、周和记帐时期内维持的平均温度。
28316.对于按小时的30、60和90天时期,消费点1.04时间单位的平均热度获得量和损失量。
28417.当加热和冷却系统运行按小时的30、60和90天时期时,每度的平均热恢复时间。
28518.被检测的每个设备的计划的年度运行成本。
28619.在历史消费模式和当前业务统计基础上的被检测的每个设备的运行效率因子。
28720.最大和最小无控制作用区温度和成本设定的当前和历史设定。
28821.在被检测设备消费模式中运行的不规则报警指示器。
28922.如果存在预付款能源帐户,在借方帐户中对低平衡的报警指示器。
29023.整个消费点1.04和单个设备在30、60和90天时期以及去年相同时期的平均日运行成本。
29124.来自能源供应方和信息源的数据、文本和帐户信息。
29225.按日、周、记帐时期的包括最小户外温度降低和升高、湿度、降水风速和方向、太阳暴露时间和角度以及UV指数的天气信息和历史数据。
29326.用于标准化消费量和使用数据的总加热和冷却度和其它统计数据。
29427.调整加热和冷却的计算热恢复时间,以补偿外部温度、风速、方向、UV指数、湿度和冷却或者加热度因子。对于消费点1.04,当与平均标准化的热获得或损失相结合时,这种计算因子被用于更精确的计算热获得或损失的恢复时间。该因子也经常被在中央计算和传输以能够允许足够的恢复时间因子来使效率最大化并降低运行成本。传输中央计算因子会消除对每个位置处的外部传感器的需要,从而降低安装和运行维护成本。
29528.在给定的时间时期内,如果价格点和销售项目相等,可用能源供应者以及由供应者和选择供应者时使用的能源类型定义优选指示器的用户的表。
29629.当上述的选项28没有输入时,包含最小值、可用供应者、可用能源类型和该记帐时期购买能源的数量和成本的用于计算供应者比价的表。
29730.可选择的用户被供应的优选能源类型指示器。
29831.用户选择具有缺省为每小时匀变1度的温度匀变选择指示器,可选择的用户定义匀变时间结构和度数的设定。
29932.低和高温度警告设定防止加热和冷却系统失效。该警告触发点由用户设定,如果没有输入,缺省值为由用户输入的最大无控制作用区舒适范围的上和下的+或-5度。如果系统3.08被置于断路位置处,该特征被消除,但如果用户选择激活系统3.08的温度警告模式,上述特征就被消除。
30033.用户选择警告激活指示器来允许自动报警和检测服务的告知,如果指示器是可用的并且由占用者、所有者或者系统供应者预定。
30134.通信通道界面参数和数据包括对在附加网络或者可用网络上执行通信活动必须的类型和路线信息。这些参数包括执行用户、操作者或者通信系统提供者需要或认为必要的密码验证和加密所需的所有信息。这些参数也包括对于由消费点1.04使用或者预定或者对消费点1.04来说可用的警告触发报告点和服务来说必要的路径和识别数据。
30235.对于消费点1.04内的主要设备,消费率和消费符号以及与标准化因子相关的气候在系统3.08的控制下,不能获得测量消费的直接形式。对于消费点1.04内的主要设备,估计消费率在系统3.08的控制下,不能获得测量消费的直接形式。
30336.集中负荷汇总与计算服务供应者界面信息。
30437.以历史消费和外部因子为基础的消费点1.04的计算标准化因子。
30538.由使用DOE-2.1模型系统来模制消费点1.04而得出用于运行效率比较的能源效率因子。
30639.当消费点1.04为空或未被占用时使用的最小需求无控制作用区范围限定。
30740.反映特定天、时间和日类型变化的设定点模式变化轨迹表与“跟随我”人造智能学习和执行路线一起使用。
30841.与由占用者启动的设定点变化相关的反映特定外部气候条件的设定点模式变化轨迹表与“跟随我”人造智能学习和执行路线一起使用。
3094.用户控制网点管理系统和方法310参考图4A至4R,用户界面1.14可以用作网页或者图形用户界面(“GUI”)4.02。GUI4.02可从上述远程地区到达。在一个实施例中,用户可以通过网络浏览器或者其它例如电视这样的显示装置来到达GUI4.02。在另外一个实施例中,用户可以通过远程设备,例如移动式电话和/或个人数字助手来到达GUI4.02。通过输入用户I.D.以及密码,用户能够到达他或她的帐户。
311参考图4A,在用户登录到系统3.08上之后,显示系统主页4.04。系统主页4.04包括信息部分4.05、多个导航键4.06、一个导航菜单4.08以及一个控制面板4.10。
312在所示实施例中,对于示范用户,信息部分4.05显示了EarlMinem。信息部分4.05包括问候、时间和日期,也包括几个链接。例如,链接的激活会使用户重定到主页、到帮助屏幕、到电子邮件连接部分、到频繁询问的问题,或者使用户退出网站。
313多个导航键4.06包括设备管理键4.06A、配置警告键4.06B、系统数据键4.06C、取消缩减键4.06D和设备状态键4.06E。导航菜单4.08包括链接到下述GUI4.02的几个区域。
314当初始化时,GUI4.02在控制面板内显示户所有者控制中心4.12。在所示实施例中,户所有者控制中心4.12包括多个超链接图标4.14。在所示实施例中,超链接图标4.14包括直接存取图标4.14A、规划图标4.14B、我的报告图标4.14C、警告图标4.14D、配置数据图标4.14E和用户帮助图标4.14F。在信息部分4.05中返回链接的选择会使GUI4.02返回到户所有者控制中心4.12。
315参考图4B,当用户选择了直接存取图标4.14Aa,多个直接存取图标4.16会显示在控制面板4.10内。在所示的实施例中,用户拥有HVAC系统的直接存取和整个户计量表。相应地,加热/AC图标4.16a和整个户计量表4.16B被显示在控制面板4.10内。在另一个实施例中,用户能够到达的所有设备1.08在这里都可以到达,例如,第二调温器或者水加热器。参考图4C,选择加热/AC图标4.16A,在控制面板4.10内显示虚拟调温器4.18。虚拟调温器4.18包含信息部分或者显示部分4.20以及多个调温器键4.22。显示部分4.20包括与消费点1.04处的实际或者真实时间条件相关的信息。在所示的实施例中,用户消费点1.04内的当前温度为67°华氏度。加热和冷却设定点分别为58°和85°。系统3.08处于自动模式,加热和冷却系统处于关闭状态。进一步,如图所示,占用模式被设定为“离开(Away)”。如下所述,系统3.08允许用户使用虚拟调温器4.18并根据使用加热和冷却设定点的占用模式来对HVAC系统进行编程。通过使用调温器键4.22,用户能够改变调温器的当前运行参数。例如,改变系统模式调温器键4.22A的选择会允许用户在自动和手动模式之间进行选择。改变风机模式键4.22B的选择会允许用户将风机的模式从“开(on)”改变为“自动”。另外,忽略温度键4.22C或者忽略占用键4.22D的选择会允许用户如下所述的那样忽略当前温度和占用进度表。取消忽略键4.22E的选择会允许用户取消使用忽略温度键4.22C或者忽略占用键4.22D输入的温度或者占用的改变。取消缩减键4.22F允许用户取消任何缩减方案(curtailment program)(在允许的地方)。
316返回图4B,整个户计量表图标4.16B的选择会在控制面板4.10内显示与被传输或者被用户消费点1.04使用的当前能源相关的信息。另外,也可以显示与覆盖预定时间时期的累积能源相关的信息。该信息可以以图表和/或数字的形式显示。
317返回图4A,在导航菜单4.08中的一些菜单项与户所有者控制中心4.12内的图标4.14一起选择是多余的。例如,直接存取键4.08A的选择会在控制面板4.10内显示直接存取图标4.16。
318规划图标4.14B或者规划菜单项4.08B的选择会显示用户消费点4.04内每个调温器的图标或者占用模式图标(没有图示)。参考图4D、4E以及4F,调温器规划图标或者位于规划菜单项4.08B下面的调温器菜单项的选择,会在控制面板4.10内显示占用模式屏4.24。在一个实施例中,系统3.08允许用户定义一个或者多个占用模式(如上所述)。在每个占用模式中,用户可以设定一个或者多个控制一个或者多个设备的参数,例如当占用模式被激活时的HVAC系统。
319在一个实施例中,例如,用户可以设定冷却设定点、加热设定点,并也可以设定经济分布配置。
320在所示实施例中,用户具有八个占用模式。例如,系统3.08可以包括户占用模式、离开占用模式、休眠占用模式和空占用模式,以及四个用户定义占用模式。这些模式中的每一个都用沿着占用模式屏4.24顶部的各自的标记2.26表示。如图4D所示,标记2.26的选择会允许用户为每一个模式设定参数。
321例如,在所示实施例中户占用模式下,冷却设定点被设定为80°华氏度,加热设定点被设定为68°华氏度,而经济框架被设定为经济的舒适度。经济框架被用于控制HVAC系统和/或以供应链,例如能源的成本或可用性为基础的其它设备1.08。在一个实施例中,每个框架具有一个相关的设定点偏移,例如+/-5度。每个模式的参数可以通过默认键的选择被设定为一组默认的参数。在占用模式屏内的任何变化模式都各可以通过使用键4.30的选择而被用于各自的模式。在另一个例子中,参考图4E在任何模式内,冷却设定点被设定为85°,而加热设定点被设定为58°华氏度。
322在所示实施例中,经济框架通过经济框架下拉列表4.32来设定。参考图4F,在所示实施例中,经济框架可以被设定为三个框架最大舒适度、平衡舒适度和经济舒适度中的一个。
323参考图4G,调温器规划图标或者规划菜单4.08B下面的调温器菜单项的选择会在控制面板4.10内显示调温器规划日程表4.34。在所示实施例中,调温器规划日程表4.34显示了与当前日相对应的月。然而,调温器规划日程表4.34可以使用导航标记4.36导航。日程表4.34上的每一天可以被定义为天的一个类型,例如任一天可以被定义为工作日、周末、或者假期。在所示实施例中,所有的周六和周日被定义为周末,而所有的周一、周二、周三、周四和周五被定义为工作日。日程表4.34内的每一天都是超链接的。日程表4.34上任一特殊天的超链接的选择会显示调温器规划面板4.36,如图4H所示。调温器规划面板4.36包括调温器下拉列表4.38和选择日期下拉列表4.40。调温器下拉列表4.38允许用户在一个或者多个在用户消费点1.04内存在的调温器中进行选择。选择日型下拉列表4.40允许用户在各种预定义的日类型和定义的一个新的日类型中进行选择。
324调温器规划面板4.36允许用户选择在一天中的各种时间期间内使用的占用模式。
325例如,在所示实施例中,在所选择日的午夜,调温器处于休眠模式。如图所示,从早上4:30开始,调温器处于用户1占用模式,并如此进行下去。调温器规划面板4.36也包括一个使用键4.42、一个用于当前日键4.42、一个用于所有键4.44,以及一个返回日程表键4.46。用于当前日键4.42的选择会在调温器规划面板4.36内使用启动时间和定义的占用模式来在调温器规划日程表4.34内选择日。用于所有键4.44的选择会对在选择日类型下拉列表4.40内选择的所有日类型,使用在调温器规划面板4.36内的规划的启动时间和定义的占用模式。如图4I所示,选择日类型下拉列表4.40可以包括许多预定义的日类型,例如工作日、周末或者假期,以及许多用户定义的日类型。
326参考图4A和4J,警告菜单项4.08D的选择会在控制面板4.10内显示配置警告屏4.48。系统3.08包括许多预定义警告,例如,调温器温度超范围控制、网关型网点不响应、预算限制警告、设备故障、通信失败、匀变恢复失败或者复制IP地址。对于每种警告,用户可以选择或者指定目的文件,即,谁获知每个警告,以及他们是怎样获知的。在所示的实施例中,配置警告屏4.48包括每个警告的目的文件下拉列表4.50。目的文件下拉列表4.50允许用户在警告出现时选择谁来获知。例如,在所示实施例中,下拉列表可以包括户占用者、服务提供者或者能源供应者。配置警告屏4.48也包括一个或者多个检查框4.52来表示警告通信是怎样发生的,例如,是否是通过电子邮件或者通过用户或者使用界面1.14、1.16发生。配置警告屏4.48也可以包括对每个警告而言的一个检查框4.54,来表示警告是否是可配置的。配置警告屏4.48也可以包括对每个警告而言的一个进入框4.56以允许用户表示警告应具有的优先权。然而在另一个实施例中,优先权可以被用于,例如,提供基于优先权的不同传输系统。在所示的实施例中,这对于信息用途来说是主要的。进一步,配置警告屏4.48也可以包括一个允许用户表示是否应该发送单独一个警告或者在每次警告状态出现时是否发送警告的警告类型下拉列表4.58。例如,如果超过预定的时间量,例如一小时,调温器温度超出了范围,系统3.08可以被设定为传输单独的一个警告或者在每次温度超出限定时发送警告。
327配置警告屏4.48也包括一个提交键4.60和一个重置键4.62来使用任何输入的变化或者重新设定的警告将系统3.08更新为默认值。
328配置警告屏4.48也可以包括一个个人数据更新链接4.64。个人数据更新链接4.64的激活会在控制面板4.10内显示个人数据屏(没有图示),以允许用户更新他的个人信息,例如地址、电话和电子邮件信息以及用户姓名和密码。个人数据屏也允许用户输入或者更新预算阈,例如月运算阈。正如上面描述的,系统3.08也可以被设定为在当前使用量基础上当达到月预算阈和/或可能达到月预算阈时发送警告。
329参考图4A和图4K至图4M,我的报告图标4.14C或者报告菜单项4.08C的选择会在控制面板4.10内显示报告屏4.66。报告屏4.66包括多个报告图标4.68。报告图标4.68的选择会在控制面板4.10内显示弹出屏。例如,日温度图标4.68A的选择会显示出如图4L所示的日温度报告弹出屏4.70。同样地,月温度图标4.68B的选择会显示月温度报告弹出屏(没有图示)。日温度报告弹出屏4.70也允许用户在使用调温器下拉列表4.72的多个调温器中进行选择。日温度报告弹出屏4.70也可以包括多个允许用户改变日期或者在报告屏4.70内显示的信息日期的下拉列表和/或键4.74。例如,用户可以指定一个特殊的日期或者通过按日或者月制定的日程表来导航。
330报告屏4.66也可以包括日用电量图标4.68C。参考图4M,日用电量图标4.68C的选择会显示日电力报告弹出屏4.72。与温度报告弹出屏4.70一起,日电力报告弹出屏4.76包括服务设备下拉列表4.78,以允许用户选择用于显示数据的设备1.08。日电力报告弹出屏4.76也包括允许用户通过日程表进行导航以及用于在月或者年的基础上显示用电量信息的多个导航键4.80。一个更新键4.82在服务设备下拉列表4.78或者导航键4.80中以所产生的任何变化为基础更新电力报告弹出屏4.76。关闭键4.84的选择会关闭日电力报告弹出报告4.76。
331参考图4N,配置数据菜单项4.08E的选择会在控制面板4.10中显示配置数据屏4.86。配置数据屏4.86包括许多配置数据图标4.88。个人数据图标4.88A的选择会显示上面描述的个人数据屏。调温器数据图标4.88C的选择会在用户消费点1.04内显示调温器列表。每个调温器都可以被选择,并且将在控制面板4.10内显示调温器数据屏4.90,如图40所示。调温器数据屏包括用于定义相应的HVAC系统的加热部分的第一部分以及用于定义HVAC系统的相应冷却部分的冷却部分。加热部分包括允许用户选择对应于当前调温器的加热类型的加热下拉列表4.92,如图4P所示。冷却下拉列表4.94允许用户设定对应于当前调温器的冷却类型,如图4Q所示。如图4P所示,调温器数据屏4.90允许用户设定多个高限和低限。例如,在所示实施例中,用户可以设定安全、警告、加热和冷却高限和低限。这些限可被用于控制对应的HVAC系统,以及设定或者传输警告信息。
332配置数据屏4.86上的户数据图标4.88C的选择会在控制面板4.10内显示户数据屏(未图示)。户数据屏允许用户定义关于他们的家或者用户消费点1.04的包括有关结构的细节在内的各种参数,以及定义水加热器或者在用户消费点能够发现的其它设备,例如游泳池、涡流浴缸、热浴盆、加热的池塘、桑拿浴、喷泉、装饰灯系统、辅助加热系统和/或水利系统。
333在配置数据屏4.86上的能力开关图标4.88D的选择会显示信息并允许用户修改与用户消费点1.04处的任何能源管理开关有关的参数。
334参考图4N和4R,配置数据屏4.86上的供应方案图标4.88E的选择会在控制面板4.10内显示参与供应方案屏4.96。参与供应方案屏4.96提供了所有可得到的能源供应方案(“PSP”)或者PROGRAMS列表4.98。参与方案屏4.96也包括多个允许用户指定的对应检查框4.100,用户希望参与其PROGRAMS。参与方案屏4.96也可以包括关于列表的PROGRAMS的其它信息,包括供应类型、有效期和有效时间。在参与方案屏4.96上列出的每个PROGRAM都可以是一个超链接,当被选择时,会显示与被选择的PROGRAM相关的附加信息。
335如上所述,用户GUI4.02允许用户查看、配置和/或修改系统3.08的各种参数。通常,可以被查看或者修改的参数的类型和特性都通过公用设施1.06来定义。如上所示,可以使用各种下拉框、检查框和/或输入框来配置和/或修改这些参数中的某些参数。然而,值得注意的是,这些输入框、下拉列表和/或检查框中的一些可以被用于显示某些参数;然而公用设施会指定用户不能修改这些参数。
3365.公用设施控制网点管理系统和方法337参考图5A至5I,如上所述,可以通过网页浏览器到达公用设施界面1.16。详细参照图5A,当公用设施1.06中一个被授权的用户登录到系统1.02之后,就会显示公用设施图形用户界面5.02。公用设施GUI5.02包括在公用设施显示面板5.06上的多个导航链接5.04。
338在所示的实施例中,导航链接5.04包括即时供应链接、规划供应链接、供应方案定义链接、现行供应链接、供应历史链接和报告链接。导航链接也包括到公用设施GUI5.02主页的链接和退出系统的链接。公用设施显示面板5.08包括多个公用设施图标5.08。
339在所示实施例中,公用设施图标包括即时供应图标5.08A、规划供应图标5.08B、供应方案定义图标5.08C和现行供应图标5.08D、供应历史图标5.08E以及报告图标5.08F。如上所述,公用设施界面1.16可以被用于定义或者修改PROGRAMS,以显示关于在配电网中电力的当前现行供应信息,通过执行一个或者多个PROGRAMS来提供有关可用电容量的信息,并以此提供关于电力分布的历史数据并产生一个或多个报告。
340参考图5B,当选择即时供应图标5.08A时,会在公用设施显示面板5.06内显示即时供应屏5.10。即时供应屏5.10包括配电网部分5.12和信息部分5.14。在所示实施例中,配电网部分5.12包括为配电网提供以瓦为单位的即时容量(实时)显示的计量表5.16。
341在所示实施例中,配电网包括单独一个输电变电站、指定的分时系统1(tss 1)、以及单独一个配电站、指定的动态支持系统1(dss1)。如图所示,在配电站中,可以到达下述网点菲尼克斯、里士满、费城以及非缩减的费城。在系统1.02中,当PROGRAMS被激活以在一个或多个用户消费点1.04(如上所述)削减一个或多个设备1.08时,可以定义一个或多个PROGRAMS。计量表5.16给出了可从配电网中定义的PROGRAMS获得的即时电力供应图形指示。
342在计量表5.16下面,显示可折叠的/可扩展的树形结构5.18。可以选择树形结构5.18中的每个级。当选择树形结构5.18中的一个特定级时,在信息部分5.14内显示关于该级的信息以及其上的配电网。例如,如图5B所示,当选择配电站动态支持系统1时,会显示关于分时系统1以及配电站动态支持系统1的信息。
343在配电网的每一级的信息部分5.14中,显示即时容量和总容量。即时容量为对于以被定义的PROGRAMS和那些PROGRAMS中所有设备的当前状态为基础的给定级的实时瞬间容量。例如,对于在被定义的PROGRAMS中当前所有设备的电站动态支持系统,那些设备以1,040瓦被驱动。总容量是预定期间例如过去的七个星期内当前小时的平均值。
344信息部分5.14也包括一个刷新键5.20,当激活该键时会刷新或更新信息部分5.14内的信息。关于每个网点即菲尼克斯、里士满、费城或者非缩减的费城的信息,也可以通过在配电网部分5.12中选择相应的级在信息部分中显示。信息部分5.14也可以包括对信息部分5.14中列出的每个部分而言的复核/请求供应链接5.22。
345参考图5C,对于一个给定的网点或者电站选择复核请求链接5.22会显示可用供应方案容量弹出菜单5.24。可用供应方案容量弹出菜单5.24列表显示对于给定的网点在当前时间可用的所有被定义的PROGRAMS。每个PROGRAM包括一个对应的检查框5.26,使得公用设施能够激活给定的PROGRAM。对于每个列表显示的PROGRAM,在框5.28中列出每个PROGRAM的瞬间、实时可用电力。对每个PROGRAM也列出了总容量5.30,即,如果在给定的PROGRAM中所有被定义的设备1.08当前都有电力驱动。可用电力是指如果相应的或者对应的PROGRAM被激活时,可用的瞬时电力。可用供应方案容量弹出菜单5.24也包括持续时间下拉列表5.32。可用供应方案容量弹出菜单5.24可被用于瞬时激活一个或者多个PROGRAMS以对所选的持续时间释放电力。例如,在所示实施例中,如果激活应急的HVAC缩减供应方案以及应急关断供应方案,瞬时可用电力为12瓦。可用供应方案容量弹出菜单5.24也包括提交键5.34、关闭键5.36和刷新键5.38。如果一个或者多个检查框5.26被激活,并且选择了提交键5.34,那么公用设施控制系统1.12会将缩减信号传播到网关型网点1.10D,来关闭受影响的设备1.08或者削减那些设备1.08。激活关闭键5.36会关闭可用供应方案容量弹出菜单5.24。激活刷新键5.38会更新对每个PROGRAM来说可用的可用电力。
346参考图5D,选择供应方案供应键5.08B会在公用设施显示面板5.06中显示规划的供应屏5.40。规划的供应屏5.40包括配电网树形结构5.42和信息部分5.44。在瞬时供应屏5.10中,树形结构5.42显示了配电网中的电站、变电站和/或网点。与在树形结构5.42中所选定的级处的可用容量相关的信息,被显示在信息部分5.44中。在所示实施例中,显示了当前日的预定时间期间内给定级的可用电力。该信息反映了来自供应方案PROGRAMS的容量或者可用电力。例如,以被激活的供应方案为基础,在工作(military)时间和06之间,在费城供应方案容量为832瓦。对于网内的每个电站、变电站或者网点,公用设施1.06能够复核规划的供应方案或者为这些供应方案创建一个新的规划。规划的供应屏5.40也包括一个刷新键5.46,当激活刷新键时会更新信息部分5.44内的信息。
347在GUI5.02创建的规划部分中,可以到达图5E中所示的一个查找符合条件的供应方案弹出对话框5.48。该对话框5.48允许用户在公用设施处输入一些或者全部关于希望的供应方案或者标准的信息,并且查找任何符合输入标准的可用供应方案。
348参考图5F,激活供应方案定义键5.08C会在公用设施显示面板5.10内显示供应方案一览表5.50。供应方案一览表5.50列出并描述了所有可用PROGRAMS。在所示实施例中,每个被列出的供应方案可以包括一个指向附加特定PROGRAM的详细资料的链接5.52。供应方案一览表5.50也可以包括一个新键5.54。
349参考图5G,选择新键5.54会在公用设施控制面板5.10内显示供应方案定义屏5.56。供应方案定义屏5.56创建一个新的PROGRAM(看下面)。在一个实施例中,在每个用户消费点1.04处,新的PROGRAM可以被传播到网关型网点1.10D。用户可以根据其它可用PROGRAM来查看新的PROGRAM,并预定新的PROGRAM或者任何其它的可用PROGRAM(看上面)。
350在所示实施例中,供应方案定义屏5.56包括一个供应方案名称输入框5.58和一个说明框5.60,这两个框允许用户输入适当的文本信息。
351供应方案定义屏5.56还包括一组相互排斥的供应类型键5.62,以允许用户定义与PROGRAM相关的类型。在所示实施例中,类型可以是“一经请求”或者“供应方案”中的一种。可以在需要的任何时间由公用设施执行一经请求PROGRAM。然而,一经请求PROGRAM可以被限定在特定的一段时间。供应方案PROGRAM通常在特定的时期内为特定的日期设定供应方案。
352供应方案定义屏5.56也包括一组下拉列表5.64,这些列表被用于设定PROGRAM可用的日期和时间。
353可以使用一个或者多个检查框5.66将PROGRAM识别为“可选的”或者“可忽略的”。可选的PROGRAM可以由用户选择或者预定。可忽略的PROGRAM就意味着一旦被预定,用户就可以在其正在允许时,忽略PROGRAM。
354供应方案定义屏5.56可包括多个用于识别包含在PROGRAM中的设备类型的检查框5.68。在所示实施例中,系统3.08包括HVAC系统、水加热器、水泵和室内浴盆/温泉。PROGRAM可被定义为包括所有设备1.08或者设备1.08中的一个或多个类型。供应方案定义屏5.56包括返回键5.70、保存键5.72和重置键5.74。激活返回键5.70使GUI5.02返回到上一屏,而不保存PROGRAM。激活保存键5.72会保存当前的PROGRAM并使GUI5.02返回到上一屏。激活重置键5.74会将供应方案定义屏5.56内的值设定为默认值。
355选择现行供应键5.08D会在公用设施面板5.06内显示一个提供了关于任何现行的PROGRAM的详细资料的屏。该屏可以包括一个与上述详细描述了配电网的树形结构相类似的树形结构。该屏也会为配电网内任何选定的电站、配电站或者网点提供与所有现行PROGRAM相关的信息。例如,对于一个给定的现行PROGRAM,能够提供下面的信息以从网点1.10接收的实时数据为基础,有多少用户已经签字参与了给定供应方案、有多少用户对给定PROGRAM积极地起作用、以及有多少用户已经退出供应方案。另外,可以看到每个被供应方案影响的设备。
356选择供应历史键5.08E会在公用设施显示面板5.06内显示一个屏,该屏提供了与任何现行的供应方案相关的历史数据。对于任何过去的时间或者时期,可以得到现行PROGRAMS获得的相同类型的信息(看上面)。
357参考图5H和5I,选择报告键5.08F会在公用设施显示面板5.06内显示报告屏5.76,该屏提供了给定设备或者一组设备在给定时期内的能源消费图表。在所示的报告屏5.76中,显示了23年3月18日的按小时的总能源消费(由电表计量)。报告屏5.76包括允许用户选择设备,例如电表、调温器、水加热器、水泵或者室内浴盆/温泉,或者选择时期,例如按天、按小时或者按月的输入部分5.78。输入部分5.78也允许用户改变显示数据的时间和/或日期。报告屏5.76也包括一个刷新图表键5.80,该键用于更新图表以显示更新的实时数据和/或反映在输入部分5.78内所作的任何改变。
358显然,根据上述技术的启示可以对本发明作出许多修改和变化。除了明确描述的以外,本发明还可以在附加的权利要求范围内实施。
权利要求
1.一种将能源从配电网供给到一个或多个消费点的管理系统,每个消费点具有至少一个与配电网耦合的设备,所述至少一个设备可控地消费能源,包括与所述至少一个设备耦合的用于检测和控制传输到所述设备的能源的网点;以及一个与网点和配电网耦合的用于将配电网的至少一个特征传输到网点的控制系统,该网点根据所述至少一个特征控制给设备的能源供应。
2. 一种将能源从配电网供给一个或多个消费点的管理方法,每个消费点具有至少一个与配电网耦合的设备,所述至少一个设备可控地消费能源,与每个设备耦合的网点用于检测和控制传输到所述设备的能源,包括向网点传输配电网的至少一个特征;以及通过网点控制作为所述至少一个特征的函数的供应到设备的能源。
3.从第一时间时期转移能源需求的方法,包括步骤测量由用户操作的控制设备的能源使用量,控制设备具有已知的额定功率;在第一时间时期内切断控制设备的能源;以及根据第一时间时期、计量能源使用量以及已知电力需求,以实际能源节约量为基础,向用户提供一个折扣。
4.用于通过与用户的相互作用来控制加热和/或冷却系统的调温器设备,通过配电网向加热和/或冷却系统供应能源,包括用于接收用户输入的控制面板;与控制面板耦合向用户提供可视信息的显示设备,调温器设备适合接收正被供应能源的特征并将上述特征在显示设备上显示。
5.如权利要求4所述的调温器设备,其中所述特征与能源的可用性相关。
6.如权利要求4所述的调温器设备,其中所述特征与能源的成本相关。
7.如权利要求4所述的调温器设备,其中所述能源是电能。
8.如权利要求4所述的调温器设备,其中所述能源以燃料的形式。
9.如权利要求4所述的调温器设备,还包括检测湿度的湿度传感器、适合于允许用户设定温度设定点的控制面板,该调温器设备接收来自传感器的湿度和温度设定点以及响应地决定有效设定点。
10.一种将能源从配电网供给一个或多个消费点的管理方法,每个消费点具有至少一个与配电网耦合的设备,所述至少一个设备可控地消费能源,与每个设备耦合的网点用于检测和控制传输到所述设备的能源,包括向网点传输配电网的至少一个特征;以及通过网点控制作为所述至少一个特征的函数的供应到设备的能源。
全文摘要
一种从配送网(1.02)到一个或多个消费点(1.04)的能源供给管理系统和方法。每个消费点至少具有一个连接该配送网的设备(1.08)。该至少一个设备可控地消费能源。该系统包括一个网点(1.10)和一个控制系统。该网点连接至少一个用于检测和控制该系统的设备(1.06)。控制系统(1.12)连接网点和配送网,用于给该网点提供该配送网的至少一个特征,该网点根据该至少一个特征控制给该设备的能源供应。
文档编号G06Q10/00GK1656661SQ03812099
公开日2005年8月17日 申请日期2003年3月28日 优先权日2002年3月28日
发明者詹姆斯·H·特纳, 戴维·皮奇, 约瑟夫·博德特, 小乔治·E·洛米勒, 罗恩·施特里希, 格雷戈里·A·埃勒斯 申请人:罗伯绍控制器公司