利用计算机进行定性分析和定量计算相结合的rp工艺选择方法

文档序号:6557850阅读:368来源:国知局
专利名称:利用计算机进行定性分析和定量计算相结合的rp工艺选择方法
技术领域
本发明属于先进制造技术领域,涉及快速原型(RP)、专家系统和模糊综合评判技术,特别涉及一种利用计算机进行定性分析和定量计算相结合的RP工艺选择方法。
背景技术
在新产品快速开发过程中,使用RP技术能够缩短产品开发的周期,降低生产制造成本。然而,只有根据不同用户的具体制造任务要求,选择出最适合的RP制作设备,RP技术的优势才能得以最充分的发挥。但是,由于RP设备和工艺种类繁多;每种RP设备和工艺都有其自身的特点和适用范围;RP与后续RT工艺组合的多样性。因此,对于大多数RP用户,根据其具体的任务要求,选择出适合的RP制作设备是一件特别困难的事情。
由于RP设备和工艺选择具有很现实的工程应用背景,国外学术界与工业界已联手进行这方面的许多研究工作,提出一些工艺选择的方法,并开发了部分原型系统。Ryder、Schmidt和Vanputte等早期采用“Benchmarking”的方法进行RP设备和工艺的选择,这种方法耗时长、成本高。美国Santa Clara大学的Hornberger率先开发了RP设备和工艺选择程序,这个程序主要是作为教育工具,提供RP设备和工艺选择基本信息。Campbell、Muller和Phillison等开发了基于关系数据库的RP设备和工艺选择系统。为了帮助用户选择最佳RP设备和材料的组合,Muller采用了“Benefit Value Analysis”的方法评估各种RP设备和材料的组合性能。Bibb、Masoof]和Bernard等使用专家系统进行RP设备和工艺的选择。芬兰的赫尔辛基大学和瑞典的IVF工业研究和开发公司分别开发了基于Web的“RP Selector”。目前开发的RP设备和工艺的选择系统大多是原型系统,仅仅考虑有限的RP设备和工艺方法和评价准则,这些系统的另一个缺陷就是没有考虑RP设备和工艺描述和判断所固有的模糊性和不确定性。另外,很少的研究工作是基于数学模型或综合采用定性和定量分析来进行RP制作设备的选择。
通过对RP制作设备和工艺具体特点的分析,影响RP设备和工艺选择的因素众多,例如需要制作的原型精度、表面质量、复杂程度、机械性能、物理性能、经济性能和生产效率等等。这些因素既有定性的又有定量的;不同的因素对RP制作设备的选择影响程度也不同;而且大多数因素具有模糊和不确定性;很多评价指标间既互相依赖又相互矛盾,而且各指标值的量纲、单位又往往不统一,既有成本类属性指标,又有效益类属性指标;各种RP制作设备在某一评价因素下的指标值的优劣又是相对的,无明确界限,存在模糊性,这就决定了不能直接以某一指标的大小来决定方案的优劣。因此,RP制作设备选择是一个多方案、多准则模糊决策问题。

发明内容
针对上述现有技术存在的缺陷或不足,本发明的目的在于,提供一种利用计算机进行定性分析和定量计算相结合的RP工艺选择方法。通过该方法确定的RP制作设备更加准确可靠,更好的满足RP用户的需求。解决RP制作设备优选技术难题。
为了实现上述目的,本发明采取的技术解决方案是,一种利用计算机进行定性分析和定量计算相结合的RP工艺选择方法,包括以下步骤1)首先,将对RP制作设备的影响因素输入计算机,由计算机利用软件加以系统的分析和综合,并采用层次分析法,建立RP制作设备多因素多、层次综合评价模型;该综合评价模型将整个RP制作设备选择决策划分四层,最高层是目标层,即根据用户的需求,确定出最适合的RP制作设备;第二层是评价准则层,即根据影响RP制作设备选择的因素建立若干评价准则;第三层为子准则层,即将第二层中的各评价准则细分为若干子准则层;第四层为方案层,包括了所有候选的RP制作设备;2)其次,通过使用计算机辅助定性分析系统,排除不适合的RP制作设备,确定出RP制作设备候选方案;3)最后,使用计算机辅助定量分析系统在候选方案中确定最适合的RP制作设备。
计算机辅助定量分析系统采用二级模糊综合评判,它包括以下步骤①确定评价因素集U根据RP制作设备选择决策层次模型,评价准则被分为5个子准则集,即U={U1,U2,U3,U4,U5}={技术特征,几何特征,原型性能,经济性能,生产效率};其中,U1={u11,u12}={原型精度,表面质量};U2={u21,u22}={尺寸特征,复杂程度};U3={u31,u32}={机械性能,物理性能};U4={u41,u42,u43,u44}={运行成本,后处理成本,材料成本,设备费用};U5={u51,u52,u53}={成形速度,辅助时间,后处理时间};
②确定评语集V评语集V={V1,V2,V3,V4,V5}={优秀,良好,一般,较差,很差};③确定评价对象集X根据用户需求通过计算机辅助定性分析系统确定RP制作设备的候选方案,X={X1,X2,X3,…,Xn};④建立一级模糊评判矩阵在对评价对象进行综合评判之前需要对评价指标进行量化与转换,即对评价因素中的定性指标进行量化;同时为了使单位不同的各定量属性指标之间具有可比性,需要对他们进行归一化处理,采用矢量归一法和比例转换法;⑤确定权重集W综合使用模糊层次分析法、熵法和主观赋权法确定权重集W。即对准则层采用层次分析法确定各评价因素的权重,子准则层各评价因素的权重采用熵法和主观赋权法综合确定;6)模糊综合评价采用利用二级模糊综合评价模型中的一级模糊综合评判公式 其中广义模糊合成运算的算子“o”采用“主因素决定型”模型,二级模糊评判广义合成运算的算子“o”采用“加权平均型”模型M(·,),即bj=min(1,Σi=1nwirij);]]>7)模糊集的比较和排序通过模糊综合评价初始模型和二级综合评价模型所得到的评判结果均是一个等级模糊子集 采用“等级参数评判法”对评价对象集的评价结果进行排序,即将各种等级的评级参数和评价结果 进行综合考虑,使得评判结果更加符合实际。
计算机辅助定量系统根据以下综合权重的计算公式,wj‾=wj0wj/Σj=1mwj0wj,∀j]]>对权重进行量化,反映各个指标的客观信息,给出各个不同指标的重视程度;采用“加权平均型”模型M(·,),即bj=min(1,Σi=1nwirij)]]>得到评判结果均是一个等级模糊子集 将各等级vj规定的参数列向量设为C=(c1,c2,L,cm)T,则等级参数评判的结果为
其中p为一个实数。当0≤bj≤1,Σj=1mbj=1]]>时,可视为p以等级模糊子集 为权向量关于等级参数c1,c2L cm的加权平均值,p反映了由等级模糊子集 和等级参数向量C综合作用的信息。
本发明的基本构思是首先,必须建立一套系统的、科学的、全面的综合评价指标体系,它是整个RP制作设备选择的基础。通过对RP制作设备的影响因素加以系统的分析和合理的综合,并运用层次分析法,提出并建立了RP工艺方法多因素多层次综合评价模型。其次,通过使用计算机辅助定性分析系统,许多不适合的RP工艺能够被事先排除,确定出RP制作设备的候选方案。所谓基于专家系统的计算机辅助定性分析系统就是在相关领域中具有专家水平解题能力的智能程序,它能运用领域专家多年的经验与专门的知识,模拟人类专家的思维过程,求解需要专家才能解决的困难问题。它提供了一个RP制作设备方案初级评估理想的方法。利用计算机辅助定性分析系统确定RP制作设备候选方案的基本原理就是通过识别被制作零件的某些特征,并运用这些特征去剔除与之不适应和匹配的RP制作设备。最后,使用计算机辅助定性量分析系统去评价和选择最适合的RP制作设备。
基于上述构思,产生了本发明的技术路线建立RP制作设备多因素多层次综合评价模型;开发RP制作设备初选的计算机辅助定性分析系统;构建基于模糊综合评判的计算机辅助定性量分析系统进行RP制作设备选择的具体算法流程。
附图和表说明

图1是本发明的RP制作设备选择原理示意图;图2是本发明的RP制作设备选择决策层次模型;图3是本发明的计算机辅助定性分析系统中的产生式规则。
具体实施例方式
图1中,为了识别和确定RP制作设备选择评价准则,我们向RP设备服务提供商和RP用户作了广泛而深入的问卷调查,获得大量的原始信息,基于搜集到的这些原始信息并根据上述原则对RP设备和工艺的影响因素加以系统的分析和合理的综合,并运用层次分析法,提出并建立了RP制作设备多因素、多层次综合评价模型。整个RP制作设备选择决策层次模型被划分四层。最高层是目标层,即根据用户的需求,确定出最适合的RP制作设备;最低层是方案层,包括了所有候选的RP制作设备;中间两层是决策准则层和子准则层,在第二层,影响RP制作设备选择的因素被分成五个评价准则技术特征、几何特征、原型性能、经济性能和生产效率,每一个评价准则又被进一步细分为几个子准则,这些子准则位于第三层。详细的RP制作设备选择决策层次模型如图2所示。
利用计算机辅助定性分析系统确定RP制作设备候选方案的基本原理就是通过识别被制作零件的某些特征,并运用这些特征去剔除与之不适应的RP制作设备。建立知识库是开发基于专家系统计算机辅助定性分析系统最为重要的一项工作,通过问卷调查、与RP领域专家的交谈、参阅相关的论文和RP设备用户手册,获得大量与RP制作设备选择有关的知识,通过对这些知识的检测与求精,126条产生式规则被生成并保存在知识库中。图3给出了一些产生式规则。利用计算机辅助定性分析系统,一种适合的RP制作设备可能被直接确定,如果超过两个以上的候选方案,计算机辅助定性量分析系统将被使用,以期得到最适合的RP制作设备。
计算机辅助定性量分析系统使用的模糊综合评判就是一种运用模糊集理论对评价系统进行综合评价和决策的方法,它可以对各个候选方案做出综合的评判,根据优先度的大小对各个方案进行优先顺序的排列,得到最优的方案。它主要是利用与评价对象有关的单因素评价结果,构成相应的评价矩阵,并利用决定各因素重要性程度的权重因子作模糊变换,最终得到对评价对象的综合评价结果。以下通过一个实例来阐述应用二级模糊综合评判进行RP制作设备优先具体的流程。
1)确定评价因素集U根据RP工艺选择决策层次模型,评价准则被分为5个子准则集,即U={U1,U2,U3,U4,U5}={技术特征,几何特征,原型性能,经济性能,生产效率},其中U1={u11,u12}={原型精度,表面质量};U2={u21,u22}={尺寸特征,复杂程度};U3={u31,u32}={机械性能,物理性能};U4={u41,u42,u43,u44}={运行成本,后处理成本,材料成本,设备费用};U5={u51,u52,u53}={成形速度,辅助时间,后处理时间}。
2)确定评语集V设评语集V={v1,v2,v3,v4,v5}={优秀,良好,一般,较差,很差}。
3)确定评价对象集X设根据用户需求通过计算机辅助定性分析系统确定的六种RP设备候选方案,分别是SL、LOM、FDM、SLS、3DP和SGC。因此,评价对象集为X={x1,x2,x3,x4,x5,x6}={SL,LOM,FDM,SLS,3DP,SGC}。
4)建立一级模糊评判矩阵在对评价对象进行综合评判之前需要对评价指标进行量化与转换,即对评价因素中的定性指标进行量化;同时为了使单位不同的各定量属性指标之间具有可比性,需要对他们进行归一化处理,采用矢量归一法和比例转换法。
首先采用专家调查的方法得到每一种候选方案各个单项评价因素的评价值。所谓专家调查法,就是将评判问题或决策问题中所要考虑的各个影响因素,事先制订出表格,然后根据研究问题的具体内容,在本专业聘请阅历高、专业知识丰富并且具有实际工作经验的专家对每一种候选方案的每一个评价因素进行评价,填入调查表中。最后,汇总所有的调查表,并进行相应的数学处理。得到每一种候选方案各个单项评价因素的评价值。专家调查法能够充分利用专家的知识和经验。总共发出40份问卷,收回27份。采用模糊Delphi方法进行数学处理。其次,对相关的研究文献等进行总结得到各个候选方案的综合评价结果。最后,结合专家调查的结果和相关的原始资料,得到所有候选方案各个单因素的模糊评价指标数据如表1所示。
表1SL、LOM、FDM、SLS、3DP、SGC单因素评价指标数据

续表1

5)确定权重集W针对RP制作设备选择的具体特点,提出了确定权重的主观和客观综合的方法,综合使用模糊层次分析法、熵法和主观赋权法确定权重集W。即对准则层采用层次分析法确定各评价因素的权重,子准则层各评价因素的权重采用熵法和主观赋权法综合确定。
采用层次分析法确定的准则层评价因素的权重集为
W=(0.432,0.292,0.157,0.048,0.071)。
子准则层各评价因素的权重采用熵权法和主观赋权法综合确定。通过该综合方法确定的权重即能反映各个指标的客观信息,又能体现决策者对各个不同指标的重视程度。使得指标权重的计算更为科学、更加客观和准确。
主观赋权法是决策者视各个评价因素的主观重视程度而赋权的一种方法,主要有专家调查法、循环评比法、二项系数法等。根据RP制作设备优化选择的具体特点和要求,提出一种全新的主观赋权方法。将子准则层中各个评价因素(原型精度、表面质量、复杂程度等)根据其具体的特征分成五级,他们分别对应着不同的权重。例如对于表面质量分的等级与对应的权值如表2所示。
表2表面质量等级划分与权值对应表

用户根据其具体制造任务的要求,确定各个具体指标所在的等级(设计了RP制作设备优化选择表单,用户可以通过该表单直接确定所有评价指标所在的等级),并根据等级关系与权值对应表,通过程序自动获得该评价指标的主观权重(需要归一化)。
子准则的客观权重使用熵权法确定。所谓熵权法就是依据各被评价对象的指标值来确定各指标的权重的一种方法,它反映了指标间的相互比较关系,是一种客观决定指标权重的方法。采用熵权法确定权重的步骤为Step1确定评价指标j的几何射影pij;Step2计算第j项指标的熵值Ej;Step3确定各指标的客观权重。基于以上方法确定的各子准则评价指标的客观权重集分别为w1=(0.372,0.628) (原型精度,表面质量);w2=(0.758,0.242) (尺寸特征,复杂程度);w3=(0.432,0.568) (机械性能,物理性能);w4=(0.347,0.319,0.042,0.292)(运行成本,后处理成本,材料成本,设备费用);w5=(0.362,0.153,0.485) (成形速度,辅助时间,后处理时间);设某个用户根据其制造任务的具体要求,通过本文提出的主观赋权法得到的各个子准则评价指标的具体权重集分别为w10=(0.8,0.7)]]>(技术特征);w20=(0.5,0.9)]]>(几何特征);w30=(0.5,0.3)]]>(原型性能);w40=(0.5,0.7,0.6,0.5)]]>(经济性能);w50=(0.8,0.5,0.7)]]>(生产效率)。根据以下综合权重的计算公式,wj‾=wj0wj/Σj=1mwj0wj,∀j]]>各个子准则评价指标的综合权重集分别为w1‾=(0.404,0.596);]]>w2‾=(0.635,0.365);]]>w3‾=(0.559,0.441);]]>w4‾=(0.305,0.393,0.045,0.257);]]>w5‾=(0.410,0.108,0.482)]]>6)模糊综合评价利用二级模糊综合评价模型中的一级模糊综合评判公式 其中广义模糊合成运算的算子“o”采用“主因素决定型”模型。二级模糊评判广义合成运算的算子“o”采用“加权平均型”模型M(·,),即bj=min(1,Σi=1nwirij)]]>、表2给出了所有评价对象的综合评价结果。
7)模糊集的比较和排序通过模糊综合评价初始模型和二级综合评价模型所得到的评判结果均是一个等级模糊子集 采用“等级参数评判法”对评价对象集的评价结果进行排序。即将各种等级的评级参数和评价结果 进行综合考虑,使得评判结果更加符合实际。
设相对于各等级vj规定的参数列向量为C=(c1,c2,L,cm)T,则等级参数评判的结果为 其中p为一个实数。当0≤bj≤1,Σj=1mbj=1]]>时,可视为p以等级模糊子集 为权向量关于等级参数c1,c2L cm的加权平均值。p反映了由等级模糊子集 和等级参数向量C综合作用的信息。
给定相对于各等级vj(j=1,2,3,4,5)的参数列向量为C=(c1,c2,c3,c4,c5)T=(0.9,0.7,0.5,0.3,0.1)T根据上述计算的结果,表3给出了应用等级参数评判法确定的所有评价对象的排序值和排序结果。对于该用户的制造任务采用SL工艺最适合,SLS工艺次之,LOM也比较适合。
权利要求
1.一种利用计算机进行定性分析和定量计算相结合的RP工艺选择方法,其特征在于,包括以下步骤1)首先,将对RP制作设备的影响因素输入计算机,由计算机利用软件加以系统的分析和综合,并采用层次分析法,建立RP制作设备多因素多、层次综合评价模型;该综合评价模型将整个RP制作设备选择决策划分四层,最高层是目标层,即根据用户的需求,确定出最适合的RP制作设备;第二层是评价准则层,即根据影响RP制作设备选择的因素建立若干评价准则;第三层为子准则层,即将第二层中的各评价准则细分为若干子准则层;第四层为方案层,包括了所有候选的RP制作设备;2)其次,通过使用计算机辅助定性分析系统,排除不适合的RP制作设备,确定出RP制作设备候选方案;3)最后,使用计算机辅助定量分析系统在候选方案中确定最适合的RP制作设备。
2.根据权利要求1所述的利用计算机进行定性分析和定量计算相结合的RP工艺选择方法,其特征在于,计算机辅助定量计算系统采用二级模糊综合评判,它包括以下步骤①确定评价因素集U根据RP制作设备选择决策层次模型,评价准则被分为5个子准则集,即U={U1,U2,U3,U4,U5}={技术特征,几何特征,原型性能,经济性能,生产效率};其中,U1={u11,u12}={原型精度,表面质量};U2={u21,u22}={尺寸特征,复杂程度};U3={u31,u32}={机械性能,物理性能};U4={u41,u42,u43,u44}={运行成本,后处理成本,材料成本,设备费用};U5={u51,u52,u53}={成形速度,辅助时间,后处理时间};②确定评语集V评语集V={v1,v2,v3,v4,v5}={优秀,良好,一般,较差,很差};③确定评价对象集X根据用户需求通过计算机辅助定性分析系统确定RP制作设备的候选方案,X={x1,x2,x3,…,xn};④建立一级模糊评判矩阵在对评价对象进行综合评判之前需要对评价指标进行量化与转换,即对评价因素中的定性指标进行量化;同时为了使单位不同的各定量属性指标之间具有可比性,需要对他们进行归一化处理,采用矢量归一法和比例转换法;⑤确定权重集W综合使用模糊层次分析法、熵法和主观赋权法确定权重集W。即对准则层采用层次分析法确定各评价因素的权重,子准则层各评价因素的权重采用熵法和主观赋权法综合确定;6)模糊综合评价采用利用二级模糊综合评价模型中的一级模糊综合评判公式 其中广义模糊合成运算的算子“ο”采用“主因素决定型”模型,二级模糊评判广义合成运算的算子“ο”采用“加权平均型”模型M(·,),即bj=min(1,Σi=1nwirij);]]>7)模糊集的比较和排序通过模糊综合评价初始模型和二级综合评价模型所得到的评判结果均是一个等级模糊子集 采用“等级参数评判法”对评价对象集的评价结果进行排序,即将各种等级的评级参数和评价结果 进行综合考虑,使得评判结果更加符合实际。
3.根据权利要求1所述的利用计算机进行定性分析和定量计算相结合的RP工艺选择方法,其特征在于,计算机辅助定量计算系统根据以下综合权重的计算公式,wj‾=wj0wj/Σj=1mwj0wj,∀j]]>对权重进行量化,反映各个指标的客观信息,给出各个不同指标的重视程度;采用“加权平均型”模型M(·,),即bj=min(1,Σi=1nwirij)]]>得到评判结果均是一个等级模糊子集 将各等级vj规定的参数列向量设为C=(c1,c2,…,cm)T,则等级参数评判的结果为 其中p为一个实数。当0≤bj≤1,Σj=1mbj=1]]>时,可视为p以等级模糊子集 为权向量关于等级参数c1,c2…cm的加权平均值,p反映了由等级模糊子集 和等级参数向量C综合作用的信息。
全文摘要
本发明公开了一种利用计算机进行定性分析和定量计算相结合的RP工艺选择方法。该工艺根据RP用户的具体要求,采用定性分析和定量计算相结合确定适合的RP制作设备。首先,通过基于专家系统的计算机辅助定性分析系统获得RP制作设备的候选方案,随后基于采用模糊综合评判的计算机辅助定量分析系统确定最适合的RP工艺。该方法的显著特点是定性分析和定量计算相结合,确定的RP制作设备更加准确可靠。该方法也可应用于其它工艺规划、方案选择和材料选择等工程问题,提供了一种较为理想的解决方案。
文档编号G06F17/00GK1996317SQ20061007020
公开日2007年7月11日 申请日期2006年11月15日 优先权日2006年11月15日
发明者兰红波 申请人:山东大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1