专利名称::电磁辐射解耦器的制作方法
技术领域:
:本发明涉及电磁辐射隔离或衰减装置领域,更具体而言,涉及将能量耦合到RF(射频)标签内的领域。本发明允许使RF标签与降低标签性能的表面,例如金属表面解耦(即隔离)。本发明涉及任何RF标签,尤其是依赖传播波相互作用(与磁标签所表现出的电感耦合相对照)的RF标签,因而我们的优选实施例涉及对长3巨离系统标签(例如,UHF范围和微波范围标签)的应用。
背景技术:
:RF标签广泛应用于物品的识別和跟踪,尤其是商店或仓库环境下的物品的识别和跟踪。就这样的标签而言,通常遇到的一项缺点是,如果直接放置在金属表面上(或者放置在与之相距几亳米的范围内),那么所述标签的读取范围就会降至无法接受的水平,在更典型的情况下,将无法读取或询问所述标签。这是因为传播波RF标签采用内部天线接收入射辐射天线的尺寸和几何形状决定着其谐振频率,并由此左右所述标签的工作频率(对于UHF(超高频)范围标签而言通常为866MHz或915MHz,对于微波范围标签而言通常为2.4-2.5GHz或5.8GHz)。在将标签放在金属表面附近或者使之与金属表面直接接触时,所述标签的导电天线与所述表面相互作用,因而劣化或者在更典型的情况下消除了其谐振特性。因此,采用UHFRF标签很难实现对盒子或箱子等金属物品的跟踪,因而必须采用诸如GPS的其他更为昂贵的定位系统。在应用于与RF(射频)电磁波相互作用的其他表面,例如,某些类型的玻璃以及具有相当高的含水量的表面(例子包括具有高含水量或高树液含量的某些类型的林材)时,UHFRFID标签也面临着类似的问题。在为含有/容纳水的材料,例如,水瓶、饮料罐或人体等添加标签时,也会遇到问题。解决这一问题的一种方法是在RF标签和所述表面之间放置泡沫间隔体,以防止天线和所述表面之间的相互作用。就当前可用的系统而言,所述泡沫间隔体通常必须至少为10-15mm厚,才能真正地4吏所述RF标签与所述表面间隔足够的距离。显然,具有这一厚度的间隔体对于很多种应用来说是不切实际的,并且易于受到无意中的碰撞和损坏。其他方法涉及提供独特构图的天线,所述天线被设计为在特定环境下与特定的RF标签阻抗匹配。例如,AveryDenmson的国际专利申请WO2004/093249、WO2004/093246和WO2004/093242尝试采用具有携带补偿元件的天线的标签解决这一问题。在考虑表面影响的情况下设计所述天线,并对其进行调谐,以适应特定环境或一定范围内的可能的环境。这一方案不需要大间隔体,但是需要相对复杂的天线设计,所述天线设计必须是阻抗匹配的,因而对于每一标签是不同的,因此增加了制造的成本和复杂性。
发明内容因此,本发明的目的在于提供一种起着电磁辐射解耦器材料的作用的RF标签的固定件,其至少能够缓解某些与现有技术系统相关的问题,即,厚度、尺寸和灵活性方面的问题。根据本发明的第一方面,提供了一种用于电子器件的辐射解耦器,所述解耦器包括夹在至少一个第一导体层和至少一个第二导体层之间的至少一个电介质层,其中,所述至少一个第一导体层具有至少一个缺失区域,在所述缺失区域处,所述第一导体层未覆盖所述电介质层,所述解耦器适于在使用中使电磁场在所述第一导体层的所述缺失区域附近受到增强。所述第二导体层的长度优选是至少与所述第一导体层的长度相同的长度。更优选地,所述第二导体层长于所述第一导体层。根据本发明的另一方面,提供了一种用于RF标签的辐射解耦器,其用于在入皿到Xmax的波长范围内使辐射与表面解耦,所述解耦器包括夹在第一和第二导体层之间的电介质层,其中,所述第一导体层包括通过至少一个具有亚波长尺寸的开口分隔的两个或更多岛,其中,将所述解耦器的谐振频率选择为与所述RF标签和/或RF读取器的谐振频率基本匹配。所述开口为空隙或者所述第一导体层材料的缺失区域。两个或更多岛之间的彻底的电隔离并不是本发明的必要特征。所述第一导体层上的岛可以是基本与相邻的导电材料区域隔离的导电材料区域。所述的两个或更多岛优选相互电隔离。所述电子器件或RF标签优选基本位于所述缺失区域之上。还可以使电磁场在电介质芯层的某些边缘处得到增强,因此还可以方便地使所述电子器件位于表现出了增强的电场的电介质芯层的至少一个边缘上。至少一个具有亚波长尺寸的缺失区域是指所述缺失区域沿至少一个尺寸小于入mm。可以将RF标签i殳计为在任何频率下工作,例如,所述频率处于100MHz到600GHz的范围内。在优选实施例中,所述RF标签为UHF(超高频)标签,例如,具有芯片和天线并在866MHz、915MHz或954MHz上工作的标签,或者在2.4-2.5GHz或5.8GHz上工作的樣支波范围标签。所述电子器件的工作波长优选与所述解耦器的基波谐振频率基本匹配,更优选地,所述解耦器可以在人皿n到Xmax的范围内为所述电子器件提供增大的读取范围,因而所述电子器件的工作波长优选处于入mm到入n^的范围内。应当注意,本文中所提及的波长都是指真空波长,除非另作说明。所述缺失区域可以是小的分立的十字形或L形,但是更方便地可以是狭缝宽度小于入mm的狭缝。狭缝可以是导体层材料中的任何直线或曲充所述狭缝。本发明提供了一种起着辐射解耦器件的作用的多层结构。第一和第二导体层夹着电介质芯。在第一导体层含有通过缺失区域或狭缝分离的至少两个岛时,所述一个或多个缺失区域为亚波长缺失区域(即,沿至少一个尺寸小于入)或者更优选为亚波长宽度狭缝,其将所述电介质芯暴露至空气。方便地,在缺失区域出现在解耦器的周围以形成单岛时,或者在电介质芯的至少一个边缘形成了所述缺失区域时,所述缺失区域的宽度不必满足亚波长。应当注意导体层未必一定要与电介质芯层直接接触。例如,可以存可以采用在感兴趣的电磁波长上具有金属或相反的导电响应的任何材料作为相应的导体层内的导电材料。适当的材料的例子为金属、金属合金、金属复合材料或碳。这样的导电材料的厚度必须满足使其相对于所采用的电磁辐射的频率至少部分不透明(其由阻抗失配和趋肤深度计算二者确定,所述计算是本领域技术人员公知的)。所述导体层材料的厚度可以大于0.10微米,所述厚度优选处于0.25到5微米的范围内,更优选处于1到2微米的范围内。如果希望,可以使该厚度增大到超过5微米,由其是在需要这样做来确保所选择的导电材料对目标波长提供了至少部分不透明的阻挡的情况下。但是,任何厚度的显著提高都可能影响柔软性并提高造价。显然,对第二导体层没有最大厚度要求。方便地,可以从与第一导体层相同的范围内选择第二导体层的厚度。可能希望通过这样做来保持柔软性。解耦器结构的电介质芯和第一导体层的厚度之和可以小于该结构的总厚度中的四分之一波长,因此与现有技术系统相比更薄、更轻。电介质层的选择能够使解耦器变得柔软,从而能够将其施加到非平面表面或曲面表面上。方便地,所述解耦器可以不是平面的,其可以采取非平面几何形状或曲面几何形状的形式。本发明的上述方面提供了两个导体层来形成解耦器。但是,在将所述材料直接施加到金属表面(例如,汽车、集装箱、船只、机身或滚笼(rollcage))上,或者使所述材料形成所述金属表面的组成部分的情况下,只需要第一导体层和电介质芯层,因为一旦所述材料形成了第一导体层,并将电介质芯施加到所述金属结构上,那么所述金属结构自身将起着第二导体层的作用。因此,本发明的另一方面提供了一种用于电子器件的辐射解耦器,其用于使辐射与导电表面解耦,所述解耦器包括与至少一个电介质层接触的至少一个第一导体层,其中,所述至少一个第一导体层具有至少一个缺失区域,在所述缺失区域处,所述第一导体层未覆盖所述电介质层,所述解耦器适于在使用中使电磁场在所述第一导体层的所述缺失区域附近受到增强。所述电子器件优选为RF标签。相应地,本发明的另一方面提供了一种用于RF标签的辐射解耦器,其用于在人mm到入max的范围内使辐射与金属表面解耦,所述辐射解耦器包括与电介质层接触的导体层,其中,所述导体层包括通过至少一个具有亚波长尺寸的开口分离的两个或更多的島,其中,将所述解耦器的谐振频率选择为与RF标签和/或RF读取系统的谐振频率基本匹配。在某些应用中,解耦器的尺寸或覆盖面积不重要,例如,在处于运销容器上时。但是,越来越多的批量生成和成批供货的消费品需要通过RF标签装置跟踪。因此,非常希望得到一种具有较小覆盖面积的解耦器,因此提供了一种用于RF标签的单岛解耦器,其用于在入腿到入max的范围内使辐射与表面解耦,所述解耦器包括夹在第一和第二导体层之间的电介质层,其中,所述第一导体层包括基本位于所述解耦器上对应于增强的电磁场的点处的至少一个缺失区域,其中,诸如收发器的电子器件基本位于所述缺失区域上,此外,将所述解耦器的谐振频率选择为与所述RF标签和/或RF询问源的谐振频率基本匹配。可以通过人^2nG确定第一导体层的长度G,其中,n是电介质的折射率,入是解耦器的预期工作波长。显然,这是针对第一谐波(即基波)频率的,但是也可以采用其他谐振频率。方便地,可能希望提供一种解耦器,其具有的长度G间隔对应于除了基波谐振频率以外的谐波频率。因此,可以通过入《(2nG)/N表示长度G,其中,N是整数(N=l表示基波)。在大多数情况下,希望采用基波频率,因为其通常能够提供最强的响应。此外,显然,在电介质芯层由两种或更多种成分的复合材料形成时,可以将折射率n看作是处于第一和第二导体层之间的所有组成部分的相对折射率。在分隔两个或更多岛的缺失区域或狭缝的宽度在其尺寸上大于亚波长时,采用约等号,因为所述公式存在偏差。对于可以采用较大面积的解耦器,即,文中定义的2岛或更多岛的解耦器的情况下;缺失区域的这些实例可以采取分立的十字形或L形的形式,或者更方便地采取狭缝的形式。狭缝可以是直线缺失区域,所述缺失区域可以部分、全部或基本全部跨越解耦器的宽度和/或长度延伸。在狭缝整个跨越解耦器延伸时,其可以形成两个或更多电隔离岛(即,在两个区域之间存在非导电路径,尽管存在共同经受的电磁场)。但是,如果狭缝不是充分延伸,即部分或基本全部跨越解耦器的表面延伸,那么所述岛可能在狭缝的末端电连接。两个或更多岛之间的彻底的电隔离并不是本发明的必要特征。在本发明的一个实施例中,提供了一种宽带解耦器,所述解耦器是可以在一个以上的谐振频率上工作的解耦器。在这一实施例中,所述解耦器还包括与第二电介质层相邻的第三导体层,其中,所述第三导体层具有至少一个缺失区域,在所述缺失区域处,所述第三导体层不覆盖所述第二电介质,并且其中,所述第二电介质层位于所述第三导体层和所述第二导体层之间。为了获得宽带解耦器,所述第一导体层优选与所述第三导体层具有不同的长度。可以将这样的宽带解耦器设置为(例如)在RF标签的公共工作频率上工作。因而,可以将若干个不同的RF标签中的任何一个安装在解耦器上的适当点上,并使其正常工作。此外,在使用当中,每者具有不同工作频率的两个不同的电子器件,例如RF标签可以位于适当调谐的第一和第三导体层上。可以使每一标签与表面影响解耦,并且可以在正确的工作频率上单独读取每一标签。如果需要,可以进一步采用导体层和电介质层形成能够在多个不同的波长上工作的解耦器。在备选设置中,可以提供既位于第二导体层的上表面上又位于其下表面上的至少一个第一导体层和至少一个电介质层,换言之,第二导体层的两面均设有电介质层并进一步设有第一导体层。将第一导体层安装到第二导体层的相对的两面上。所述第一导体层可以具有相同或不同的长度。在一个实施例中,至少一个缺失区域或狭缝可以基本上与解耦器的边缘中的至少一个不平行。这将提供一种具有带有多个不同的周期长度的第一导体层的解耦器,引起其能够在多个波长上工作。因此,采用非直线缺失区域或非直线狭缝,或者采用呈直线但与解耦器的一个或多个边缘都不平行的缺失区域或狭缝能够实现扩大的工作波长范围。可以将其与上文定义的多层宽带解耦器实施例结合使用。采用非直线狭缝或缺失区域也能够获得相同的效果。在使用中,可以使解耦器位于任何表面上,并且与不采用解耦器的情况相比,所述解耦器能够提供优势,在下文中将对其予以说明。显然可以将所述解耦器用在表面上,否则,所述表面在材料内部或者基本位于材料表面上的电相互作用的影响下将对RF标签自身的天线的工作造成不利影响。所述解耦器将允许正确地位于第一导体层的附近的RF标签在对入射RF辐射不反射或反射的表面上或紧靠该表面处工作,因为解耦器实际上起着对电磁辐射的进一步传播加以阻挡的作用。在对入射辐射存在反射或者对入射辐射存在影响从而不利于电子装置对其的接收的表面上,本发明的优点是显而易见的。典型地,这样的RF反射表面可以是导电材料、包括高液体含量的材料或者可以是形成了此类流体的盛纳装置的部分的表面。已经发现,某些类型的玻璃与RF标签相互作用,因而还可以将所述解耦器应用到玻璃、硅石或陶瓷上。流体盛纳装置可以是使位于表面的一侧的流体与位于所述表面的另一侧的不同环境隔离的任何阻挡层、隔膜或容器的部分。所述表面的相反侧可以优选是解耦器所处的外表面;所述盛纳装置优选是容器的部分,并且可以是食品、饮料或化学品容器。可以将所述解耦器安装在表面或盛纳装置上,或者所述表面或盛纳装置可以形成解耦器的组成部分,例如,非导电表面或非导电盛纳装置可以部分地包括电介质层。或者,对于导电表面或导电盛纳装置而言,所述表面或容器可以部分地形成所述第二导体层。典型的RF反射导电材料可以是碳、金属、金属合金或金属复合材料。所述RF反射材料还可以是液体,或者诸如纤维素材料的包括高液体含量的材料,例如,某些木材、卡片、纸或任何其他可以具有高含湿量的天然生成的材料。因此,可以将所述解耦器加到处于具有高湿度的环境或区域内的表面上、潮湿表面上或者部分或全部浸没在流体表面下的表面上,例如,所述流体可以是诸如水的液体。因此,所述解耦器和RF标签可以借助适当的封装位于饮料或食品容器的外侧或内侧。有利地,发现四岛解耦器能够使位于其上的RF标签提供在所述解耦器和RF标签在彻底浸没在水箱内时仍然可读取的标签。不位于解耦器上的RF标签在浸没时将无法提供读取范围。其在诸如水下施工或油气施工的应用中尤为有利,例如,可以利用其进行管道识别,/人而通过RF系统容易地识别部件。显然,可以在存在RF反射环境并且妨碍目一见识别或者无法进行目视识别的系统中应用所述解耦器。所述表面可以形成流体盛纳装置的组成部分。已知,诸如水的液体与RF辐射相干扰因而将对处于其附近的RF标签的性能造成不利影响。因此,所述表面可以是食品、饮料或化学品容器的表面。可以在诸如水瓶、饮料罐、食品容器或人体等的含有/容纳水的材料构成的表面上采用解耦器。此外,可以将加标签系统直接或间接应用于人或动物,以跟踪其在特定区域内的行踪或移动,具体的例子可以是人尤其是易受伤害的人,例如,医院环境下的儿童或婴儿。另一种用法是采用光盘(CD和DVD)的金属层作为第二导体层,采用光盘的电介质衬底作为电介质芯层,因而第一导体层可以位于衬底上(远离所述金属层一侧)以形成完整的解耦器。之后,可以使低QRF标签位于第一导体层的缺失区域的附近。已经发现,在放置到诸如抗静电袋的金属涂覆袋内时,所述解耦器和RF标签能够起作用。这将有利地使计算机部件等在不从保护袋中取出的情况下得到跟踪。可以应用解耦器的环境的其他例子为在雪或水内,在混凝土结构内以及在水冻的动物畜体内。可以将解耦器应用到平直的或基本平直的表面上,或者应用到呈单曲或双曲面的平面上,例如,柱面或球面上。因此,本发明促进了带有RF标签而不是条型码的食品或饮料容器的制造。可以将所述解耦器应用于柱形容器(例如,食品和饮料罐),从而利用RFID跟踪技术确定它们在受控环境中的所在之处。显然,用于RF标签的解耦器的使用不限于跟踪物品,可以将其用于任何适于使用RF标签的用途,例如,售货点、智能卡、车辆识别、收费等。下述讨论适用于本发明的两个方面,即,解耦器设有分立的第二导体层,或者施加了RF标签的物品的表面起着解耦器的第二导体层的作用。不对本发明的范围构成限制的针对工作模式的一种解释是RF标签是谐振电路,并且可以将解耦器看作不同的谐振电路。如果将RF标签电连接到解耦器,即,如果解耦器起着天线的作用,那么由于两个系统一般不存在阻抗匹配,因而能量转移非常差。但是,如果没有电接触,则不存在阻抗问题。所述解耦器在标签的附近起着与表面无关的场增强器的作用,因而能量被耦合到所陷获的驻波内。只要所述标签位于高电场区域内,那么所述标签就会有效地耦合至辐射本身。因此,本发明的解耦器能够与任何在特定频率下工作的标签设计协同工作,而不像现有技术调谐天线系统那样需要针对不同标签的单独设计。还可以设想其他会聚或引导能量以建立高能量区域的手段。方便地,解耦器的厚度(即,通常是第一导体层和电介质芯层的厚度之和)远小于入射辐射的四分之一波长。例如,在所述厚度小于等于1/10,优选小于1/100,更优选小于1/300乃至千分之几的情况下,辐射将与解耦器发生相互作用,还可能希望采用入射辐射的波长小于1/300016乃至1/7000。例如,866MHz的频率对应于真空中的346mm的波长,因而,50微米PETG解耦器将构成厚度为波长的1/7000左右的器件。典型地,现有技术天线系统依赖几毫米的密度来实现一定程度的表面无关性。如上所述,所述解耦器的第一导体层可以包括一个或多个狭缝或缺失区域,例如,具有2个或更多岛的解耦器。所述狭缝在第一导体层上的布置将影响能够与所述结构相互作用的辐射的一个或多个波长。所述狭缝布置优选是周期性的。在一个实施例中,所述狭缝布置包括平行狭缝。已经确定,借助平行狭缝布置,具有波长入的辐射可以根据下述关系受到解耦<formula>formulaseeoriginaldocumentpage17</formula>其中,XN是处于发生最大解耦的Xmin到Xmax的范围内的波长,n是芯部的折射率,G是狭缝间隔,N是整数(>1)。我们的优选实施例利用了N4的情况,其代表第一谐波(即,基波)模式。注意对于由两个或更多岛构成的解耦器而言,狭缝可以窄于波长。还假设,所述辐射线偏振,从而使电场矢量的取向垂直于狭缝的轴(即,其长度)根据针对这一研究领域的典型定义,如果入射面平行于狭缝,那么所述辐射必须是TE-(s-)偏振的(电场矢量垂直于入射面);如果入射面垂直于狭缝,那么所述辐射必须是TM-(p-)偏振的(电场矢量处于入射面内)。对于电》兹学领域的任何技术人员而言,显然所述器件还可以与具有椭圓或圆偏振的电磁辐射协同工作,因为所述电磁辐射表现出了适当对准的电场分量。从上述关系可以看出,所解耦的辐射的波长与狭缝间隔G和电介质芯层的折射率线性相关。改变这些参数中的任一个将能够实现通过所述结构对特定波长解耦。对于单岛解耦器而言,上述等式仍然适用,其中,G表示第一导体层的长度。还可以看出,还可以在对应于不同的N值的若干个波长处对辐射解耦。所述频率中的每者包括作为文中使用的术语的解耦器的谐振频率。但是,所述标签的谐振频率优选与解耦器的第一谐振频率,即N爿时的谐振频率匹配。显然,也可以采用其他谐波频率提供解耦。上述等式是近似式,其在电介质芯层的厚度等于狭缝的宽度时,以及在这一厚度值大于1毫米左右时最为精确。如果狭缝宽度缩小,将存在向更长的波长的渐进谐振漂移(确切的漂移与狭缝宽度和芯厚度的比值相关)。还存在这样的一般事实,即,电介质芯层的厚度的增大,不管是均匀增大还是分立区域内的增大都将趋向于增大谐振波长,反之亦然。还应当注意,如果使辐射沿法向入射入射到所述结构上,那么只有N的奇数值才能引起谐振。所述解耦器可以包括通过一个缺失区域分立的至少两个金属岛。在一个实施例中,所述RF标签可以跨越所述缺失区域,从而使标签上的芯片基本按照其中心设置在所述缺失区域上,并使天线位于至少两个金属岛上。所述岛可以是任何几何形状,但所述岛优选为方形或矩形。但是,利用其他多边形,例如三角形、六角形或圆形岛可以获得关于(例如)偏振不敏感性的优点。可以根据所采用的RF标签的工作波长选择金属岛的长度(例如,前述等式中的G)。将与芯部材料的折射率相乘的岛长度选择为约等于RF标签的工作波长的一半。一些市面可得的RF标签,例如AlienTechnology制造的标签,所携带的天线具有可与其工作波长相比拟的长度(所述波长的1/3或更大)。这为典型解耦器的长度设置了下限,因为该器件通常便于为标签提供机械支撑(即,解耦器不小于其支撑的标签往往是方便的)。因而,如下文中定义的,希望找到更小的标签用在解耦器上。可以通过所选择的RF标签的尺寸确定导电层金属岛的宽度。仅作为例子而言,对于平常使用的UHFRF标签而言,所采用的岛的宽度是标签的宽度的4到5倍。但是,在需要不太突出的解耦器和标签时,可以降低解耦器的宽度,从而使其至少为芯片和天线的宽度。解耦器宽度的降低将趋向于缩小RF标签的读取范围,反之亦然。优选通过选择缺失区域的宽度以及电介质芯部材料的电容率和厚度二者提供一种谐振频率与RF标签的谐振频率基本相同的解耦器。通过所述电介质芯,以及在一定程度上通过位于所述电介质芯上的第一和第二导体层耗散了能量,因此,这些材料的电容率和磁导率是设计过程中的重要参数。一种消除对解耦器相对于入射辐射的方位取向的依赖性的方法是第一导体层优选包括至少一个狭缝的正交集("二光栅"布局)。其可以提供降低单狭缝阵列("单光栅,,布局)所表现出的偏振相关效应的优点,对于单狭缝阵列而言,在任何取向下只能对一个线偏振解耦(即,电场分量垂直于狭缝方向的偏振状态)。但是,对于本领域技术人员而言,显然任何能够使入射电场的分量与狭缝垂直交叉的取向都将带来一定程度的功能性(即,除了狭缝平行于电偏振矢量之外,在任何取向下都将发生解耦,但是随着样本朝向这一取向旋转,读取范围将极大降低)。但是,二光栅布局将对两种偏振解耦,因为其对于电偏振矢量的分量而言总是具有适当对准的狭缝。在另一方案中,可以存在具有60度的方位分离度的三组狭缝布局(即,形成三角形图案)。在下文中定义了趋向于无穷的高阶图案,例如,环形。还发现,对于"宽"狭缝(即,对于866MHz的辐射而言,狭缝宽度大于1毫米)而言,解耦波长根据辐射入射到第一导体层的表面上所处的角度而变化。随着隙缝宽度的缩小,角依赖性的显著性降低。因此,在优选实施例中,消费小于有待解耦的辐射的波长。对于对应于电磁波谱中的微波波段或接近所述微波区的波长入而言(例如,入一般处于毫米到米的范围内),典型的狭缝或缺失区域的宽度小于1000微米,优选小于500微米,更优选小于150微米,并且还可以小于等于50微米。因此,对于其他波段而言,希望缺失区域可以小于入射辐射的波长的1/50,更优选小于该波长的1/100。但所述电介质芯层的材料:选是非损耗^复电容率和磁导率的虚部最好为零)。所述电介质芯层可以是第一和第二导体层之间的空隙,例如,局部真空或者气体,例如,所述气体可以是所述第一和第二导体层之间的部分或全部空气隙。方便地,采用空隙的芯部可以部分地利用导体层之间的非导电材料加固,例如,波紋纸板、蜂窝结构或具有高孔隙率的泡沫。可以从聚合物中,例如,PET、聚苯乙烯、BOPP、聚碳酸酯以及任何低损耗RF层压体中选择电介质芯层材料。可以形成电介质芯层的部分或基本全部的通常使用的容器材料可以是纤维素材料,例如,纸、卡片、波紋纸板或木材。或者,可以采用某些陶瓷、铁氧体或玻璃。在一个实施例中,被选为在电介质芯层中使用的材料具有能够可控变化的折射率,以控制有待解耦的辐射的波长。例如,可以采用分散了液晶的聚合物(PDLC)材料作为芯。如果将解耦器解耦设置为能够跨越电介质芯层材料施加电压,那么就能够改变其折射率,从而使解耦波长按照定制的方式移动。由于可以将一个解耦器用于一定的RF标签波长范围,或者可以对其加以控制以开启和关闭解耦操作,因而这一方案尤为有利。此外,如果附着解耦器的物体需要用于不同地点(例如,不同国家)的不同RF标签,那么具有可调谐折射率的电介质芯层材料将允许对在不同波长上工作的RF标签采用同一解耦器。或者,可以将所述解耦器使用的RF标签频率/波长解耦,例如所述频率为866MHz、915MHz、2.4到2.5GHz以及5.8GHz。所述解耦器可以具有包括适于不同谐振频率RF标签的不同周期的一个或多个区域。RF标签一般由电连接到必要的天线的芯片构成,所述天线的长度通常可以与其工作波长相比拟(例如,是该波长的1/3)。本发明人惊讶地发现,可以将具有小得多的未调谐天线的RF标签(即,通常预计其无法在UHF波长上有效工作)与根据本发明的解耦器结合使用。通常具有这样的"矮小,,天线(下文称为低Q天线,这是本领域技术人员所能认识到的)的标签在开放空间内只具有几厘米乃至几毫米的读取范围。但是,已经令人惊讶地发现,采用这样的安装在本发明的解耦器上的具有低Q天线的标签可以工作,并且具有有用的读取范围,所述读取范围接近(乃至超过)不带解耦器的在自由空间内工作的市面可得的优化RF标签的读取范围。低Q天线的造价更低,并且可以比常规调谐天线占据更少的表面面积(即,这样的标签的天线长度可以短于通常可能的天线长度)。因此,在尤为优选的方案中,可以将具有基本降低的天线面积/长度的RF标签安装到根据本发明的解耦器上。优选地,可以将低QRF标签安装到上文定义的单岛解耦器上,以提供具有降低的面积的解耦器和标签系统,所述系统可以具有基本满足入"2nG/N的第一导体层长度,其中,入是产生最大吸收的范围入min到入max内的波长,n是电介质的折射率,G是至少一个第一导体层的周期,N是大于等于l的整数。RF标签及其必要的天线通常安装在或打印在电介质衬底上,可以使所述电介质衬底与解耦器的表面直接接触。优选地,可以存在放置在RF标签和解耦器材料之间的被定义为间隔体的另一电介质材料。在存在间隔体时,间隔体的长度和宽度尺寸必须至少与RF标签的金属区域(例如,天线)的尺寸相同。所提供的大多数RF标签已经安装在了其各自的衬底上,所述衬底因制造者的不同的具有厚度差异。RF标签的天线一定不能与第一导体层或第二导体层直接电接触。所述RF标签的金属部分和所述解耦器之间的(总)缝隙(即,间隔体厚度+RF标签衬底厚度)小于2000微米,优选处于100到1000微米的范围内,优选处于175到800樣£米的范围内,更优选处于175到600微米的范围内。如果采用具有损耗性或者折射率异常高或异常低的间隔体或标签衬底(即,如果采用除了诸如PET的标准聚合物衬底之外的某物),那么这些值可能存在差异。类似地,向更高或更低的工作频率漂移可能影响间隔体厚度。在存在其他装置使RF标签位于距第一导体层的固定距离处时,可以不需要间隔体。应当认识到,在2000微米之外还可能在一定程度上存在电场,但是,这一点可能不是特别希望的。已经表明电场在缺失区域内具有最大值,并且在解耦器平面之上随着距该平面的距离的增大而呈指数下降。一种不对本发明的范围造成限制的、对间隔体的作用的解释是在不存在标签的情况下,解耦器按照预期发生谐振。但是,由于引入了标签,其与解耦器相互作用,并开始干扰其谐振。随着标签接近解耦器表面,干扰程度增大。最后,干扰程度变得如此大,以致于不再建立谐振,并由此不再建立与解耦器的操作不符的区域增强场。因而,间隔体是一种在使标签暴露至最大电场和不对解耦器造成足以破坏解耦机制的干扰之间折中的手段。因此,显然,任何RF标签都可以位于上文定义的100到IOOO微米的总距离处,并提供非常有用的读取范围。但是,显然,简单的距离测量可以为指定的RF标签提供距指定解耦器的表面的优选距离,这样可以进一步提高RF标签的读取范围。可以通过普通的处理刻划RF标签的金属天线或使其变形。有利地,可以通过保护外壳部分地覆盖或封装RF标签和解耦器。所述外壳可以是淀积在RF标签和解耦器的表面上的非导电材料。所述非导电材料可以只是(例如)通过旋涂:忮术涂覆的另一电介质材^K诸如PET、PETGUPVC、ABS的淀积材料或者诸如环氧树脂等的任何适当的密封剂。已经发现,这样的处于250到2000微米的范围内的,乃至高达5000微米的外壳涂层不会影响RF标签的读取范围。显然,可以根据环境和标签所需的柔软性选择外壳的厚度。可以通过任何已知的工艺制造形成解耦器的导体层,例如对涂覆金属的电介质表面的蚀刻、光刻、使用诸如碳墨水或高负载银墨水的导电墨水、块箔(blockfoil)的淀积(例如,通过热沖压)、气相淀积(之后任选进行蚀刻)、粘附的金属箔或者将催化剂墨水与图案转移机制结合使用以实现加性(additive)无电淀积和任选的电淀积。相应地,就本发明的另一方面而言,提供了一种形成根据本发明的解耦器的方法,其包括的步骤有按照根据本发明的图案采用墨水成分涂覆电介质材料,其中,所述墨水成分包括适于印刷有待涂覆的衬底的墨水配方、作为可还原银盐的银和填充剂颗粒,其中,将所述可还原银盐选择为,在能够还原时,一旦将经涂覆的衬底放到自动催化淀积溶液内,在催化作用下,金属就会从自动催化淀积溶液中淀积到衬底的涂覆区域上,并且其中,所述可还原银盐的比例使得所述墨水成分在重量上含有小于10%的银,任选对所述涂覆区域进行电淀积。方便地,可以采用诸如未决专利申请No.GB0422386.3中所/>开的墨水和/或方法。可以通过任何已知的图案转移机制,例如,喷墨、凹板印刷、橡胶板或丝网印刷技术。可以对所淀积的墨水实施标准的无电淀积技术,以实现自动催化淀积。可能希望采用电淀积进一步提高无电淀积的金属的厚度,这一点可以通过巻到巻工艺实现。例如,金属食品容器可以起着第二导体层的作用,可以将其施加由电介质材料构成的薄涂层以形成电介质层。之后,可以通过任何已知的手段在电介质芯层材料上按照预期的解耦器图案淀积第一导体层。可以任选涂^隻另一电介质以形成间隔体材料。RF标签可以位于缺失区域或开口之上,并且任选具有印刷或涂覆到所述标签和/或解耦器之上的保护外壳。所述保护外壳可以包括用于所要出售的货品的精致的彩色设计。可能希望解耦器位于金属食品容器的表面内的凹陷中,从而使最终的解耦器和RF标签与所述容器的表面平齐。显然,第一导体层必须与金属食品容器的导电材料电隔离。可以通过确保第一导体层不恰好抵达解耦器的边缘或者通过采用非导电保护外壳容易地实现这一目的。在本发明的一个实施例中,可以构造柔性的解耦器。如果在其背面设置粘合剂,那么就能够将其以胶带或补贴膜的形式施加到任何感兴趣的表面上。构建非常薄(相对于有待解耦的辐射的波长而言)的解耦器的能力是指能够有效地将其模制成任何表面轮廓。在通过金属表面或向其施加解耦器的物品提供第二导体层时,可以利用位于电介质层上的粘合剂将第一导体层和电介质层粘附至所述金属表面。本发明的另一方面提供了安装在解耦器表面上的RF标签,如下文所述。还提供了一种基本与表面无关的RF标签,其包括安装在解耦器上的RF标签,如上文中所定义的。一种可能的有利的做法是将一个以上的RF标签安装到所述缺失区域上,例如通过叠置布局。已经表明所述解耦器可以与Gen1和Gen2协议标签协同工作。因此,如果不同的受体采用不同的协议标签,那么能够将所述标签安装在相同的解耦器上,任选通过叠置布局将其安装在相同的缺失区域内。显然,RF标签可以遵守相同的协议,因而可以只是为用户提供不同的识别用途。就本发明的另一方面而言,提供了一种表面,其中,所述表面的部分在上文定义的解耦器或与表面无关的RF标签中被局部覆盖、基本覆^L(o还提供了一种物体或容器,其包括至少一个上文定义的表面。在一个实施例中,所述的至少一个表面可以是曲面。在另一优选实施例中,所述物体或容器可以是诸如滚笼、堆装架的运销容器或者食品或饮料容器,具体的例子可以是饮料罐或罐头食品。就本发明的另一方面而言,可以才是供一种根据上述实施例中的任何一个所述的解耦器,其中,所述电介质层可以部分地或者基本全部由非导电盛纳装置形成。具体地,所述非导电盛纳装置的优选材料可以是天然或人造纤维、塑料、纤维素、玻璃或陶资。在这一设置中,由非导电材料(例如塑料或卡片)构成的诸如瓶或纸盒的容器可以部分地形成所述电介质层。因此,可以在所述容器的任一侧上利用上文定义的任何手段形成第一导体层和第二导体层,从而对所述导体层协同定位,以形成根据本发明的解耦器。一种可能的方便的做法是采用位于非导电盛纳装置的一面或两面上的另一电介质材料(即,形成多层电介质芯),以改善电介质芯的电介质特性。层形成解耦器的电介质芯。具有一个或多个狭缝或缺失区域并且与具有定向天线(即,优先与具有特定取向的线偏振相互作用的天线)的RF标签结合使用的解耦器可能只在读取器和安装在解耦器上的标签基本平行时实现大的场增强效应。可以釆用利用圓偏振或椭圆偏振的发射器/接收器系统或者多个不同对准的天线緩和这一影响。或者,就本发明的另一方面而言,提供了一种与偏振无关的解耦器,使得RF标签在解耦器上的位置和接下来的启动与入射辐射的偏振或取向无关。相应地,第一导体层的缺失区域包括至少一个非直线缺失区域,优选包括基本上为曲线或更优选具有圆形图案的缺失区域,更优选可以在第一导体层内形成圆形狭缝。也可以采用三角形、六角形或其他多边形岛形状。作为本发明的又一方面,提供了一种金属容器,其中,所述容器的表面的部分在如上文定义的解耦器或与表面无关的RF标签中受到覆运销容器(例如,滚笼、托架等)的类型只是用于在运销链中传输货物的有轮带罩容器的类属名。在所有类型的供销系统中,例如,在超市、邮局、快递、航空或奶场中均可以找到它们的踪影。显然,有待跟踪的任何运销容器或货品均可以装有包括文中定义的与表面无关的RF标签的加标签系统,例如,集装箱、海运货拒、超市手推车或篮子、医院的床和/或设备、衣物、动物、人、食品和饮料容器。例如,诸如滚笼的运销容器通常带有标识板,其通常显示条型码或目牙见识别特征,即,书写/打印标识手段。如上所述,在标识板上已经安装了前述采用厚泡沫间隔体的用于RFID的解耦器,但这些器件从板的表面突出,易于受到撞击,并在无意中从板上脱落。本发明的另一方面提供了一种诸如滚笼的运销容器,其包括根据本发明的解耦器或加标签系统。还提供了一种包括凹陷部分的标识板,所述部分包括上文定义的加标签系统和保护层,以形成基本平齐的标识板。可以从与上文定义的保护外壳相同的材料范围内选择所述保护层。在这一实施例中,保护层可以替代对保护外壳的需求。已经发现,这样的处于250到2000微米的范围内的,乃至高达5000微米的保护层不会影响RF标签的读取范围。可以涂覆液体,例如,可以通过固化而封装部件的封装化合物作为所述保护层,或者,可以采用镶到所述标识板内的膜或薄板作为所述保护层。优点在于,所述加标签系统(即,解耦器和RF标签)位于所述标识板的表面的下面,从而为所述部件提供了进一步的保护,例如,避免了恶劣天气等来自环境的损害以及碰撞、划擦等损害。之后可以将包括所述加标签系统的标识板直接焊接或铆接到所述运销容器或滚笼上。其提供了一种有用的解决方案,因为解耦器变成了运销容器或滚笼的内在部分。标识板可以由任何适当的材料制成,例如,金属及其合金、层压材料、塑料、橡胶、硅酮或陶瓷。如果所述板由导电材料制造,那么必须使解耦器的金属部件(而不是衬底)与所述板电隔离。应当注意,如果所述板为金属性的,那么所述板可以提供解耦器的衬底层,如先前所述。另一优点在于,所述包括加标签系统的标识板可以具有所采用的另一标识手段,例如,常规使用的标识手段,例子包括条型码或目视识别特征(即,书写/打印识别手段)。其允许将RF跟踪系统逐渐集成到工作环境内,并允许不同的公司通过不同的跟踪方法监视运销容器。就本发明的另一方面而言,提供了一种金属物体或容器,其包括位于所述物体或容器的表面内的凹陷部分,所述凹陷部分包括与所述表面电隔离的上文定义的解耦器和至少一个位于所述解耦器上的RF标签以及任选的封装所述解耦器和RF标签的保护层,使所述解耦器和所述RF标签至少与所述物体或容器的表面平齐。在所述金属物体或容器提供了第二导体层时,必须将所述解耦器设计为将所述第一导体层电连接到所述金属物体或容器。例如,通常使用的饮料罐和食品罐可以具有形成于其表面内的简单的凹陷来容纳解耦器,从而使罐体保持令人愉悦的美感。零售业中的RFID的优点在于,货品均可以通过读取器受到单遍扫描,从而降低了将各个货品扫描到销售寄存器的电子点内的负担。采用凹陷设计的另一优点在于,不能将标签从货品上容易地去掉。这将减少未加标签的货品出现在购物推车或篮子中的机会。还可以将凹陷解耦器设计应用到非导电容器或物体中,但是,不需要使第一导体层与容器或物体电隔离。还提供了一种跟踪物体或容器的方法,其包括的步骤有将在上文中定义的解耦器或加标签系统加到所述物体或容器的表面的部分上,采用RF辐射询问所述至少一个RF标签,探测来自所述至少一个RF标签的响应。所述物体或容器可以由上文定义的任何适当的导电材料制造。可以采用市面可得的双面PCB半成品(即,^!的两面都具有导电层的PCB半成品)制造效率相对较低的解耦器(与前述例子相比)。之后将该板切割为约等于入射辐射的波长的一半的长度。在这一设置中,可以将缺失区域看作暴露的电介质。之后,可以将RF标签放在所述板的侧面的边缘处,从而使所述RF标签与所述板垂直。因此,如果受到限制的读取范围足够大,就能够通过这一方法提供与金属表面的解耦。能够在自由空间内读取的市面可得的标签可以具有处于10cm的量级的天线,因而其可能不适于识别通常在医药、化学等领域的实验室内出现的很多小的样本。来自UHF标签的有源芯片具有1或2毫米的量级,因此可以容易地布置到小的容器或物品上。或者,可能希望将RF标签放到有待加标签的表面或物品的分立的或有限的区域内。即使将询问系统紧挨着芯片放置,没有天线的UHF芯片也不会起作用。但是,在芯片和任选的间隔体位于文中定义的解耦器上时,在存在有限的金属连接,从而将能量耦合至芯片的条件下可以读取芯片,即使所述金属连接可能只是金属截线。此外,可能不适于将解耦器直接放置在小容器或物品上。因此,就本发明的另一方面而言,提供了一种表面或物品的探测或识别方法,其包括的步骤有将包括RF标签或低QRF标签的表面与任选的间隔体放到一起,并使其接近文中定义的解耦器,-询问所述RF标签,其中,所述RF标签只有在非常接近所述解耦器时才能被读取。在可以将具有优化的尺寸的解耦器(用于与读取装置通信)容易地采用到小的物体或容器上时,这一点尤为有用。可能希望RF发射器/读取器系统包括作为组成部分的解耦器。因此,优点在于,可用采用根据本发明的解耦器成功地询问小的物体,所述物体的表面上可能只具有容纳带有低Q天线的RF标签的空间。例如,可以将所述标签和任选的间隔体放到任何有待识别的小的容器、器皿、表面或套件零件上。可能的例子包括医疗样本、手术设备、载玻片、小瓶或瓶子,因而在使带有RF标签和任选间隔体的表面紧靠所述解耦器时,将能够被询问装置读取。就本发明的另一方面而言,提供了一种低Q标签,其中,所述天线具有基本上小于2cm的主要尺寸,更优选所述天线具有基本小于lcm的主要尺寸。还提供了一种适于与文中定义的解耦器结合使用的低QRF标签,其中,所述低QRF标签任选安装在间隔体上,所述间隔体和所述低QRF标签的总共的厚度处于175到800微米的范围内。另一优点在于,可以方便地采用具有更小的尺寸的单岛解耦器,以提供具有更小的覆盖面积的加标签系统。采用低QRF标签的优点在于,它们显著小于市面可得的RF标签,后者具有更大的天线。因此,可以将与文中定义的解耦器结合的具有最小天线的低QRF标签更为谨慎地放置到文件和/或具有信用卡那样尺寸的信息文件内,例如,护照、身份证、门禁卡、驾驶证、收费卡等,其中,所述文件的卡或页的塑料部分地形成了电介质层。因此,可以有助于人或货物在受控区域内或者通过受控的入口点移动,而不需要与所述文件直接接触或对其进行目视扫描。采用低Q天线的另一优点在于,它们不在特定频率上工作,所述芯片也不能。由于大多数读取器不在定点频率上工作,而是跨越一定的频率范围工作,因此US系统和欧洲系统均能够驱动解耦器上的芯片,其将在两种询问器发射的频率上谐振。因而,例如,将解耦器设计为在890MHz下工作(处于866(EU)和915(USA)之间),并采用低Q天线两种系统均能够发射足够的890MHz的辐射为芯片提供能量。一种严格定义的866MHz天线无法与915MHz系统良好地协同工作,反之亦然。就另一方面而言,提供了一种零件套件,其包括具有任选的间隔体的RF标签和根据本发明的解耦器。在另一实施例中,可能希望为RF标签提供加强的保护。相应地,还提供了一种如上文定义的解耦器,其中,RF标签或低QRF标签至少分。在存在具有相当大的尺寸的天线的情况下,所述天线可能延伸到电介质芯的外部,但是其必须与第一和第二导体层电隔离。其优点在于,RF标签和解耦器或RF加标签系统的总厚度基本只是解耦器的厚度。作为建立与表面无关的RF标签并将其直接放置到表面上的备选方案可能希望有效地就地形成解耦器,从而在将解耦器的构成部分对准时使解耦器工作。相应地,提供了一种形成适于表面探测或识别的解耦器的方法,其包括的步骤有i)提供包括具有任选的间隔体的RF标签或低QRF标签的表面,并提供与至少一个电介质层部分或基本全部接触的至少一个导体层,其中,所述至少一个第一导体层具有至少一个缺失区域,其中,所述RF标签位于所述缺失区域内,ii)将步骤i)中的表面与第二导体层或导电表面放到一起,以形成文中定义的解耦器。显然,所述第二导体层可以任选包括位于其表面上的电介质材料,以形成所述电介质层的部分或基本全部。显然,所述RF标签还可以位于所述电介质层的边缘上,其中,所述第一导体层和所述电介质芯层基本具有相同的长度。优点在于,可以通过将组成部分对准这样的工作来形成解耦器。例如,可以将折叠或铰合的物品,例如文件、盒子或门等构造为,在具有低QRF天线的折页的一面上设置第一导体层,在所述折页的第二面上设置第二导体层,因而,在打开状态下,不能读取该书,但是在合上书的页或物品内容时形成了电介质层,并使第一和第二导体层对准,从而形成了根据本发明的解耦器,因而可以询问和读取所述低QRF标签。还提供了一种用于RF标签的单岛解耦器,其用于使所述器件与表面解耦,所述单岛解耦器包括夹在至少一个第一导体层和至少一个第二导体层之间的至少一个电介质层,其中,将所述第一导体层调谐至询问辐射的谐振频率,其中,通过入^2nG确定所述第一导体层的所述长度G,其中,所述至少一个第一导体层具有处于至少一个边缘处的一个缺失区域,在所述缺失区域处,所述第一导体层不覆盖所述电介质层,其中,与所述第一导体层电隔离的RF标签位于所述第一导体层的所述缺失区域的附近。还提供了一种用于RF标签的单岛解耦器,其用于使所述器件与表面解耦,所述单岛解耦器包括夹在至少一个第一导体层和至少一个第二导体层之间的至少一个电介质层,其中,将所述第一和第二导体层独立调谐至询问辐射的谐振频率,其中,通过人^2nG确定所述导体层的所述长度G,其中,与所述第一和第二导体层电隔离的RF标签位于所述电介质层上的缺失区域的附近。根据本发明的又一方面,提供了一种用于RF标签的单岛解耦器,其用于使所述器件与表面解耦,所述单岛解耦器包括夹在至少一个第一导体层和至少一个第二导体层之间的至少一个电介质层,其中,将所述第一导体层调谐至第一询问辐射的谐振频率,将所述第二导体层调谐至第二询问辐射的谐振频率,其中,通过入"2nG确定所述第一导体层和第二导体层的所述长度G,其中,所述第一和第二导体层具有处于至少一个边缘处的一个缺失区域,从而使所述第一导体层的缺失区域不覆盖所述电介质层或所述第二导体层上的缺失区域,其中,电隔离的RF标签位于所述第一导体层的所述缺失区域的附近,并且任选有另一RF标签位于所述第二导体层的所述缺失区域的附近。还提供了一种制作具有波紋纸板电介质芯的纸板解耦器的方法,其包括的步骤有将第一导体层放在第一纸板层上,将第二导体层放在第二纸板层上,将所述第一和第二纸板层放在一起,并使波紋纸板嵌片与其邻接,从而使覆盖所述第二导体层的第一纸板层上的第一导体层上存在至少一个缺失区域。在一个实施例中,所述第一导体层位于与所述波紋纸板嵌片相邻的所述第一纸板层的内表面上,并且/或者,所述第二导体层位于与所述波紋纸板嵌片相邻的所述第二纸板层的内表面上。还提供了一种跟踪物体或容器的方法,其包括的步骤有将在上文中定义的解耦器和至少一个RF标签加到所述物体或容器的表面的部分上,采用RF辐射询问所述至少一个RF标签,探测来自所述至少一个RF标签的响应。下文仅通过举例的方式并参考附图对本发明的实施例予以说明,在附图中图1示出了根据本发明的电磁辐射解耦器的基本表示。图2示出了根据本发明的另一解耦器。图3a和3b分别示出了双岛解耦器的侧^L图和平面图。图4a-c示出了a)UHF标签,其接下来在b)平面图和c)侧视图中将位于四岛解耦器上。图5a-c示出了如例子中所描述的UHF标签在4岛解耦器上的备选位置的平面图。29图6是沿平行于入射电场的狭缝(即,解耦器的长轴)的电场矢量的图表。图7是沿垂直于入射电场的狭缝的电场矢量的图表。图8是沿垂直于解耦器的表面的线的电场矢量的图表。图9示出了沿线1的处于y方向的电场的幅度,所述的线1平行于z轴穿过解耦器电介质芯和上面的空气隙。图10a和b示出了沿3条不同的全部平行于z轴的线的处于y方向的电场的幅度的图表。图11示出了沿线4的处于y方向的电场的幅度的图表(与在图10a和b中生成的一样)。图12示出了凹陷标识板的^f黄截面。图13示意性地示出了凹陷标识—反的构造。图14示出了对于指定几何形状和材4+组合而言凭借Sensormatic读取器实现的读取范围与间隔体厚度之间的关系。图15是在基本谐振频率上解耦器的电介质芯中的电场的幅度的图表。图16示出了具有两个或更多岛的宽带解耦器的横截面。图17示出了在不具有解一禺器的情况下866MHz标签和Sensormatic读取器的性能的曲线图。图18示出了解耦器曲线和与图17中相同的那条读取器曲线的模拟曲线图。图19示出了具有低Q天线(小面积的非优化天线)的单岛标签。图20a和b示出了宽带单岛解耦器的示范性构造。图21a-g示出了第一导体层的各种图形设计的顶视图。图22a和b示出了处于隔离状态下和安装在单岛解耦器上的状态下的低Q标签的例子。图22c示出了低Q天线的示范性示意图。图22d示出了安装到解耦器上的一个天线的例子。图23示出了在各种厚度下,对不同芯部材料的读取范围的影响的曲线图,包括对聚酯的理论预测。图24a和b分别示出了双岛和单岛解耦器,其中,将谐振腔设计为使其在一定的波长范围内谐振,因而提供了宽带操作。图25示出了位于电介质层内的RF标签的横截面。图26a、b和c示出了通过空气隙隔离第一和第二导体层的解耦器的三种构造。图27示出了RF标签具有变化的位置的环形解耦器。图28a示出了用于确定改变第一导体层的长度的影响的实验设置。图28b示出了用于确定改变第二导体层的长度的影响的实验设置。图29示出了用于确定相对于第一导体层旋转RF标签的影响的实验设置。图30示出了不具有第二导体层的宽带解耦器。具体实施例方式来看图1,多层电磁辐射解耦材料包括第一导体层1和第二导体层3。导体1和3夹着电介质芯5。在为了与866MHzUHFRF标签结合使用而构造的解耦器的例子中,每一铜导体层1和3的厚度为2.5微米,电介质的厚度大约为360微米。狭缝宽度(9)为0.490mm。受到调谐的第一导体层(7)的长度为95mm。这样的构造得到了在大约95mm的半波长处的谐振。866MHz在真空中为346mm,在PETG中约为190mm(因而95mm为半波长),因为芯部折射率大约为n=1.8。应当注意,三个层的总厚度(约为400微米)大约是入射辐射的波长的1/1000。图2示出了根据本发明的辐射解耦器的另一例子。在这种情况下,铜层11和13夹着聚酯层15。上部铜层11含有狭缝12。通过将铜层11自动催化淀积岛聚酯层15上来构造图2的结构。采用敏化材料17促进淀积反应。粘合剂层19将聚酯层15接合至底部铜层13。在所形成的并加以测试的例子中,铜层11具有1.5-2.0微米的厚度,敏化物层17具有大约3-4微米的厚度,聚酯层15具有大约130微米的厚度,粘合层19具有大约60微米的厚度,底部铜层具有18微米的厚度。图3a-b示出了根据本发明的双岛解耦器,其具有夹着电介质层25的铜层21和23,所述电介质层25通过粘合层29接合至下部铜层23。通过继之以电解淀积的无电法在敏化材料27上淀积上部铜层21(即"岛"),将所述层构造为含有狭缝22。将RF标签24安装到间隔体26上,以提供与解耦器的表面的隔离。将所述标签加间隔体安装到第一导体层21的顶部,从而使标签中央处的芯片(标签24的平面图b上的黑圆圏)恰好位于两岛之间的中点上。图4a示出了市面可得的标准UHF标签(在这一例子中为866MHz的AlientechnologiesUHF标签)的平面图,其包括芯片37并且带有天线40。标签的宽度(41)为8mm,标签的长度(42)为95mm。这是一个具有能够针对自由空间操作下(假设是自由空间操作)的入射辐射而进行调谐的天线的标签,能够看出,整个RF标签的大部分尺寸被天线所占据。而具有毫米量级的芯片自身则小得多。图4b和4c示出了四岛解耦器。将四个岛31布置到电介质芯部材料35的表面上。通过缺失区域32隔离岛31。所述缺失区域基本相互垂直。它们所处的位置使得两个狭缝32的交叉点穿过解耦器的中心相交。基准标记46表示长度尺寸的绝对中心,基准标记45表示宽度尺寸的绝对中心。将标签34恰好放在交叉点之上,从而使芯片37恰好位于从点46和45绘制的线的交叉点上。岛31具有采用岛长度-入/(2n)的近似式计算的长度44,其中,n是芯部的折射率,这里提供大约95mm的岛长度44(以PETG作为芯部材料)。岛宽度43取决于RF标签的实际尺寸和所采用的询问辐射的波长。在这一具体的例子中,使岛宽度43为标签宽度的四倍,大约为35mm。图5a-c示出了针对RF标签的位置的各种构造的平面图。图5a示出了十六岛解耦器,从而在一幅示意图上对感兴趣的取向举例说明图5b和5c示出了先前讨论的四岛解耦器。将在具体的例子6、7和8中讨论所述构造的效果。尽管上述例子涉及毫米到厘米波长的吸收,但是本领域技术人员将认识到,可以将上述原理应用于不同的狭缝结构、层厚度、岛长度和芯部折射率,以形成能够与e/m光语中的其他部分的辐射,例如,红外光、可见光、无线电波等相互作用的电磁解耦材料。图6示出了由Ansoft⑧提供的高频结构仿真器(HFSS)生成的图表,其用于才莫拟一皮设计为在866MHz下工作的又被称为二光4册(因为可以将其看作具有两个交叉的正交狭缝)的四岛解耦器。尽管模拟了整个解耦器71的性能,但是仅示出了中央部分70的场图案。电介质芯是lmm厚的PET,所述结构的总周期为95.12mm,其宽度为190mm,并且具有0.49mm宽的狭缝。其目的在于识别出具有增强的电场的区域,并确定场强如何才艮据距表面的距离以及沿平行于或垂直于入射电场矢量的狭缝而发生变化。在所有的实例中,入射电场都具有1V/m的幅度,并且平行于图5b中定义的y轴偏振。通过箭头示出了入射电场矢量的方向。能够清楚地看到半波长谐振节点存在于^t型的边界处(位于狭缝之间的中间处),并且在狭缝交叉处具有波腹。从所述图表可以看出,具有增强电场(即,最长的箭头)的区域的中心处于预测的波腹处。方便地,将RF标签放在具有增强的电场的区域上是有利的,因而优选使芯片位于所述交叉点处。图7示出了沿垂直于入射电场的狭缝的电场矢量的图表。注意量度的变化对于原来的狭缝而言,作为与75V/m的对比,场已经增强到了超过120V/m(即,场沿x轴狭缝比沿y轴狭缝更强)。与图6中一样,所述图表也不是针对整个解耦器的,而只是针对中央部分的。图8示出了沿垂直于解耦器的表面的线的电场矢量的另一图表(同相瞬态图),其仍然具有最大值120V/m的量度。电场的强度随着与解耦器表面的垂直距离的增大而衰落。图9示出了处于y方向的电场的幅度如何沿平^f亍于z轴,即穿过解耦器电介质芯的厚度并进入处于其上的空气隙的线(可以看作沿图10a中的线1)而变化。图9示出了被分解为x、y和z分量的来自图7和图8的数据。随着叠加在所述曲线图上的解耦器的位置绘制了y分量,以演示在哪里产生了高场区域。带有狭缝的顶表面31形成于电介质芯35上,并且包括第二金属性表面33。所述曲线图示出了所预期的趋势场在临近所述芯内的下部金属表面处低,并在所述狭缝内增大到220V/m的最大值。在该图中以黄色表示的小狭缝只是被模拟出来表明在z尺度内,即非X或Y尺度内哪里场最高。超过前面的模型的200V/m的增加值归结于数据来自更为高度精细的模型更高密度的有限元网络和更高数量的数据点,从而恰好选出电场的峰值。在解耦器自身之上的空气中,场强高但是随着与解耦器表面的距离的增大而迅速下降。超过10mm,增强场就不再明显,场特性返回至正弦曲线。图10a和b示出了沿3条不同的全部平行于z轴的线(1-3)的处于y方向的电场的幅度的图表。所述线全部穿过垂直于入射电场矢量(即沿平行于x轴的线4)延伸的狭缝。图10b表明,对于所有的三条线趋势相同在狭缝区域内存在高电场,随着沿z轴的距离的增大,即,随着场离开解耦器的表面,该场迅速降低。线2和3的最大场强比线1的最大场强大40VZm左右。其原因可能在于狭缝交叉点,即线1穿过的点处的场线的弯曲。这一点在图11中可以看得更清楚,在图11中绘制了沿线4的场强,其与图8的图表一致。其他因素,例如,标签处于狭缝之上的量也对性能存在影响。图11示出了沿线4测得的并且如图10a和10b所示的处于y方向的电场的幅度的曲线图。线4通过平4亍于x轴的狭缝延伸。所述狭缝为0.49mm宽,并且其中心处于47.6mm处。曲线图上的主要特4正为0.5mm宽,并且其中心处于所述狭缝上,因而可以证实,处于y方向的电场在狭缝交叉处稍弱。但是,将标签放在这一交叉点是有利的,因为其天线沿y轴狭缝布置。对称性表明,沿线2和3的场强应当相等。它们之间的偏差将指示出该解决方案的准确度。作为近似测量沿线2的峰值场强处于比沿线3的峰值场强大10%的范围内,因此可以说所有的场值均带有+/-10%的误差。这是因为电场梯度(dE/dz)是快速变化的函数,其需要高度致密的有限元网络和高密度的数据点来准确地反映其特性。图12示出了凹陷标识板的横截面。标识板58并非按比例绘制,其壁厚与其他部件之间可能并非具有准确的比例。解耦器50具有处于表面层51内的四个岛,所述岛布置在电介质芯部材料55的表面上。通过缺失区域52分离所述岛51。所述缺失区域或狭缝基本相互正交。它们所处的位置使得两个狭缝52的交叉点穿过解耦器的中心相交。将标签54恰好放置在所述交叉点之上,从而使芯片57恰好位于所述交叉点上。利用间隔体材料56将标签54与解耦器50隔开。解耦器的下部金属表面53可以是分立的层,或者在板58的基底由导电材料构成时,其可以形成板58的部分。之后,采用保护层材料59填充板的空隙区,/人而基本包封所述加标签系统,以避免对芯片57和解耦器50造成损坏。该图还示出了处于金属主体或容器内的凹陷部分,因而板58包括处于金属主体或诸如饮料或食物容器内的凹陷。该图并所述凹陷的深度小于lmm,更优选小于0.5mm,乃至小于250樣吏米。图13示出了凹陷标识板58的分解投影图。该板的顶部可以任选具有唇缘60。带有缺失区域52的解耦器50具有放置在两个狭缝的交叉点之上的RF标签54(仅示出了轮廓)。所述解耦器或加标签系统可以反转附着于板58,并且可以涂覆保护层59作为覆盖解耦器的薄板材料。可以从标识板去除所述解耦器50(或加标签系统)和保护层59。所述保护层可以是诸如聚氨酯、环氧树脂、PVC或ABS的适当的化合物。板58可以由任何薄板金属或铸造金属支座。板58可以由任何适当的材料构成,例如,采用冲床形成的lmm厚的软钢,同时诸如合金或铝的更轻的材料同样价格低廉并且易于制造。类似地,标识板的壁可以代表处于金属主体或容器内的凹陷的壁。图14示出了对于在特定的解耦器几何结构内采用的PET薄板间隔体材料而言读取范围对间隔体厚度的依赖性,参考例8。所述结果是借助Seonsormatic读取器得到的,所述读取范围通常小于针对AlienTechnology系统的范围。本领域技术人员应当清楚,不同的读取系统采用具有不同功率水平的发射器。因此,只有在针对同一系统比较结果时绝对读取范围才具有重要性。功率更大的发射器能够获得更大的读取范围。因此,只能将所有实验中的结果作为趋势考虑,而不是凭借每一可用系统得到的绝对读取范围。但是,功率更大的发射器无法减轻附近的诸如金属的RF反射表面的影响。图15示出了在基本谐振频率上处于解耦器的电介质芯内(从图表的底部看)以及处于狭缝的附近的电场的幅度的图表。阴影越淡,电场越强,狭缝之上的白色区域表示大约150到200倍的场增强。图16示出了宽带解耦器,即,可以在不只一个频带处对辐射解耦的解耦器的横截面。图16a和16b示出了两个示范性构造,二者均以二岛解耦器原理为基础。在图16a所示的例子中,所述解耦器具有形成上述解耦器结构的第一导体层71、电介质层72和第二导体层73,即,电介质72夹在导体层71和73之间。将第一导体层设计为对处于频率入B上的辐射解耦(并且其可以具有入B/2的周期),将所述第一导体层形成为通过缺失区域隔离的两个岛。可以将RF标签76B放置在所述缺失区域之上。此外,在第二导体层73的相反表面上,将电介质层74夹在额外的导体层75和第二导体73之间。这一额外的导体层也是两岛结构,其被设计为对处于频率人A上的辐射解耦(并且其可以具有入A/2的周期)。可以将与标签76b具有不同工作频率的第二RF标签76a放置到导体层75的缺失区域上(通过与放置在层71上的标签76b类似的方式)。在需要具有不同谐振频率的RF标签时,这种方案是有用的。为了更加清晰地示出解耦器的具体结构,在某些示意图中,简化了RF标签,只采用方框对其加以表示,其可以代表低Q或普通RF标签,并且可以任选将其安装到间隔体上。图16b示出了宽带解耦器的不同结构。在这一结构中,分别通过电介质层74和72隔离不同的半波长导体层75和71,并且所述的不同的半波长导体层75和71二者都安装在第二导体层73的同一第一(上)表面上。层75的长度使得通过与解耦器的其他尺寸和材料相结合,能够产生对应于频率入A的谐振,并且层71具有通过相同的机制对应于频率人B的长度。可以存在一个或多个安装在层71的表面上的RF标签76a和76b,所述标签在频率入A和人B上启动。有可能4吏这一结构具有位于所述第二导体层73的两面上的两个或更多解耦器,从而提供4个或更多的不同频率。图17示出了采用既具有自由空间内的(即未安装在解耦器上)866MHz标签又具有Sensormatic读取器天线的矢量网络分析器测得的性能的曲线图。读取器曲线越深,读取器天线发射的功率越大。标签曲线越深,标签从读取器天线发射的波中获取的功率越大。进入标签的功率越大,读取范围越大,因此,最好使两个曲线的中心处于相同的频率上标签优选在读取器发射最大功率的频率处采集功率。尽管对准两条曲线将产生最佳性能,但是如果其曲线与读取器曲线的任何部分重叠,标签将以较小的读取范围工作。图18示出了与图17所示的同一读取器相比,根据本发明的解耦器的性能的才莫拟曲线图。所述解耦器截取由读取器天线发射的功率。在高电磁能点处将这一功率通过缺失区域导入到所述第一导体层和第二导体层之间的电介质芯内。正是采用这些强电场为所述标签提供功率。所述解耦器很像所述读取器和标签,其在一定的频率范围内截取功率,并优选在某一特定功率处工作。如图17中所示,通过使最大的功率量进入解耦器并由此进入标签而实现解耦器上的标签的最大读取范围。可以通过使两条性能曲线,即解耦器、标签和读取器的性能曲线的中心对准而实现这一目的。已经发现,最初针对866MHz设计的解耦器也能对在自由空间内的915MHz处工作的标签解耦。Alien915MHz标签与Alien866MHz标签非常类似,唯一的差别在于针对915MHz调谐的天线的主块(mainbulk)。两种标签的天线都结合了阻抗环,所述的相关阻抗环大致等同。已经表明,解耦器使得天线的主块变得多余。因此,在天线处于解耦器上时,只有阻抗环相关。该图是针对Sensormatic套件的。其目的在于比较谐振频率和带宽。因此,解耦器曲线优选落在所述系统(解耦器加标签)工作的读取器曲线内,更优选所述谐振频率(两条曲线的最小值)应当重合。解耦器仍然截取优选处于866MHz处的功率,几乎不截取处于915MHz处的功率,因为在该频率上其性能曲线接近0dB,这一点可以从曲线图上看出(需要一定的外延)。因此,尽管所述标签一皮设计为在915MHz上工作,但是其被驱动至866MHz上的操作。这是可能的,因为芯片将几乎在866MHz上工作,正像其将在915MHz上工作一样。因此,解耦器将在一定频率范围内起作用,但是在解耦器、读取器和(具有较低的重要程度的)标签在相同的频率上工作时,将获得最高性能。图19示出了安装在单岛解耦器上的具有低Q天线(小面积天线)86的标签。所述解耦器具有与二岛解耦器类似的结构,只是在第一导体层81上具有一个岛,缺失区域87位于第一导体层81的末尾。第一导体层81和第二导体层83夹着电介质层82。第一导体层的长度将决定解耦器的频率(对于具体电介质层而言,还决定材料和厚度,以及(在较低的程度上)决定导体层的导电性)。图20a和b示出了宽带单岛解耦器的两个示范性构造(基于图16a和b)。图20a示出了一种宽带解耦器的横截面,在所述宽带解耦器中提供了第二导体层93,在第一表面上具有第一导体层91,电介质层92夹在导体层91和93之间。将第一导体层设计为使所述解耦器对处于频率入B的辐射解耦(并且其可以具有入B/2的周期)。可以将RF标签96放置在缺失区域之上。类似地,在第二导体层93的第二表面上具有电介质层94,所述电介质层94夹在额外的导体层95和第二导体93之间。将这一额外的导体层设计为对处于对应于波长人A的频率上的辐射解耦(并且其可以具有入A/2的周期)。可以将RF标签96放置在缺失区域97上。在需要具有不同谐振频率的RF标签时,这种方案是有用的。图20b示出了宽带解耦器的不同构造。在这一构造中,分别通过电介质层94和92分离导体层95和91,并且将导体层95和91二者安装在第二导体层93的同一第一表面上。层95对应于波长入A,层91对应于波长入B。可以在层91的表面上安装了在对应于波长入A和入B的频率上启动的一个或多个RF标签96。有可能使这一结构具有位于所述第二导体层93的两面上的两个或更多解耦器,从而提供4个或更多的不同频率。图21a-g示出了针对具有缺失区域102的第一导体层101的各种几何设计的平面图,其中,将RF标签106放置在所述缺失区域上。图a-d是单岛解耦器,可以根据物品或者可以为所述解耦器提供的表面选择其形状或几何形状。第一导体层可以优选显示出谐振金属/电介质/金属腔长度,入"2nG/N,(所述系统仍然是谐振的),其中,入是处于发生最大耦合的入mm到入max的范围内的波长,n是电介质的折射率,G是至少一个第一导体层的腔长度,N是大于等于l的整数。可以存在一个或多个放置在所述缺失区域或狭缝上的标签,在理想的情况下,其所处距离满足上述关系。例如,在图b中,在第一导体层的一个、两个、三个或四个侧面上均可以存在缺失区域。可以纟姿照具有若干条边(n)的任何多边形形状形成所述解耦器,所述多边形形状含有1到n个相应的缺失区域。其将倾向于提供一种基本为圆形的构造,例如图d所示。在备选构造中,可能希望采用具有多个RF标签的偏振相关解耦器,这样随着RF标签进入与询问场的对准状态,RF标签随后启动,由此可以推断物品相对于偏振辐射源的取向。图c、d、e、f和g示出了基本为圆形的解耦器,所述解耦器基本与偏振无关,因而不管入射的RF场的方向/偏振如何,均可以实现对所述标签的询问。图f示出了与偏振无关的标签的特定优选构造,其中,第一导体层101具有环形缺失区域或狭缝102。可以将RF标签106,尤其是具有标称尺寸天线的低Q标签放置在这一狭缝的任何位置上。已经表明,在这一特定构造中,所述第一导体层的其余部分的形状,即,处于环形狭缝之外的整个解耦器的形状未必是环形的,实际上,非环形的外部形状看起来是有利的,另一个优点在于基本非均匀的外侧形状,已经38表明,在狭缝的直径接近入/4,而不是像其他解耦器设计那样接近入/2时,获得了最为有利的结果。图f的侧视图示出了夹着电介质层102a的第一导体层101和第二导体层101a,其中,缺失区域102存在于所述第一导体层内。另一优选构造为图21g,其中,在第一导体层101内存在扩大的缺失区域102,RF标签206位于所述缺失区域的边缘上。图22a示出了低Q标签116的例子,其具有连接至芯片117的小电感/阻抗环118。再来参考图4a,可以看出,调谐标签具有芯片和有效电感环,此外还具有额外的显著量的调谐天线结构。因此,可以认为低Q标签是调谐标签的较小的变型。低Q标签116无法在所设计的频率上在自由空间内工作(但是在周长等于波长时可以在较高的频率上工作,接近6GHz),除非读取器位于距芯片1或2mm的距离内,因为天线118不足以耦合至入射辐射。可以将仅仅比芯片自身稍大的低Q标签放置在根据本发明的任何解耦器上。在图22b中,标签116位于单岛解耦器的缺失区域112(电介质层的部分,参考图19)上,所述单岛解耦器具有第一导体层111(其他层未示出),所述第一导体层111优选与RF标签读取系统的频率匹配。所述读取范围与在自由空间内使用的优化RF标签(例如图4a所示)的读取范围相当,但是读取范围的任何小的损减可以由解耦器和标签的非常小的面积补偿。所述解耦器和标签可以具有只是刚好大于入《2nG/N的长度。其对于诸如衣物标签、小型消费品的小型物品而言,或者对于更加隐蔽的加标签系统而言是一种理想的尺寸。图22c示出了针对低QRF标签的若干设计,低QRF标签是指基本去除了天线设计(如图4a所示),从而只保留如图22a所示的小的环部分的RF标签。或者,可以采用朝向间隔体延伸或者部分包围所述间隔体的端"臂"替代所述的小的环部分,因为,如果能够与准确设计的解耦器结合,即使两个短的金属"截线"也足以将能量耦合到芯片内。在图22d中,示出了低QRF标签,其中,环部分沿两个相交狭缝的轴布置,由此提高了RF标签的偏振无关性。图23示出了三种不同的芯部材料在不同的厚度下对读取范围的影响的曲线图,在下文中将参考例IO对其做进一步说明。图24a示出了具有至少一个狭缝125的二岛解耦器,所述狭缝125并未显示出从解耦器的一个边缘开始的单一均匀距离(即,其并非相对于所述的解耦器的边缘平行)。其提供了一种能够在一定波长范围内工作的解耦器。因此,解耦器可以跨越其工作的波长可以根据狭缝相对于所述的解耦器的边缘的角度以增量"5"增大或降低"X"。也可以将这一原理应用到具有四个或更多岛的解耦器上。还可以将相同的原理应用于图24b所示的单岛解耦器,其中,所述第一导体层上的缺失区域的边缘形成了不平行于解耦器的远边的线。这一原理可以对处于提高的波长范围内的辐射解耦。所述波长范围仅受解耦器的初始尺寸和狭缝相对于解耦器边缘的角度的限制。还可以将这一原理与图16a和b以及图20中采用的宽带解耦器结合使用。图25示出了在布置在电介质芯部材料128的表面上的第一导体层127中具有两个或更多岛的解耦器126的横截面。通过缺失区域隔离岛127。标签129位于缺失区域的下面。利用间隔体材料131使标签的天线130(如果存在的话)与第一导体层127隔离。解耦器的下部金属表面132可以是分立的导体层,或者其可以形成向其施加解耦器的导电表面的部分。必须使标签129及其天线130(如果存在的话)与第一127或第二132导体层电隔离。因而通过解耦器结构和电介质层的材料对RF标签提供了保护。图26a示出了采用空隙138作为电介质层的解耦器。可以在支持层上制备解耦器,或者所述解耦器可以利用容器或盒子的一部分实现支撑。具有上面143的容器可以具有按照如上文定义的任何图案淀积在143的内表面上的第一导体层137,所述第一导体层137可以具有单岛或多岛设计。在缺失区域处,可以使作为低Q或普通标签的RF标签139a借助任选的间隔体141位于缺失区域之上。或者,可以使RF标签139位于容器的上表面143上,从而使容器或盒子的上表面143起着任选的间隔体的作用。容器的侧面144提供了在容器的上表面143和容器的下表面145之间建立空隙138的支撑机构。可以在容器的下表面145的第一或第二表面上根据文中定义的任何方法淀积第二导体层142。尤为方便的做法可以是将第一137和第二142导体层以及RF标签139放置在空隙138内,以提供保护。可以采用诸如空气隙、局部真空的电介质流体或者采用惰性气体或惰性液体填充所述空隙。例如,还可以采用非导电的高孔隙率泡沫或非导电的电介质填充材料填充所述空隙。在与RF标签结合使用时,约为入射RF波长的波长的1/170的1到2mm的空气隙已经提供了有用的读取范围。在图26b中,存在与图26a中相同的特征,只是可以不存在容器的侧面,所述侧面可以由非导电通孔或非导电支撑机构144a替代,以提供电介质层138的正确厚度。在图26c中,存在与图26a或26b中相同的特征,只是第一导体层137形成了单岛解耦器。于是,可以将RF标签139或139a放置到上表面143的任一面上。方便地,非导电支撑机构144a还可以是容器的侧面144,如图26a所示。方便地,图26a到c所示的解耦器可以分别结合文中定义的任何特征,例如,利用一个或多个第一导体层建立宽带解耦器,或者利用图案建立基本上与偏振无关的解耦器。图27示出了针对例13的构造。图28a和b示出了针对例16的构造。图29示出了针对例17的构造。图30示出了具有修改的第二导体层的宽带解耦器。提供了电介质芯层99,在其上面具有对应于第一波长的第一导体层98,RF标签97基本位于所述缺失区域内(处于具有高电场的区域内)。在电介质层99的下表面上还有另一导体层98a,其可以和层98对应于相同或不同的波长,其中,RF标签97a基本位于缺失区域内(处于具有高电场的区域内)。所述设置基本上提供了具有安装在电介质层的任一面上的包括缺失区域的第一调谐导体层,所述两个第一导体层任选在长度G上相同或不同,这一点已经在前文中有所界定。可以优选将这一构造作为允许采用低QRF标签的具有降低的覆盖面积的加标签标牌使用。本发明的例子例1采用非导电催化剂墨水(由SunChemical提供的,产品名为QS1、QS2或DP1607,如申请GB0422386.3所公开的)将解耦单元,即第一和第二导体层丝网印刷(双面)到具有已知电特性的聚合物(形成电介质芯)上。UHF解耦器的尺寸取决于所述聚合物的电特性和厚度。例如,采用Qmnn塑料,即厚度为lmm的Spectar级PETG薄板,相对介电常数为3.2,由此得到95mm的解耦器周期和190mm的最小解耦器长度(采用島长度《入/(2V(介电常数)的近似式,其中,所述折射率近似等于介电常数的根)。在聚合物的正面印刷解耦器图案,即,通过两条在解耦器的中心相交的正交线分离的四个等尺寸的岛。将解耦器的反面印刷为实面区。通过将样本在大约8CTC下加热10分钟(对于QS1和QS2系统)或者通过UV固化工艺(对于DP1607)使所述墨水固化,在两种情况下均使墨水凝固并附着至衬底。之后,将所印刷的样本放到市面上可得的无电镀溶液(例如,处于46。C下的Enthone2130⑧或者处于52。C下的RohmandHaas4750)中,并且仅在覆盖了催化剂墨水的区域上淀积铜金属,淀积厚度为0.1-3.0微米。明确定义无电淀积的速率,由此可以将淀积厚度作为暴露时间的函数予以监测。如果需要,可以任选对无电淀积的材料进行电极淀积。之后,将所得的产物与间隔体层压,所述间隔体放置在解耦器的正面和UHF标签(在这一例子中,是由Alientechnologies制造的866MHz的15微米UHF标签)之间。典型的间隔体材料是聚合物膜,例如,HififilmsPMX946250微米PET膜。将UHF标签和间隔体按照其中心放在作为所述正交线的交叉点的缺失区域之上。例2采用导电墨水,例如,AchesonElectrodagPR401BCarbon墨水或AchesonElectrodag503银墨水,将解耦单元(双面)丝网印刷到具有已知电特性的聚合物上。UHF解耦器的尺寸取决于所述聚合物的电特性和厚度。例如,采用Qumn塑料,即厚度为1mm的Spectar级PETG薄板,其相对介电常数为3.2,由此得到95mm的解耦器周期和190mm的最小解耦器长度。按照解耦器图案印刷所述聚合物的正面,将反面印刷为实面区。通过加热样本使墨水固化(对于AchesonElectrodagPR401BCarbon墨水和AchesonElectrodag503银墨水),其使得墨水凝固并附着至衬底。之后,将所得的产物与功能性间隔体层压,并按照与例1中定义的方式相同的方式将其安装到解耦器上。例3采用覆盖了金属的聚合物膜(例如,DuPontMylarPET膜),将蚀刻抗蚀剂(例如,SunChemicalXV750)丝网印刷到所述金属表面上。一旦干燥,所述蚀刻抗蚀剂就会按照解耦器的图案附着至所述金属的表面。之后,将所述膜放到腐蚀性溶液内(例如,放到来自OldBridgeChemicals公司的MAXETCH20R内)。这一过程去除了未被覆盖的金属区域,从而仅保留非导电衬底。之后,将金属化已构图膜层压到芯部材料上,并借助作为背板使用的另一金属化非构图膜将其夹在中间。之后,其需要例1和例2中定义的间隔体层压和加标签。例4解耦器测试方法866MHzUHF标签读取系统(例如,Sensomaticagile2读取单元)设有作为866MHzUHF标签的探测单元的计算机接口。将读取器天线沿固定矢量放置在台面(standfacing)上,并沿这一^各径放置巻尺,以评估每一标签的读取范围。将所有的金属物体从读取器场区域移开,从而使反射性读取降至最低。采用866MHzUHF标签(例如,AlienTechnologies标签),并将其放在纸板(cardboard)衬底上。将其从大约5m的距离处径直朝向读取器天线移动,同时观察读取器显示,采取标签能够在1分钟的时间段内给出恒定读取结果的最大位移作为读取范围。采取这一值作为所采用的具体UHF标签的标准读取范围。之后,将所述标签安装到所述解耦器上,而所述解耦器自身则附着至金属衬底(在这一例子中,从滚笼一侧附着至标识板)。将所述标签、解耦器和金属衬底放到EM场内,找到该系统在1分钟的范围内稳定地读取标签的点。采取该值作为解耦标签系统的读取范围。例5采用例4中简要描述的方法识别在将解耦器安装到金属衬底上时UHF标签在解耦器上的最佳的2D位置。图5a、b、c示出了标签和解耦器系统的相对位置。图5a示意性地示出了放置在缺失区域或狭缝上的标签的可能的位置。在应用于四岛解耦器时,获得了下述数据<table>tableseeoriginaldocumentpage43</column></row><table>表l:标签相对于解耦器的相对位置。才艮据采用866MHzUHF标签的测试,可以发现,在标签的芯片位于缺口上时读取范围显著提高。在使所述芯片(进而与其天线一起)按照其中心放置在两个正交的缺口或狭缝的交叉点上时,将进一步提高其读取范围。例6图5b示出了处于狭缝的交叉点处的精确位置对位于根据上述例子制备的四岛解耦器上的UHF标签的读取范围的影响。其作用在于表明在将标签放置到解耦器上的过程中制造公差可能影响解耦器的有效性,因而影响标签的读取范围。实验参考位置参考读取范围(m)<table>tableseeoriginaldocumentpage44</column></row><table>表2:标签相对于四岛解耦器的精确位置参考表2,位置0,0表示解耦器单元的绝对中心。将标签的中心看作是芯片的位置(尽管,在这一实例中,芯片并非是RF标签的中心)。已经发现,在标签的芯片按照其中心位于两个正交的缺失区域或狭缝的交叉点处时,即处于点O,O时,读取范围显著增大。与直接放置在金属表面上的RF标签的零读取相比,沿x或y轴的几mm的小偏差仍然能够提供有用的读取范围。例7图5c示出了处于所述交叉点处的方位角位置对UHF标签的读取范围的影响。<table>tableseeoriginaldocumentpage45</column></row><table>表3:标签相对于解耦器上的狭缝的绝对旋转位置参考表3,位置参考角a°表示距解耦器单元的狭缝的旋转角。采取0°的读取作为这样一种情况,即,将所述标签对准为平行于y轴狭缝(尽管在该实例中,芯片并非处于RF标签的中央)。已经发现,在即处于点0°时,读取范围显著增大。与直接放置在金属表面上的RF标签的零读取相比,与狭缝的平行关系的小偏差,例如小于6。的旋转,仍然能够提供有用的读取范围。超过10°的更为明显的偏差仍然能够实现对标签的读取,但是读取范围显著降低。例8可以通过(例如)优化间隔体厚度实现向最大读取范围的改善(与自由空间内的隔离标签相比)。如图14所示,与在自由空间内读取的标签相比,解耦器和标签之间的电介质间隔体可以提高标签的读取范围。由于引入了具有提高的厚度的PET间隔体,因此标签开始提高其读取范围,直到间隔体厚度为300微米左右时,其响应将等同于隔离标签的响应。有趣地,在400微米处,获得了4.5m的读取范围,比期望的最大值增加了0.5m。间隔体厚度的进一步增大将略微降低这一值,尽管其仍然在实质上等于隔离标签的值。在IOOO微米之后,读取范围下降(在这一例子中未示出),但是标签可以仍然在RF反射表面上工作。显然,这些值表明,与RF标签的未加修饰的自由空间的性能相比,解耦器可以提高RF标签的读取范围。这些结果是针对Sensormatic套件特定的,显然对于不同的RF标签或读取系统最佳隔离/间隔体厚度可以是不同的。可以看出,解耦器执行从天线陷获入射的866MHz的辐射,并将能量导入到RFID内的功能。如图15所示,狭缝内的以及刚刚位于所述狭缝上的电场强度强(通常增强150到200倍),如果将标签放置在金属表面之上的合适高度上,那么所述电场可以与所述标签相互作用。前面已经成功地展示了PET芯部器件(复电容率(3.20,0.0096)),虽然诸如FR4(电容率(4.17,0.0700))的损耗较大的芯部材料可能无法像PET那样有效地起作用,但是FR4仍然能够提供非常有用的读取范围。上述实验5到8中的读取范围是例5中定义的标准化的读取范围测量值(稳定的l分钟读取)。与基本上中心放置的标签的偏差(角位移和/或线位移)仍然提供了能够在金属表面上询问的标签。方便地,标签在解耦器的狭缝上的准确的居中性并非是解耦器起作用的先决条件,但是其确实能够提供改善的性能。但是,在实际情况下,只需要标准化(l分钟)读取时间的一部分来获得询问和来自标签的响应,因而标签的实际读取范围可以大于实验中给出的读取范围。例9可以通过例1中的方法形成四岛解耦器。所述解耦器是针对866MHz标签制备的,并且是采用1000微米的聚酯芯制造的。AlienTechnologies866MHz标签按照其中心设置在缺失区域上,以提供最佳响应。将不带解耦器的RF标签和处于解耦器上的RF标签安装到各种表面和物品上,以评估所述表面对普通RF标签的影响和解耦器的有效性。所述读取系统为Sensormatic⑧套^f牛。<table>tableseeoriginaldocumentpage47</column></row><table>表4:不带解耦器的RF标签和具有1000Mm的聚酯解耦器的RF标签的读取范围。不出所料,自由空间内的解耦器的读取范围与在自由空间内处于320cm处的标签的读取范围匹配。可以看出,纸板盒内的消费品的存在使不带解耦器的标签的读取范围降到在自由空间内获得的读取范围值的三分之一到二分之一。采用解耦器的优点在于,读取范围实际上与自由空间内的读取范围相同,并且与安装表面无关。使纸板变湿乃至使其湿饱和几乎不会对解耦器能够承担的读取范围带来差异,而在不采用解耦器的情况下,其将使读取范围急剧降低。只有遮挡解耦器表面的50%才会使读取范围略微降低。显然,其能够克服有的人企图将物品隐藏在他们的衣服或类似材料下的尝试。例10在各种不同的芯部厚度上测试了三种不同的芯部材料聚酯、聚丙烯和聚碳酸酯。第一和第二导体层图案都具有相同的几何形状和厚度,并且针对866MHzRF标签和读取器受到了优化。将解耦器放在金属表面上,从而使不带有解耦器的RF标签提供基本为零的读取范围。根据图23中的曲线图,随着芯部厚度的增大,读取范围也增大。已经得到了验证的模拟(如例11所示)表明,在使芯部厚度从1000微米增大到2000微米时,读取范围只有几厘米的增加。自由空间内866MHz上的波长为346mm。如果芯部材库牛为聚酯,那么在866MHz上所述材4牛中的波长为193mm。因而,如果芯部厚度为lmm(1000微米),那么所述材料的厚度是自由空间波长1/346或者材料波长的1/193。因此,在所述材料内的波长是自由空间波长除以折射率,就聚酯而言,折射率接近1.8。<table>tableseeoriginaldocumentpage48</column></row><table>表5示出了占图23中测试的波长的比值例11按照采用HFSS确定的将在866MHz处提供最大的场增强的尺寸制造一系列解耦器。为了确保最佳性能并验证模型HFSS,执行了一系列测试。这些测试需要采用解耦器开始,所述解耦器具有位于上层的金属岛,所述金属岛比从HFSS获得的必要值要长。随着通过蚀刻其材料使金属岛的长度逐渐缩短来测量读取范围,所述蚀刻从解耦器的末端开始并朝向中心进行。下面示出了针对原型聚碳酸酯解耦器的结果。通过这些测试确定的最佳金属岛长度与通过HFSS建模确定的非常吻合。<table>tableseeoriginaldocumentpage48</column></row><table>表6:针对866MHz标签的优化岛长度。例12评估具有不同芯厚度和宽度的一系列单岛解耦器。根据例1的方法,采用铜作为导体层,并且采用PETG芯制备解耦器。解耦器的图案是图22b所示的图案。所采用的标签是具有图22a所示的类型的低Q天线(即,未针对866MHz处的使用而优化)。自由空间内的标签的读取范围几乎可以忽略,因为其不具有优化天线。类似地,在将低Q标签直接放置到金属表面上时,也不存在读取范围。下述表格示出了位于解耦器上的RF标签的结果,其中,将解耦器放在金属表面上。解耦器长度(mm)宽度(mm)厚度标签类型金属上的读取范围<table>tableseeoriginaldocumentpage49</column></row><table>显然可以看出,解耦器能够使低Q标签与金属表面解耦。随着芯部厚度的增大,RF标签的读取范围也增大。类似地,对于固定芯部厚度而言,随着标签宽度的增大,读取范围也增大。某些应用,例如,跟踪运销容器将受益于面积较大、芯部较厚的解耦器,因为读取范围可能是一项重要的指标。但是,在售货点或收银台处,消费品可能只需要几厘米的读取范围,因而其可能受益于面积较小的、较薄的标签。可以用作电介质芯的其他材^l"为泡沫材if牛,例如,PVC、聚苯乙烯等。这一材料的电容率的实部非常小,虚部亦如此。这有助于制作非常薄的解耦器,因为较小的电容率将以小厚度提供良好的读取范围。为了使泡沫金属化,可能必须建立层压结构,其中,在非常薄(例如,IO微米)的聚合物膜上淀积金属,之后将其粘到泡沫芯上。或者,可以采用高规格射频层压体。存在各种针对高度有效的射频电路的制造而特殊设计的PCB层压材料。这些PCB层压材料由金属-电介质-金属夹层结构构成,其中,可以有选择地蚀刻上部金属层,以制造解耦器。例子包括RogersRO4003或TR/Duroid5880、ArlonDiClad880、NeltecNY9220或TacomcTLY。其他备选材料包括陶瓷材料;这些材料具有高实电容率,因此能够得到更薄的、柔软性更低的解耦器例子包括氧化铝、硅石、玻璃等。甚至可以希望采用诸如硅橡胶的合成像胶,因为它们具有柔软的特性。此外,将填充剂混合到合成像胶基质内能够实现对材料特性的修整。例13通过将环形狭缝(x)刻到半径为4.65cm的圆形铜-PETG-铜层压体上的第一导体层的铜层内制备具有图21f所示的类型的与偏振无关的解耦器。将所述标签安装到间隔体上。使电感环位于狭缝上(图27,位置x),并按照先前的详细说明采用读取系统测量读取范围。已经发现,与天线和狭缝正交时相比(图27,位置b),在环天线基本上处于与所述曲线相切的位置时(图27,位置a),提高了读取范围。内圆的直径从30mm的直径增大到50mm的直径,并执行读取范围的测量,以及对能够读取标签的旋转角范围的测量。<table>tableseeoriginaldocumentpage50</column></row><table>表8:环形狭缝的直径对读取范围的影响随着内圆直径的增大,读取范围大体上降低,针对所述读取范围可以达到的旋转程度也大体上降低。整个解耦器的形状的变化(例如,处于环形狭缝之外的圆形、方形、矩形、四边形区域)对性能也存在一定的影响,因而读取范围并非与总面积简单地成正比。在与圆形狭缝结合使用时,整个解耦器的形状优选为具有非均匀的边的四边形。不对本发明的构成限制的一种可能的解释是,规则的形状可能表现出次级谐振效应,该效应将对狭缝谐振造成有害干扰。例14采用由纸板电介质层制备的单島解耦器执行一系列实验。研究通过去除或修改第二导体层和隔开(standoff)距离而改变谐振腔所带来的影响。针对全尺寸天线(即,市面上可得的具有调谐天线的天线,通常长度为95mm)和具有环天线的低QRF标签(最长尺寸小于20mm)进行实验。<table>tableseeoriginaldocumentpage51</column></row><table>表9:谐振腔对自由空间内的读取器的影响。在这一实-睑中,使RF标签(Alientechnologies)位于图28a所示的最佳位置,其中,使RF标签在具有提高的电场强度的点处位于缺失区域之上,该点与第一导体层相距0.5mm,并且还与解耦器相隔小于1000微米的距离。在整个实验中所述固定点保持不变。对于全尺寸RF标签而言,所测的空气中的读取范围为7m,这正是制造者所预期的自由空间内的读取范围。在使标签位于只具有经调谐的第一导体层和电介质层的结构(即,不完整的"无背板"解耦器)上时,读取范围不变。这一点仍和预期一样,因为在这一设置中第一导体层起着较差的天线的作用。应当注意,在将整个RF标签直接放置在第一导体层的中央时,读取范围为0m。这一点也和预期一样,因为已知金属将扰乱RF标签。在使全尺寸RF标签位于经调谐的解耦器上时,读取范围略有增大,达到了8m。从上述详细的实验(实验1-13)已经表明,位于解耦器上的RF标签所提供的读取范围几乎与在自由空间内和在金属等表面上所提供的读取范围相同。如果将市面可得的经调谐的RF标签专用于自由空间内,那么解耦器只是略有助益。但是,在将RF标签放置在金属表面(或任何其他与RF辐射相互作用的表面)附近时,所述解耦器能够提高超越现有技术的接线天线或平衡天线的显著优势。对于具有低Q环天线的RF标签而言,在空气中的读取范围一般,即30cm。在将低QRF标签放置在只具有一个导体层和电介质层的结构上时,读取范围进一步略微增大至大约lm。但是,在将低QRF标签放在调谐解耦器上的最佳位置时,读取范围大幅提高。现在,读取范围接近市面可得的全尺寸天线在自由空间内的读取范围。此外,根据先前的实验(1-13)已经表明,在安装到解耦器上时低QRF标签所提供的读取范围实质上与在自由空间内以及放置到金属表面上或者形成金属表面的组成部分时所提供的读取范围相同。例15前面的实验已经表明,RF标签与解耦器的第一导体层之间的优化隔离距离出现在优选小于1000微米的距离处,如图14所示。开展实验以表明解耦器按照与在电介质层上承载天线的衬底不同的模式工作。再次制备实验14中采用的导体层位于电介质层上的结构,并改变市面可得的RF标签与第一导体层之间的距离。在250微米到4000微米的范围内,RF标签的读取范围保持7m。因此,其表明,"无背板"解耦器和标准UHF标签之间的相互作用不同于全解耦器(即,包围芯结构)和该标签之间的相互作用。例16通过使第二导体层的重叠减少量"d,,测试第二导体层的长度及其对谐振腔的类似形成的影响,如图28b所示。在这一实验中,第二导体层是大金属薄板。不具有解耦器的市面可得的RF标签提供了基本为0m的读取范围。在这一设置中,改变第二导体层的重叠度。这一点是通过相对于金属薄板移动电介质和第一导体层实现的。<table>tableseeoriginaldocumentpage52</column></row><table>表10:随着第二导体层的偏移量的增大的标签的读取范围随着重叠度的降低(即,"d"变大),在第一和第二导体层之间建立的腔的长度缩短,因而其预期谐振波长将偏离RF标签谐振频率的谐振波长。正如预期的一样,在使腔的长度短于最佳调谐腔长度时,读取范围显著降低,即,从8m降低到不足3m。此外,其证明,正是腔结构(即,金属/电介质/金属三层)支配着解耦器的特性,而不是简单地受第一导体层表示的金属补片的存在的支配。例17这一实验确定了放置到单岛解耦器上的环天线的旋转度的影响,如图29所示。<table>tableseeoriginaldocumentpage53</column></row><table>表11:角对读取范围的影响在这一实验中,将读取范围作为所取得的90°最大读取范围的百分比测量。从图29可以看出,90°取向是指,环天线的长轴平行于谐振腔中生成的电场。在这一取向内,跨越天线的两个端子建立了电势差。解耦器的旋转可以引起天线于较小百分比的电场相互作用。根据结果显然可以看到,电场的幅度足以容许相对较大的旋转,所述旋转优选处于30°到150°的范围内,更优选处于70°到110°的范围内,更优选基本为90°。制造容差应当优选处于85。到95°的范围内。与采用四岛解耦器和标准RF标签的较早的旋转实验相比,在解耦器的表面上旋转标签对处于单岛解耦器上的低Q天线的影响程度更低。上述实验与图6到图17(包括图6和图17)所示的模拟数据具有良好的相关性。权利要求1.一种用于电子器件的辐射解耦器,所述解耦器包括夹在至少一个第一导体层和至少一个第二导体层之间的至少一个电介质层,其中,所述至少一个第一导体层具有至少一个缺失区域,在所述缺失区域处,所述第一导体层未覆盖所述电介质层,所述解耦器适于在使用中使电磁场在所述第一导体层的所述缺失区域附近被增强。2.—种用于电子器件的辐射解耦器,其用于使辐射与导电表面解耦,所述解耦器包括与至少一个电介质层接触的至少一个第一导体层,其中,所述至少一个第一导体层具有至少一个缺失区域,在所述缺失区域处,所述第一导体层未覆盖所述电介质层,所述解耦器适于在使用中使电磁场在所述第一导体层的所述缺失区域附近被增强。3.根据权利要求1或权利要求2所述的解耦器,其中,所述第二导体层至少具有与所述第一导体层相同的长度。4.根据前述权利要求中的任何一项所述的解耦器,其中,所述电子器件为RF标签。5.根据前述权利要求中的任何一项所述的解耦器,其中,所述解耦器的厚度小于入/4n,其中,n是所述电介质的折射率。6.根据权利要求5所述的解耦器,其中,所述解耦器的厚度小于入/10。7.根据权利要求6所述的解耦器,其中,所述解耦器的厚度小于入/300。8.根据权利要求7所述的解耦器,其中,所述解耦器的厚度小于入/1000。9.根据前述权利要求中的任何一项所述的解耦器,其中,由G-入/2n确定所述第一导体层的至少一个边缘与所述缺失区域之间的间隔G,其中,n是所述电介质的折射率,入是所述解耦器的操作的预期波长。10.根据前述权利要求中的任何一项所述的解耦器,还包括与第二电介质层相邻的第三导体层,其中,所述第三导体层具有至少一个缺失区域,在所述缺失区域处,所述第三导体层未覆盖所述第二电介质层,并且其中,所述第二电介质层位于所述第三导体层和所述第二导体层之间。11.根据权利要求10所述的解耦器,其中,所述第一导体层的长度不同于所述第三导体层的长度。12.根据前述权利要求中的任何一项所述的解耦器,其中,在所述第一导体层内存在多个缺失区域。13.根据权利要求12所述的解耦器,其中,所述多个缺失区域实质上是周期性的。14.根据前述权利要求中的任何一项所述的解耦器,其中,所述缺失区域为狭缝结构。15.根据前述权利要求中的任何一项所述的解耦器,其中,所述第一导体层的至少一个缺失区域将所述第一导体层划分为至少两个岛。16.根据权利要求15所述的解耦器,其中,所述岛中的至少一个具有长度G-入/2n。17.根据权利要求15所述的解耦器,其中,所述第一导体层包括由两个相交的正交狭缝分离的至少4个岛。18.根据权利要求14所述的解耦器,其中,存在至少两个基本平行的狭缝。19.根据权利要求18所述的解耦器,其中,由G-人/2n确定所述的至少两个狭缝之间的间隔,其中,n是所述电介质的折射率,入是所述解耦器的操作的预期波长。20.根据权利要求1到14中的任何一项所述的解耦器,其中,所述缺失区域包括三个或更多狭缝,所述狭缝相交以形成具有n条边的多边形,其中,n是大于等于3的整数。21.根据权利要求14到20中的任何一项所述的解耦器,其中,所述狭缝宽度小于500微米。22.根据权利要求21所述的解耦器,其中,所述狭缝宽度小于150微米。23.根据权利要求22所述的解耦器,其中,所述狭缝宽度小于50微米。24.根据前述权利要求中的任何一项所述的解耦器,其中,所述电介质层由塑料、聚合物、陶瓷、玻璃、纸板、波紋纸板、纸或充裕的空隙形成。25.根据前述权利要求中的任何一项所述的解耦器,其中,能够有控制地改变所述电介质层的折射率。26.根据权利要求25所述的解耦器,还包括折射率控制器。27.根据前述权利要求中的任何一项所述的,解耦器,其中,所述RF标签位于所述第一导体层的缺失区域的附近,并且与所述第一导体层电隔离。28.根据权利要求1到26中的任何一项所述的解耦器,其中,使所述RF标签与所述第一导体层和所述第二导体层电隔离,并且所述RF标签位于所述电介质层上,至少部分位于所述电介质层内,或者位于所述电介质层的边缘。29.根据权利要求27或28所述的解耦器,其中,所述RF标签为低QRF标签。30.根据权利要求27所述的解耦器,其中,所述缺失区域出现在在所述解耦器内形成的驻波的波腹处。31.根据权利要求17所述的解耦器,其中,所述RF标签基本位于所述相交的正交狭缝的交叉点处,并且与所述第一导体层电隔离。32.根据权利要求1到16中的任何一项所述的解耦器,其中,所述RF标签的天线的主轴基本上垂直于所述第一导体层的至少一个边缘。33.根据权利要求27所述的解耦器,其中,所述RF标签在所述解耦器的表面之上与所述表面相隔小于2000微米的距离。34.根据权利要求33所述的解耦器,其中,所述非导电间隔体位于所述解耦器和所述RF标签之间。35.根据权利要求34所述的解耦器,其中,所述间隔体和所述RF标签的衬底的厚度总共处于10到1000微米的范围内。36.根据权利要求35所述的解耦器,其中,所述厚度处于175到800微米的范围内。37.根据前述权利要求中的任何一项所述的解耦器,包括位于所述解耦器和/或所述RF标签的部分、全部或者基本全部上的保护外壳。38.根据前述权利要求中的任何一项所述的解耦器,其中,所述解耦器适于使安装于其上的电子器件与某种表面基本解耦,所述表面为导电材料、包括高液体含量的材料或者形成了流体盛纳装置的部分的表面。39.根据权利要求38所述的解耦器,其中,所述导电材料为碳、40.根据权利要求38所述的解耦器,其中,包括高液体含量的材料为纤维素材料、林材或天然生成的材料。41.根据权利要求38所述的解耦器,其中,所述盛纳装置为食品、饮料或化学品容器。42.—种用于使RF标签与表面解耦的解耦器,其包括夹在第一导体层和第二导体层之间的电介质层,其中,将所述解耦器的谐振频率选择为与所述RF标签和/或RF询问源的谐振频率基本匹配,并且其中,所述第一导体层的至少一个边缘未延伸至所述电介质层的边缘,所述第一导体层的所述边缘与所述电介质层之间的缝隙小于所述谐振频率上的EM辐射的波长。43.—种用于使RF标签与导电表面解耦的解耦器,其包括与至少一个电介质层表面接触的至少一个导体层,其中,将所述解耦器的谐振频率选择为与所述RF标签和/或RF询问源的谐振频率基本匹配,并且其中,所述第一导体层的至少一个边缘未延伸至所述电介质层的边缘,所述第一导体层的所述边缘与所述电介质层之间的缝隙小于所述谐振频率上的EM辐射的波长。44.根据权利要求2所述的解耦器,还包括用于使所述解耦器附着至所述表面,从而使所述电介质层与所述导电表面相邻的装置。45.—种包括至少一个根据前述权利要求中的任何一项所述的解耦器的粘合带。46.—种包括至少一个根据权利要求1到44中的任何一项所述的47.根据权利要求46所述的物体或容器,其中,所述至少一个RF标签位于所述解耦器上。48.根据权利要求47所述的物体或容器,其中,所述物体或容器的至少一个表面呈单曲面或双曲面。49.一种金属物体或容器,其中,所述容器的表面的部分在根据权利要求2所述的解耦器中被覆盖。50.根据权利要求49所述的金属物体或容器,其中,至少一个RF标签位于所述解耦器上。51.根据权利要求47所述的物体或容器,包括所述物体或容器的表面内的凹陷部分,所述凹陷包括根据权利要求1到37中的任4可一项所述的解耦器和位于所述解耦器上的至少一个RF标签,以及任选的包封所述解耦器和RF标签的保护层,从而使所述解耦器和RF标签至少与所述物体或容器的表面平齐。52.根据权利要求50所述的金属物体或容器,包括所述物体或容器的表面内的凹陷部分,所述凹陷包括根据权利要求1到37中的任何一项所述的其第一导体层与所述表面电隔离的解耦器和位于所述解耦器上的至少一个RF标签,以及任选的包封所述解耦器和RF标签的保护层,从而使所述解耦器和RF标签至少与所述物体或容器的表面平齐。53.—种制作具有波紋纸板电介质芯的纸板解耦器的方法,其包括的步骤有将第一导体层放在第一纸板层上,将第二导体层放在第二纸板层上,将所述第一和第二纸板层放在一起,并使波紋纸板嵌片与其邻接,从而使覆盖所述第二导体层的第一纸板层上的第一导体层上存在至少一个缺失区域。54.根据权利要求53所述的方法,其中,所述第一导体层位于与所述波紋纸板嵌片相邻的所述第一纸板层的内表面上,并且/或者,所述第二导体层位于与所述波紋纸板嵌片相邻的所述第二纸板层的内表面上。55.—种跟踪物体或容器的方法,其包括的步骤有将根据权利要求1所述的解耦器和至少一个RF标签加到所述物体或容器的表面的部分上,采用RF辐射询问所述至少一个RF标签,探测来自所述至少一个RF标签的响应。56.根据权利要求3所述的解耦器,其中,所述电介质层、第一导体层和第二导体层基本具有相同的长度,其中,通过入"2nG确定所有的三个层的所述长度G,其中,使RF标签位于基本与所述解耦器的主轴所在的平面垂直的板的边缘处,并且其中,使所述RF标签与所述第一和第二导体层电隔离,其中,n是所述电介质的折射率,人是所述解耦器的操作的预期波长。57.根据权利要求56所述的解耦器,其中,所述解耦器是双面金属包层印刷电路板。58.根据权利要求1到37中的任何一项所述的解耦器,其中,所述缺失区域基本上与所述解耦器的边缘中的至少一个不平行。59.根据权利要求1到37中的任何一项所述的解耦器,其中,所述第一导体层的缺失区域的至少一个边缘为非直线图案。60.根据权利要求59所述的解耦器,其中,所述第一导体层的缺失区域包括至少一个环形图案。61.根据权利要求60所述的解耦器,其中,所述环形图案是处于所述第一导体层中的环形狭缝。62.根据权利要求1到37中的任何一项所述的解耦器,其中,所述电介质层至少部分由物品的包装材料或加标签材料形成。63.根据权利要求62所述的解耦器,其中,所述包装材料或加标签材料是天然的或人造的纤维、塑料、纤维素、玻璃、纸板、波紋纸板或陶瓷。64.—种适于在根据权利要求1到37中的任何一项所述的解耦器上使用的低QRF标签,其中,所述天线具有基本上小于2cm的主要尺寸。65.根据权利要求64所述的低QRF标签,其中,所述天线具有基本上小于lcm的主要尺寸。66.根据权利要求65所述的安装在根据权利要求1到37中的任何一项所述的解耦器上的低QRF标签,其中,存在位于所述低QRF标签和所述解耦器之间的间隔体。67.根据权利要求66所述的低QRF标签,其中,所述间隔体和所述低QRF标签的总共的厚度处于175到800微米的范围内。68.—种包括带有任选的间隔体的RF标签或低QRF标签和根据权利要求1到37中的任何一项所述的解耦器的零件套件。69.—种表面探测或识别方法,其包括的步骤有i)将包括低QRF标签的非导电表面与位于所述低QRF标签的上表面上的任选间隔体放在一起,ii)使所述表面与根据权利要求1到37中的任何一项所述的解耦器具有临近关系,iii)询问所述低QRF标签,其中,只有在所述低QRF标签紧靠所述解耦器时,才能读取所述低QRF标签。70.—种形成适于表面探测或识别的解耦器的方法,其包括的步骤有i)提供包括RF标签或低QRF标签的非导电表面,在所述RF标签的上表面上具有任选的间隔体,并提供与至少一个电介质层的部分或基本全部接触的至少一个第一导体层,其中,所述至少一个第一导体层具有至少一个缺失区域,在所述缺失区域处,所述第一导体层未覆盖所述电介质层,ii)将步骤i)的所述表面与第二导体层或导电表面放到一起,以形成根据权利要求1到37中的任何一项所述的解耦器。71.—种用于RF标签的单岛解耦器,其用于使所述器件与表面解耦,所述单岛解耦器包括夹在至少一个第一导体层和至少一个第二导体层之间的至少一个电介质层,其中,将所述第一导体层调谐至询问辐射的谐振频率,其中,通过人"2nG确定所述第一导体层的所述长度G,其中,所述至少一个第一导体层具有处于至少一个边缘处的一个缺失区域,在所述缺失区域处,所述第一导体层不覆盖所述电介质层,其中,与所述第一导体层电隔离的RF标签位于所述第一导体层的所述缺失区域的附近。72.—种用于RF标签的单岛解耦器,其用于使所述器件与表面解耦,所述单岛解耦器包括夹在至少一个第一导体层和至少一个第二导体层之间的至少一个电介质层,其中,将所述第一和第二导体层独立调谐至询问辐射的谐振频率,其中,通过入s2nG确定所述导体层的所述长度G,其中,与所述第一和第二导体层电隔离的RF标签位于所述电介质层上的缺失区域的附近。73.—种用于RF标签的单岛解耦器,其用于使所述器件与表面解耦,所述单岛解耦器包括夹在至少一个第一导体层和至少一个第二导体层之间的至少一个电介质层,其中,将所述第一导体层调谐至第一询问辐射的谐振频率,将所述第二导体层调谐至第二询问辐射的谐振频率,其中,通过入。2nG确定所述第一导体层和第二导体层的所述长度G,其中,所述第一和第二导体层具有处于至少一个边缘处的一个缺失区域,从而使所述第一导体层的缺失区域不覆盖所述电介质层或所述第二导体层上的缺失区域,其中,电隔离的RF标签位于所述第一导体层的所述缺失区域的附近,并且任选有另一RF标签位于所述第二导体层的所述缺失区域的附近。74.在附图和/或说明书中充分定义的使用、产品和方法。全文摘要用于对处于波长范围λ<sub>min</sub>到λ<sub>max</sub>内的辐射解耦的电磁辐射解耦器。所述解耦器具有与电介质层接触的第一导体层,所述第一导体层包括至少一个缺失区域,所述解耦器的厚度小于λ<sub>min</sub>/4n,其中,所述n是所述电介质的折射率。可以将所述电介质层夹在两个导体层之间,所述两个导体层之一具有上述结构。本发明还设计这样的解耦器的使用方法和包括这样的解耦器的各种物品。文档编号G06K19/07GK101248445SQ200680029833公开日2008年8月20日申请日期2006年6月22日优先权日2005年6月25日发明者C·R·劳伦斯,J·R·布朗,P·R·克拉克,W·N·达姆雷尔申请人:欧姆尼-Id有限公司