专利名称:表面流动控制阀和筛管的制作方法
技术领域:
本发明涉及一种用于控制从含烃地层流入烃类流体生产井的生产油管的流体的流动的可调井下筛管组件。
本发明还涉及一种烃类流体生产井,其装配有一个或多个井下筛管组件。
背景技术:
排出由井筒流体采出的固体颗粒的完井技术在砾石充填领域是公知的。
在构建伸入地层的井筒的实际工作中通常需要在井筒内布置钢套管或其它管道。在一些井筒结构中,所述套管被套管与井筒之间的环空内的波特兰(portland)水泥固结在井筒内。所述套管可被布置在穿过所遇到的地下产层或多组地层的深度处。以前,完井指的是所熟知的完井,如裸眼完井,因此,套管和水泥穿过或经过产层深度的完井对熟悉例如套管井的完井的人来说是公知的。无论是裸眼完井还是套管完井,将穿过产层深度的砂筛、割缝衬管或者在地面预穿孔的管子设置在第二连续管子上的井下套管内是完井领域常用的做法,所述的第二连续管子在生产油管领域是公知的。
所述的生产油管被设置在套管内部,所述的套管从地面伸入到接近产层的深度。常常需要在生产油管的端部设置一个封隔器以迫使井筒流体向上进入到油管并避免流体上流入套管。因而,所述的生产油管为一可移走的管子,一般情况下,其在井内连接起来的长度为40英尺(约12m),但是其可作为连续油管柱而进行设置,这在油气工业被看作连续管柱是公知的。在生产油管内设置各种设备是常用的做法,以允许进行井筒流体控制。利用电力管和液压管在地面控制这些设备也是很常用的,所述的电力管和液压管与生产油管同时设置并连接到生产油管的外径上。这些液压管对于熟悉完井控制线的人来说是公知的。
在套管完井中,常常在穿过产层的套管固封之后在井筒内设置射孔弹并进行射孔,穿过套管和水泥并进入产层的射孔孔眼用于产生使流体流入井筒的路径。
在许多井中,无论是套管完井还是裸眼完井,不需要的地层颗粒会随着生产流体进入井中。这些固体常常是不需要的,多种在生产时阻止这些颗粒进入所述井同时生产流体的方法在文献中被广泛称为防砂。一种比较熟悉的防止固体流动的方法为砾石充填。
所述的砾石充填是通过将已知尺寸的砂石设置在穿过产层的井中以产生过滤介质来完成的,从而阻止或降低固体物质从地层流入井中,所述的砂石通常为砾石。利用所公知的井下筛管阻止所述的砾石进入井中。所述的井下筛管被设计成能够将特定尺寸的砂石(通称为砾石)保持在套管与构成过滤介质的筛管之外的井筒之间的环形空间内的合适位置处。
目前设置砾石充填的方法需要从地面将筛管布置在井内管柱上,直到所述筛管处于产层的深度为止。在这一深度上,通过泵送或循环和其他的方法将砂石放置在筛管周围并布置在筛管周围。一旦将所述砂石放置在了筛管的周围,则使管柱同筛管分离并将其从井中取出。之后,将带有封隔器的生产油管、控制线、滑动套筒和封隔器设置在筛管上方的井内。因此,以本工业所公知的方法使筛管同生产管柱分离。
目前制作井下筛管的做法是将绕丝焊接在平行于筛管轴线的杆上,所述的杆围绕在中心管周围,所述的中心管在筛管长度方向上延伸并带有穿过中心管的孔眼。这一中心管构成了筛管的构架,绕丝和焊接的杆连接到中心管上。因此,一般公知的筛管包括螺旋缠绕在筛管圆周上的绕丝,所述的绕丝连接在焊接的杆上,所述焊接的杆连接在中心管的外径上。在防砂筛管的其它设计中,所述的筛管由烧结材料制成,所述的烧结材料布置在绕丝之间或在某些情况下烧结材料布置在绕丝的外部。在所有情况下,所述的筛管具有内中心管,该内中心管带有孔眼或者其它几何穿透结构以使流体流入筛管内径。
可改变设置在井内的井下筛管长度以适应产层的深度和厚度。为了适应筛管的布置,它们分节下入并在地面上连接起来以与产层的厚度匹配。
在许多井中,一口共同的井筒穿过多个产层,这些产层被射开或裸眼以允许同时开采多个不同深度的地层,使地层流体进入井筒并沿着生产套管向上。在这些多产层的井中,地壳中不同的地层常常被岩石分隔开,常常由于该岩石较低的渗透率和孔隙度而使其不具有可开采的流体。根据目前的技术,这些不同的产层被同时完成并且其中的流体从共同的生产油管流到地面。常常出现这样的情况,一个产层生产出较少的流体或者生产出不需要的流体,或者由于资源管理的原因,很可能需要这些不同的产层以不同产量或不同的时间进行开采。在砾石充填的井中,同时开采多个产层的井中关闭一个地层的生产的方法需要本领域所公知的机械油井调节技术。这些调节技术可包括利用钢丝绳和钻井方法、提升生产油管、控制线、电缆、封隔器、套筒和其它设置在井内的地下设备来进行挤水泥和设置桥塞。上述的现有技术需要利用管子、钢丝绳对油井进行机械调节或者向井内泵入化学物质,以影响进入并穿过筛管的流体的流动。
美国专利US5,447,201披露了一种用于油井或气井中的可调流体流入组件,其中,来自多个环形流入区的流体的流动受到多个环形盘式阀的控制,所述的阀设置在每一流入区的下游端与穿过其中的生产油管之间。
已知组件的缺陷为所有进入环形流入区的流体需要通过环形盘式阀排出,因此在每一阀内流体的流速较高,从而会使所述阀产生快速磨损。本发明的目的在于减轻已知井筒流入控制组件的这一缺陷和其它缺陷,以便可关闭所述产层或通过非干预方法从地面减少所述产层生产的流体。
美国专利US6,397,949披露了一种在完井组件中使用的压力伺服阀。所述的阀通过压力在三种状态之间进行工作。在第一种状态中,所述的阀处于锁闭状态。在第二状态中,所述的阀保持关闭而未被锁定。在第三种状态中,所述的阀处于打开状态。此外,该专利还披露了一种在完井作业中安装和操作三压力伺服阀的方法。一旦该阀处于打开状态,则需要机械干预来使其关闭。
GB2,325,949A中披露了一种井下筛管组件,其具有传感器和多个阀以控制从井筒的不同部分流入筛管的流动。
此外,市场上目前有模块化的流动探测和流动调节系统。常规的流动探测和流动控制技术是模块化的并被设置在产层内,或在将井下筛管安装到井内后被设置在井下筛管内。通常,由于现有的模块化系统的物理尺寸和流动因素,其可对生产井或注入井产生不当的限制,尤其是在将其设置在常规的井下筛管内时。另外,现有的系统不能理想地用于探测特定井的流动现象,而整体式筛管系统则可进行可靠的探测、测试、鉴定和流动控制。
发明内容
在一个实施例中,本发明结合了具有流动探测/调节设备的筛管。通过ID和流动调节设备的净总长度使所述的结合更多而使流动设备对井下流动的影响最小。此外,在一些实施例中,本发明在所要探测、鉴定、测试或控制的介质附近设置了必要的探测、鉴定和测试设备。在一些实施例中,本发明允许对具有多个筛管的系统内的每一筛管组件进行检测和控制。此外,在一些实施例中,本发明提供了布置合成环空流动控制设备的方法,所述设备控制区域的流动调节、探测、测试、鉴定、隔离和增产。
在一些实施例中,本发明适用于包括流动探测、流动鉴定、测试、流动调节和流动控制的井下筛管。在一些实施例中,本发明包括合成的流动,也即这些设备合成在井下筛管组件中。所述的设备既具有主动的特征也具有被动的特征。所述的探测、鉴定和测试设备可向或可从离散点(单点)类型的探测网络发送或接收数据,和/或向和/或从分布类型的探测网络发送和/或接收数据,所述的探测网络为设置在整个井下筛管内的接收器、探测器、光纤等。本发明可调节和控制(油、水、气和诸如砂子或地层固体的固体,或它们的混合物)流动,无论是向内流动(开采)还是向外流动(注入)。在一些实施例中,本发明可调节各种变化流量,从全“开”到全“闭”,特别是部分调节如“堵塞”或“阻塞”时的流动。调节流动的一种方法包括在筛管中心管的内部或外部的控制阀,以通过液压或电致动来控制流动。通过筛管的流动控制可使用沿着筛管的中心管设置在分布的或离散的点上的其它可控的阀或者节流嘴。本发明包含了增加选择性的环空流动限制器的可选择的方法,所述限制器与防砂筛管组件组合为一体,并且在需要的时候作为防砂筛管组件和防砂过程的整体部分使用,并增强和协助流动调节和控制,其处于井下筛管外壳的外部环空内。
通过安装可代替常规的实心管柱筛管肋片的管状筛管肋片而为电力、光纤或液压提供管道,则可使用数据发送和控制信号。所述的中空管状肋片还可具有液压通道,以选择用于化学物质注入、增产或其它流动目的的流体流动通道。
所述的防砂筛管可配置有一个或多个传感器,所述传感器用于监测物理参数,如流过筛管的流体的压力、温度、速度和/或组分,执行机构用于使套筒响应于由至少一个设置在筛管系统内的传感器的信号在其第一位置和第二位置之间移动。
在一些实施例中,本发明还涉及烃类流体开采井系统,其包括烃类流体流入区域,该区域设置有多个轴向间隔开的带阀可调井下筛管组件,所述组件通过无孔管段而相互连接,可膨胀的封隔器可设置在所述无孔管段上,所述封隔器在无孔管段的外表面与井筒的内表面之间的环空内提供流体密封。在这种情况下,可优选的方案是,每一可调井下筛管组件的阀可独立于其它一个阀或多个阀而被打开或关闭。
在一些实施例中,本发明包括一种将井下筛管设置在井内的方法,以便可通过设置在井内并连接到井下筛管系统上的地下设备控制流入井内的产层流体。
在一些实施例中,本发明提供一种允许井下筛管系统与生产油管一同设置在井筒内并控制从地面连续延伸到所述防砂筛管系统深度的管的装置。因此,本发明在一些实施例中启示了使用从地面到产层深度使用管和/或电缆的连续连接,其中,在砾石充填作业之前、期间和之后将所述的管连接到防砂筛管系统,这些管和筛管系统不必同地面布置的生产油管分离。控制管的一端可延伸到地面,以便能够将通信信号和/或能量传送至设置防砂筛管的地下深度处。
之后,本发明允许地下设备和传感器连接到防砂筛管系统,以便读取数据,并向井下系统输送信号和能量。
在一些实施例中,本发明使得防砂筛管能够减少或关闭流体的流动,确定井下地层的流动特征和油藏性质,并在同时完成的一口共同井筒中分离不同的产层。
在一些实施例中,利用一条控制线而不需使用机械干预,本发明的防砂筛管就能提供每一筛管组件处的流入和流出的地面控制。这使得开采者能够控制注入剖面、不用同心管柱选择性地完井、进行井下气举、并减少井下干预,即关闭不希望出现的透砂或透水层段。
根据本发明的一个方面,其提供一种可调井下筛管组件,其包括可连接到生产油管的管柱,其中所述的管柱包括从管柱的内径到管柱外径的孔眼;连接到管柱孔眼附近的管柱上的筛管;连接到管柱的阀,所述阀控制穿过管柱孔眼流体的流动;机械地连接到阀的阀马达,所述的阀马达打开和关闭所述的阀;以及通信性地连接到阀马达的阀控制器,所述的阀控制器按照阀的状态指令阀马达。
通过下面对非限制性的实施例的描述并结合附图可更好地理解本发明,其中多幅图中的每一幅的相似部件用相同的附图标记表示,下面对附图做简要描述图1为本发明的可调防砂筛管组件的侧视图,所述筛管组件具有上部筛管、阀式筛管和下部筛管。
图2为具有上部筛管、阀式筛管和下部筛管的可调防砂筛管组件的剖面侧视图,其中阀式筛管内部具有电子容器和阀容器。
图3A为用于本发明的筛管的剖面侧视图。
图3B和图3C为图3A所示的防砂筛管的剖面端部视图。
图4A为具有连接到容器端部的上部和下部筛管的阀容器的剖面侧视图。
图4B为图4A中阀容器和下部筛管的端部视图。
图5A为下部筛管、上部阀过渡段以及部分电子容器外壳的剖面侧视图。
图5B为电子容器外壳的剖面端部侧视图。
图5C为部分电子容器外壳、中部阀过渡段、阀和阀式筛管的剖面侧视图。
图5D为具有中心管和穿过其中的阀的阀容器的剖面端部视图。
图5E为阀容器、下部阀过渡段和下部筛管的剖面侧视图。
图6A和6B分别为处于拆开和组装好状态的上部阀过渡段和部分电子容器外壳的视图。
图7A和图7B分别为处于拆开和组装好状态的电子容器外壳、中部阀过渡段、具有阀内部的阀容器、下部阀过渡段和下部筛管的视图。
图8为具有处于打开状态的阀的阀容器的剖面侧视图。
图9为图8所示的阀容器的剖面侧视图,其中所述阀容器在井筒内进行了砾石充填。
图10为图8和图9所示的阀容器的剖面侧视图,其中表示出了流体的流动路径。
图11为图8至图10所示的阀容器的剖面侧视图,其中所述的阀处于关闭状态。
图12为设置在钻穿油气层的井筒内的开采系统的剖面侧视图。所述的开采系统具有两个串连的可调筛管组件。
图13为设置在钻入地层的井筒内的开采系统的剖面侧视图。所述的开采系统具有三个串连的可调筛管组件,各组件之间有封隔器。
图14为设置在钻入地层的井筒内的开采系统的剖面侧视图。所述的开采系统具有其间布置有封隔器的三个串连的可调筛管组件。
所述的附图仅仅示出了本发明典型的实施例,因此不能将其看作是对本发明保护范围的限制,所以本发明允许具有其它等效的实施例。
具体实施例方式
参看图1,其中示出了可调井下防砂筛管5的侧视图。防砂筛管5由三部分构成,即上部筛管6、下部筛管7和阀式筛管8。这些筛管的每一部分可按照本领域技术人员所公知的方式进行构造。例如,如图3B所示,所述的筛管可包括中心管10、纵向肋片11和筛管12。在这一特定的发明中,中心管10没有可使流体在中心管的外部与内部之间流动的孔眼。在这一方面,所述的中心管10不同于本领域所公知的生产筛管。纵向肋片11在纵向方向上围绕中心管10的外部设置。之后,筛管12卷绕在纵向肋片11上以便在中心管10、相邻的纵向肋片11和筛管12之间限定通道13。所述的通道13为中心管和筛管之间的部分,流体穿过该通道而在经过筛管部分之后流入阀。通过控制穿过筛管下游的筛管部分的流体的流动,所述筛管的整个表面区域可用于筛管的整个操作范围。通过堵塞筛管内的部分孔眼而限制穿过筛管的流动,防砂筛管可使穿过所述筛管其余部分的流体在流动面积受到限制时产生较高的速度。流体高速度穿过所述筛管和相邻于筛管的这些部分的地层是不理想的,并会增加流过筛管的流体的携砂量。因此,本发明可降低流体穿过筛管的流动,从而降低穿过筛管的速度,其可减少水的锥进和携带的固体。在本发明的一个实施例中,穿过筛管部分的压降大于穿过筛管部分与阀之间部分的压降,从而流体可更均匀地流过整个筛管部分区域,以阻止更多地流过最靠近阀的筛管部分。
参看图2,其中示出了可调防砂筛管5的简略的剖面侧视图。中心管10在系统的整个长度上延伸。上部筛管6和下部筛管7同心地连接在中心管10周围。阀式筛管8在中心管的中部同心地连接在中心管10周围。阀式筛管8的外径比上部筛管6和下部筛管7的外径大。电子容器20和阀30设置在中心管10与阀式筛管8之间的环空内。通过将阀30设置在组件的中部并使用变直径的筛管以覆盖管柱和部分容器,这种设计使得中心管10的总长度最小。
再次参看图1,中心管10在组件的整个长度上延伸。上部筛管过渡段15使上部筛管6的端部连接到中心管10上。上部阀过渡段16设置在上部筛管6的另一端与容器外壳21的上端之间。容器外壳21连接到中部阀过渡段17上,其依次又连接到阀式筛管段8的上端。下部阀过渡段18连接在阀式筛管8与下部筛管7之间。下部筛管过渡段19连接在下部筛管7与中心管10之间。
根据本发明的一个实施例,上部筛管6和下部筛管7的直径可为3.5英寸并且其长度约为10英尺。阀式筛管8的直径可约为5英寸并且长度约为4英尺。容器外壳21的外径接近阀式筛管8的外径并且其长度约为2英尺。在这一实施例中,中心管可约30英尺长。本领域普通技术人员所熟知的任意筛管可被用于本发明。例如,如图3A至图3C所示,绕丝筛管12可缠绕在纵向肋片11上,所述纵向肋片位于中心管10的外部。可选择地是,也可使用割缝中心管。
参看图4A和4B,其中分别示出了可调防砂筛管的侧视图和端部视图。中心管10在组件的长度方向上延伸。上部筛管6和下部筛管7连接在中心管上。所述的组件也可具有阀容器30,其内具有阀31。阀31位于中心管10与阀容器外壳30之间的腔内。
图5A示出了上部筛管6和上部阀过渡段16的剖面侧视图。上部阀过渡段16构成了密封件,其将上部筛管6连接到电子容器外壳21。上部阀过渡段16的内径大于中心管10的外径,以便在它们之间限定过渡通道22。电缆23通过电连接器24连接到上部阀过渡段16。
参看图5B,其示出了电子容器外壳21的剖面端部视图。电子容器外壳21具有实心结构,其上带有通孔。中心管10延伸穿过其上的最大孔。真空腔25轴向穿过电子容器外壳21。真空腔25为一气密封真空腔,电子部件安置在该真空腔内。管道26也轴向地穿过容器外壳21。与电子容器外壳匹配的上部阀过渡段16的表面略微为锥形以便限定使流体穿过上部筛管6的汇集容器。特别是,流体穿过绕丝筛管6流动,进入纵向肋片11之间的通道13,然后进入过渡通道22,直到汇集在上部阀过渡段16与电子容器外壳21之间的汇集容器为止。汇集在汇集容器中的流体通过管道26穿过电子容器外壳21。
参看图5C,其中示出了中部阀过渡段17的剖面侧视图。中部阀过渡段17一端连接到电子容器外壳21上,另一端连接到阀式筛管8上。中部阀过渡端17包括电连接器27。电缆(未示出)在上部阀过渡段16中的电连接器24与中部阀过渡段17的电连接器27之间延伸。阀马达组件32通过柱塞28连接到中部阀过渡段17上,其中所述柱塞28与电连接器27电连接。管道26(未示出)也在纵向上延伸穿过中部阀过渡段17。
图5D示出了阀容器30的剖面端部视图。中心管10轴向地延伸穿过阀容器30。阀式筛管8限定了外圆周。阀31也轴向地在中心管10与阀式筛管8之间的空间内延伸。电缆33也轴向地延伸穿过阀容器30。
图5E为下部阀过渡段18和下部筛管过渡段19的剖面侧视图。如其它部件一样,中心管10也延伸穿过这部分组件。下部筛管7连接到中心管的外径上,并且阀容器30的外部由阀式筛管8限定。在阀管30内,基孔34穿过中心管10的壁。孔口挡块35密封地连接到中心管10的外径上以便包围住基孔34。阀31(如图5D所示)可螺纹地连接到孔口挡块35上。因此,孔口挡块35在阀31与中心管10的内径之间提供了一流体通道。
下部筛管7外部的流体流过下部筛管7,再流过纵向肋片之间的通道13并流入下部阀过渡段18与中心管10之间的过渡通道22而流入中心管10的内径。流体从过渡通道22流入阀容器30的内部,在此其可与阀31连通。如果阀31处于打开状态,流体可流过阀31流入孔口挡块35,穿过基孔34并进入中心管10的内径。相似地是,阀式筛管8外部的流体可流过阀式筛管8,并进入阀容器30的内部而与中心管的内径连通,在阀容器的内部,流体直接与阀31连通。因此在需要的时候,可通过孔口挡块35而使流体沿着通道进入中心管10。
图6A和6B分别示出了处于拆开和组装好状态的上部阀过渡段16的视图。一旦电子容器外壳21连接到中心管10上,则上部阀过渡段26与容器外壳21连接。在上部阀过渡段16连接之后,上部筛管6被固定到中心管10上,并且电缆23被插入电连接器24。
参看图7A和7B,它们分别示出了处于拆开和组装好状态的阀容器30的视图。阀31可螺纹地连接到孔口挡块35上。此后,中部阀过渡段17在阀31的方向上滑动以在阀马达组件32的远端与柱塞28连接,使中部阀过渡段17处于合适的位置,电子容器壳体21朝其滑动并与中部阀过渡段17连接。如前所述,管道26延伸穿过容器外壳21和中部阀过渡段17。在本发明的实施例中,多个防砂筛管5依次连接在一起,并且电缆33也连接到中部阀过渡段17上。这一电缆33从阀容器30的一端延伸到另一端,在此,其穿过下部阀过渡段18内的孔眼而露出。如前所述,阀容器30具有阀式筛管8,其可包括绕丝筛管、割缝中心管或本领域技术人员所熟知的任意其它筛管组件。
参看图8,其中示出了阀容器30的剖面侧视图,其中,防砂筛管组件设置在井筒内。阀式筛管8被部分地剖开以便显示出阀31的内部。阀31具有带有多个管孔37的阀管36,所述的管孔37穿过阀管36的壁。阀31还具有阀套38,其与阀管36的外径同轴心。阀套38具有穿过阀套38的壁的套筒孔39。在图8中,阀31处于打开状态,其中阀套38相对于阀管36而设置以便套筒孔39与管孔37对齐。在打开状态,阀31外部的流体可自由地穿过套筒孔39和管孔37以进入阀管36的内径。在图8中,阀马达组件32用于重新调整阀31。所示的纤维光缆40处于阀式筛管8的内部。
参看图9,图中显示出在图8所示的防砂筛管5的阀容器30与地层42之间的环空内存在砾石充填41。随着阀31处于打开状态,防砂筛管5可通过将颗粒浆流入井筒环空并通过上部筛管6、下部筛管7和阀式筛管8将颗粒悬浮液返回而使砾石堆积起来。
图10为图8和图9所示的阀容器的剖面侧视图。如箭头43所示,流体从地层流出并穿过阀式筛管8而进入阀容器30。一旦流体进入了阀式筛管8的内径,流体则在轴向上流向阀31,如箭头44所示。之后,地层流体穿过套筒孔39和管孔37而进入打开的阀31,如箭头45所示。
图11示出了图8-10所示的阀容器。然而在这一视图中,阀31被示为处于关闭状态。特别是,阀套38相对于阀管36轴向移动。在这一位置,套筒孔39不再与管孔37对齐。因而,阀套38的壁关闭管孔37以便流体不能流过阀31。
在阀31的一个可选择的实施例中,阀套38不包括套筒孔。相反,阀套38具均匀的实心环形壁。如前所述,为了关闭所述的阀,所述的滑套仅仅相对于阀管滑动或移动以便滑套覆盖住管孔37。为了打开阀31,阀套38仅仅移动一段足够的距离,直至整个阀套离开管孔37为止。
当阀31关闭时,砾石充填防砂筛管完全隔离地层。地层流体不再能够自由地穿过防砂筛管并进入中心管以进行生产。此外,沿着井筒向上的环形流动被防砂筛管与地层之间的环空内的砾石充填严重地阻止。
参看图12,其中示出了井筒的剖面侧视图。所示的井筒被钻入气层46和油层47。生产油管48配置有上部封隔器49、上部防砂筛管组件51、中部封隔器50和下部防砂筛管组件52。通过关闭一部分筛管,可对一层进行开采而不需使用同心管柱。如果上部层为气层,还可使用防砂筛管组件进行天然气举升应用。在这一应用中,防砂筛管组件的监测能力变得尤其重要。因而,由于通过控制线53可独立地打开和关闭上部和下部防砂筛管组件51和52,操作员可选择对气层46、油层47进行开采和对两个层同时进行开采,或者对两个层都不进行开采。
图13示出了钻入地层54的井筒的侧视图。生产油管48配置有上部封隔器49、上部筛管组件51、中部封隔器50、中部筛管组件55、另一中部封隔器50和下部筛管组件52。图13所示的系统示出了一种操作员可控制注水位置的结构。例如,操作员可关闭防砂筛管组件51和52并打开防砂筛管组件55。之后,操作员可将水向下泵入生产油管48以便向防砂筛管组件55附近的地层注射和注入水。因为可根据操作员的控制打开和关闭防砂筛管组件51、55和52,所以可仅仅通过按照需要重新打开和关闭防砂筛管组件就可将水注入单个防砂筛管组件附近的地层。
图14示出了钻入地层的井筒的侧视图,其中所述的井筒包括类似于图13所示的生产系统。然而在这一图示的实施例中,在下部防砂筛管52附近出现了防砂失败。在对于特定部分出现防砂失败的生产井中,操作员可使用防砂筛管组件关闭出现问题的部分并继续进行生产而不用继续干预。特别是,如图14所示,在上部筛管组件51和中部筛管组件55保持打开时,操作员可关闭下部筛管组件52。因而,在由于防砂失败而关闭下部筛管组件52时,通过防砂筛管组件51和55仍能对地层进行开采。
根据本发明的可调井下筛管组件可包括电能、液压能或光能装置的任意合适的组合,其可向所述组件传递能量并从所述组件发送数据。如果使用液压能,可利用液压从地面对阀31进行控制,所述的液压通过液压管线从地面进行输送。如果使用电能,可通过电缆利用电力在地面对阀31进行控制。如果使用光能,可通过纤维光缆在地面供应的光能在地面对阀31进行控制。压力、温度、速度、组分和/或其它传感器可布置在防砂筛管组件内或其周围以监测由套筒位置的变化引起的流动、流体和压力的变化,并且所述的传感器可通过连接到筛管组件的一根或多根光纤和/或电信号通道向地面传送数据。如本领域技术人员所熟知的一样,可通过电光、电磁和/或声能和信号传送方法获得对筛管的通信和能量供给。因此,本发明给出了在本发明中使用多种能量和通信方法以与传感器进行通信和向地下设备供给能量的启示。
虽然在附图和前面的描述中对本发明进行了详尽地展示和描述,但是其可被认为是示意性的并不是限制性的,可以理解其仅仅给出和描述了示意性的实施例,并且来自本发明精神的所有改变和变化都需要得到保护。
权利要求
1.一种可调井下筛管组件,包括连接到生产油管的管柱,所述的管柱包括从管柱内径延伸至管柱外径的孔眼;连接到管柱孔眼相邻的管柱上的筛管;连接到所述管柱的阀,所述的阀控制穿过所述管柱孔眼的流体的流动;机械地连接到所述阀的阀马达,所述的阀马达打开和关闭所述的阀,以及通信地连接到所述阀马达的阀控制器,所述的阀控制器按照阀的状态指令所述的阀马达。
2.如权利要求1所述的井下筛管组件,其特征在于所述的阀控制器通过利用电缆的通信装置连接到所述的阀。
3.如权利要求1所述的井下筛管组件,其特征在于所述的阀控制器通过利用光纤的通信装置连接到所述的阀。
4.如权利要求1所述的井下筛管组件,其特征在于所述的阀控制器通过利用液压缆的通信装置连接到所述的阀。
5.如权利要求1所述的井下筛管组件,其特征在于所述的阀控制器通过利用气动缆的通信装置连接到所述的阀。
6.如权利要求1所述的井下筛组件,其特征在于还包括可通信地连接到井下筛管的数据传感器。
7.如权利要求1所述的井下筛管组件,其特征在于还包括可通信地连接到井下筛管的数据发送器。
8.如权利要求1所述的井下筛管组件,其特征在于还包括可通信地连接到井下筛管的至少一个数据记录器。
9.一种控制穿过地层和地层内管柱的流体流动的方法,所述的方法包括步骤在地层内设置一根管柱,所述的管柱包括至少一个从管柱外径延伸至管柱内径的孔眼;将筛管连接到相邻于至少一个管柱孔眼的管柱上;向所述的管柱提供一个阀,所述的阀可有效地控制穿过至少一个管柱孔眼的液体流动;以及提供一个可有效调节阀的状态的控制器。
10.如权利要求9所述的方法,其特征在于所述的控制器通过电缆可操作地与所述的阀连接。
11.如权利要求9所述的方法,其特征在于所述的控制器通过光纤可操作地与所述的阀连接。
12.如权利要求9所述的方法,其特征在于所述的控制器通过液压缆可操作地与所述的阀连接。
13.如权利要求9所述的方法,其特征在于所述的控制器通过气动缆可操作地与所述的阀连接。
14.如权利要求9所述的方法,其特征在于还包括提供一个通信地连接到井下筛管的数据传感器的步骤。
15.如权利要求9所述的方法,其特征在于还包括提供一个通信地连接到井下筛管的数据发送器的步骤。
16.如权利要求9所述的方法,其特征在于还包括提供一个通信地连接到井下筛管的数据记录器的步骤。
17.一种可调井下筛管,其包括限定用于连通到生产油管的通道的中心管;可有效地从流过筛管段的流体中排出砂石的筛管段,所述的筛管段基本上围绕在中心管的至少部分长度上;所述筛管段与中心管之间的容积,已经流过筛管段的流体可穿过所述容积;在筛管段和中心管之间的容积与中心管内的容积之间可有效提供可控连通的至少一个阀;可有效改变阀的状态的至少一个阀马达;可有效确定筛管段附近的流体的物理状态并提供显示所述物理状态的信号的至少一个传感器;以及根据来自传感器的信号可有效地指令阀马达改变阀的状态的控制器。
18.如权利要求17所述的井下筛管,其特征在于所述的传感器探测穿过筛管段的压差。
19.如权利要求17所述的井下筛管,其特征在于所述的传感器探测水的存在。
20.如权利要求17所述的井下筛管,其特征在于所述的传感器探测流过井下筛管的流体的温度。
21.如权利要求17所述的井下筛管,其特征在于所述的传感器探测流过井下筛管的流体的相态。
22.如权利要求17所述的井下筛管,其特征在于所述的筛管段位于阀的上方和下方,并且所述的流过阀上方的筛管段和阀下方的筛管段的流体向着所述的阀流过中心管与筛管段之间的容积。
23.如权利要求22所述的井下筛管,其特征在于阀的上方筛管段和阀下方的筛管段具有基本相同的长度。
24.如权利要求17所述的井下筛管,其特征在于使流体流过筛管段的压降大于从筛管段穿过中心管与筛管段之间的容积流向阀的压降。
25.如权利要求17所述的井下筛管,其特征在于所述的传感器利用无线通信与控制器进行通信。
26.如权利要求17所述的井下筛管,其特征在于所述的控制器利用无线通信与所述的阀通信。
27.如权利要求17所述的井下筛管,其特征在于所述的阀由电源进行供电并且所述的传感器利用随时间变化的电信号与所述的阀通信,所述的信号用于使电源向所述的阀供电。
全文摘要
一种可调井下筛管组件(5),其包括连接到生产油管的管柱(10),所述的管柱包括从管柱内径伸到管柱外径的孔眼;连接到管柱上且与管柱孔眼相邻的筛管;连接到所述管柱的阀(31),所述的阀控制穿过所述管柱孔眼的流体的流动;机械地连接到所述阀的阀马达(32),所述的阀马达打开和关闭所述的阀,以及通信地连接到所述阀马达的阀控制器,所述的阀控制器按照阀的状态指令所述的阀马达。
文档编号G06F19/00GK1768190SQ200480008421
公开日2006年5月3日 申请日期2004年3月26日 优先权日2003年3月28日
发明者菲尔·费尔, 保罗·T·胡卡比, 蒂姆·迈克派克, 爱德华·E·舒米拉克二世, 戴维·R·史密斯, 乔治·黄国启 申请人:国际壳牌研究有限公司