修复混凝土裂缝表面图像的智能化处理方法

文档序号:6639402阅读:783来源:国知局
专利名称:修复混凝土裂缝表面图像的智能化处理方法
技术领域
本发明涉及的是修复混凝土裂缝表面图像的智能化处理方法,属于土木建筑工程与计算机科学与工程相结合的技术领域。
背景技术
对于电沉积效果的评价指标——表面覆盖率的测定,由于沉积物分布极不均匀,采用一般的方法将带来较大的误差,如利用Photoshop实现图像分割,其实现分割的操作繁复,自动化程度不高,“扩大选取”“选取相似”尺度不易把握以及色彩范围无法准确定位,带有很强的主观性,导致分割的精度很难准确控制,从而影响表面覆盖率计算的精确性;而对于自定义阈值的二值化图像分割法,如MATLAB软件中其二值化阈值参数是人为设定的0~1之间的数值,很难找到理想的阈值,也带有很强的主观性,影响图像分割的准确性,从而使表面覆盖率的计算精度很难准确控制。

发明内容
本发明的目的在于针对上述存在的缺陷,提出一种对修复混凝土裂缝表面图像的智能化处理方法。它具有图像分割精度高,计算稳定可靠,自动化程度高、计算速度快等特点。
本发明的目的是通过下列措施实现的
修复混凝土裂缝表面图像的智能化处理方法,其特征是它的操作步骤分一、图像采集拍摄经电化学沉积方法修复后带裂缝混凝土表面的数码照片,相机像数在300万以上,所述的修复混凝土裂缝的电化学沉积方法是采用ZnSO4或MgSO4、浓度0.05mol/L~0.25mol/L的溶液,浸泡带裂缝的混凝土,施加电流,混凝土表面的电流密度为0.25A/m2~1A/m2,对带裂缝的混凝土进行修复;二、图像分割调整图像的对比度,将对比度控制在20%~30%,拉大沉积物图像与混凝土表面图像的反差;采用最大类间方差阈值分割法,将直方图的某一阈值处理分割成两组,当被分成的两组的方差最大时,决定阈值,设图像的灰度值在m1至m2(-1<m1<m2<256,m1,m2为整数)之间,则这幅图像具有(m2-m1+1)个灰级,图像象素总数为N=图片长×图片宽(单位象素),灰度值为i(m1-1<i<m2+1)的象素个数为H(i),用k(m1-1<k<m2+1,k为整数)将图像象素分成两组A={m1~k},表示灰度值在m1~k之间的象素群和B={k+1~m2},表示灰度值在k+1~m2之间的象素群,则各组中的象素个数与图像总象素个数比值分别为PA=Σi=m1kH(i)N,PB=Σi=k+1m2H(i)N=1-PA]]>
两组象素的数学期望值(均值)分别为EA=Σi=m1kH(i)·iΣi=m1kH(i),EB=Σi=k+1m2H(i)·iΣi=k+1m2H(i)]]>两组间的方差值为σ2(k)=PA·PB(EA-EB)2从m1至m2之间变换k值,分别计算以上方差值,取使得方差值最大时的k值作为图像二值化分割阈值T,阈值确定以后,便可对图像进行二值化处理,判断图像上每个象素的灰度值,灰度值不小于阈值T的象素被赋予白色,灰度值小于阈值T的象素被赋为黑色,形成一幅二值化图像;三、表面覆盖率的计算设置背景色(灰度值i),统计分割后图像中灰度为背景色(即灰度值为i)的象素个数H(i),得出其分布概率为(i)=H(i)N]]>(N为图像象素总数,N=图片长×图片宽(单位象素),则沉积物表面覆盖率为1-F(i),对于二值化分割后的黑白图像,黑色为背景色,灰度值为0,表面覆盖率按下式计算 本发明的有益效果由于最大类间方差阈值分割法根据图像自动确定阈值,是一种面向均匀性的算法,依据均匀性度量得到最佳性能,所以图像分割精度较高,计算稳定可靠,可有效的来测定表面覆盖率,评价电沉积效果,并有望建立表面覆盖率与混凝土耐久性提高之间的关系,以此来控制电沉积处理的时间。本发明提供的表面覆盖率测定方法还可以用于电化学沉积方法修复混凝土裂缝中裂缝处横断面覆盖率、纳米镀层中纳米颗粒含量的确定以及类似图像的处理。
本发明提供的表面覆盖率测定方法图像分割精度较高,计算稳定可靠,自动化程度高、计算速度也较快。


图1是经电化学沉积方法修复后带裂缝混凝土表面的图像图2是图像分割过程中的对原始图像剪裁后的图像图3是图像对比度调整后的图像图4是经二值化后的图像图5是本发明的流程图具体实施方式
实施例一、图像采集电化学沉积方法采用MgSO4、浓度0.05mol/L的溶液,浸泡带裂缝的混凝土,施加电流,混凝土表面的电流密度为1A/m2,对混凝土裂缝进行修复,用像数在300万以上的数码相机对修复后带裂缝混凝土的表面拍摄,如图1所示;
二、图像分割对原始图像进行剪裁,除去混凝土表面不用于计算表面覆盖率的部分,如图2所示,然后调整图像的对比度,将对比度控制在20%~30%,拉大沉积物图像与混凝土表面图像的反差,如图3所示,采用最大类间方差阈值分割法,将直方图的某一阈值处理分割成两组,当被分成的两组的方差最大时,决定阈值,设图像的灰度值在m1至m2(-1<m1<m2<256,m1,m2为整数)之间,则这幅图像具有(m2-m1+1)个灰级,图像象素总数为N=图片长×图片宽(单位象素),灰度值为i(m1-1<i<m2+1)的象素个数为H(i),用k(m1-1<k<m2+1,k为整数)将图像象素分成两组A={m1~k},表示灰度值在m1~k之间的象素群和B={k+1~m2},表示灰度值在k+1~m2之间的象素群,则各组中的象素个数与图像总象素个数比值分别为PA=Σi=m1kH(i)N,PB=Σi=k+1m2H(i)N=1-PA]]>两组象素的数学期望值(均值)分别为EA=Σi=m1kH(i)·iΣi=m1kH(i),EB=Σi=k+1m2H(i)·iΣi=k+1m2H(i)]]>两组间的方差值为σ2(k)=PA·PB(EA-EB)2从m1至m2之间变换k值,分别计算以上方差值,取方差值最大的k值168,作为图像二值化分割阈值T,对图像进行二值化处理,判断图像上每个象素的灰度值,灰度值不小于阈值168的象素被赋予白色,灰度值小于阈值168的象素被赋为黑色,形成一幅二值化图像,如图4所示;三、表面覆盖率的计算设置背景色(灰度值i),统计分割后图像中灰度为背景色(即灰度值为i)的象素个数H(i),得出其分布概率为F(i)=H(i)N]]>(N为图像象素总数,N=图片长×图片宽(单位象素),则沉积物表面覆盖率为1-F(i),对于二值化分割后的黑白图像,黑色为背景色,灰度值为0,表面覆盖率按下式计算 最后选中沉积物计算出带裂缝混凝土表面覆盖率为64.57%。
权利要求
1.修复混凝土裂缝表面图像的智能化处理方法,其特征是它的操作步骤分一、图像采集拍摄经电化学沉积方法修复后带裂缝混凝土表面的数码照片,相机像数在300万以上,所述的修复混凝土裂缝的电化学沉积方法是采用ZnSO4或MgSO4、浓度0.05mol/L~0.25mol/L的溶液,浸泡带裂缝的混凝土,施加电流,混凝土表面的电流密度为0.25A/m2~1A/m2,对带裂缝的混凝土进行修复;二、图像分割调整图像的对比度,将对比度控制在20%~30%,拉大沉积物图像与混凝土表面图像的反差;采用最大类间方差阈值分割法,将直方图的某一阈值处理分割成两组,当被分成的两组的方差最大时,决定阈值,设图像的灰度值在m1至m2(-1<m1<m2<256,m1,m2为整数)之间,则这幅图像具有(m2-m1+1)个灰级,图像象素总数为N=图片长×图片宽(单位象素),灰度值为i(m1-1<i<m2+1)的象素个数为H(i),用k(m1-1<k<m2+1,k为整数)将图像象素分成两组A={m1~k},表示灰度值在m1~k之间的象素群和B={k+1~m2},表示灰度值在k+1~m2之间的象素群,则各组中的象素个数与图像总象素个数比值分别为PA=Σi=m1kH(i)N,PB=Σi=k+1m2H(i)N=1-PA]]>两组象素的数学期望值(均值)分别为EA=Σi=m1kH(i)·iΣi=m1kH(i),EB=Σi=k+1m2H(i)·iΣi=k+1m2H(i)]]>两组间的方差值为σ2(k)=PA·PB(EA-EB)2从m1至m2之间变换k值,分别计算以上方差值,取使得方差值最大时的k值作为图像二值化分割阈值T,阈值确定以后,便可对图像进行二值化处理,判断图像上每个象素的灰度值,灰度值不小于阈值T的象素被赋予白色,灰度值小于阈值T的象素被赋为黑色,形成一幅二值化图像;三、表面覆盖率的计算设置背景色(灰度值i),统计分割后图像中灰度为背景色(即灰度值为i)的象素个数H(i),得出其分布概率为F(i)=H(i)N]]>(N为图像象素总数,N=图片长×图片宽(单位象素),则沉积物表面覆盖率为1-F(i),对于二值化分割后的黑白图像,黑色为背景色,灰度值为0,表面覆盖率按下式计算
全文摘要
本发明涉及的是修复混凝土裂缝表面图像的智能化处理方法,它的操作步骤分图像采集、图像分割、表面覆盖率的计算;优点由于最大类间方差阈值分割法根据图像自动确定阈值,是一种面向均匀性的算法,依据均匀性度量得到最佳性能,所以图像分割精度较高,计算稳定可靠,自动化程度高、计算速度也较快,可有效的来测定表面覆盖率,评价电沉积效果,并有望建立表面覆盖率与混凝土耐久性提高之间的关系,以此来控制电沉积处理的时间。本发明还可以用于电化学沉积方法修复混凝土裂缝中裂缝处横断面覆盖率、纳米镀层中纳米颗粒含量的确定以及类似图像的处理。
文档编号G06K9/34GK1766588SQ20051009463
公开日2006年5月3日 申请日期2005年9月30日 优先权日2005年9月30日
发明者蒋林华, 储洪强 申请人:河海大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1