专利名称:一种挂网图像的边界检测方法及装置的制作方法
技术领域:
本发明涉及图像处理技术领域,尤其涉及一种挂网图像的边界检测方法及装置。
背景技术:
打印机等二值设备,在打印前,需要对待打印的图像进行图像挂网处理,与色调连 续的原始图像相比,由于经过挂网处理后的图像,具有离散的特性,因而直接对挂网图像进 行处理变得十分困难。因此,在现有技术中,对挂网图像进行处理之前,首先需要确定挂网 图像的边界位置,然后再对挂网图像进行处理。 目前,检测挂网图像边界位置的方法是直接使用Sobel或Gaussian模板,利用像 素点上下、左右邻点的灰度加权算法,根据在边界点处像素点的响应值达到极值的原理,对 挂网图像进行边界的检测。由于受到挂网纹路的影响,挂网图像边界两侧的灰度值相差较 大,因此,利用Sobel模板检测的边界位置结果不够准确,而利用Gaussian模板检测边界位 置结果虽然比Sobel模板准确度高,但其检测出来的边界位置还是不够准确,且该方法检 测出来的边界位置会有间断。 现有技术中,还提供了另一种图像边界的检测方法,即基于块的图像处理方法,申 请号为200580020900. 1,该方法通过从图像的边缘开始的像素行和确定各像素的第一行的 位置而确定一条边界,这些像素的至少一个像素值是某个数值组的一部分,如果像素具有 超过某个水平的亮度值,则该像素可能不是黑色边界的一部分,即将像素的第一行与前一 行分开。由于挂网图像边界存在大量的锯齿及断间,通过这种边界检测的方法,不能够得到 连续平滑的边界。
发明内容
有鉴于此,本发明实施例提供一种挂网图像的边界检测方法,用以解决现有技术 中对挂网图像的边界定位精度不高的问题。
本发明实施例提供的一种挂网图像的边界检测方法,包括 根据确定的每个检测模板的苏伯_高斯Soble-Gaussian算子和标准高
斯Gaussian算子,确定维数为NXN的检测模板,其中,N为大于1的整数,所述
Soble-Gaussian算子为标准Gaussian算子通过一定运算得到的; 根据当前像素点的属性信息,选择检测所述当前像素点的检测模板; 利用所述检测模板,计算所述当前像素点的响应值; 根据所述响应值,与所述当前像素点相邻的像素点的响应值的大小关系,确定所 述当前像素点是否为边界上的像素点。
本发明实施例提供的一种挂网图像的边界检测装置,包括 确定单元,用于根据确定的每个检测模板的Soble-Gaussian算子和标 准Gaussian算子,确定维数为NXN的检测模板,其中,N为大于1的整数,所述 Soble-Gaussian算子为标准Gaussian算子通过一定运算得到的;
6
选择单元,用于根据当前像素点的属性信息,从所述确定单元确定的检测模板中 选择检测所述当前像素点的检测模板; 计算单元,用于利用所述选择单元选择的检测模板,计算所述当前像素点的响应 值; 判断单元,用于根据所述计算单元计算所得的响应值,与所述当前像素点相邻的
像素点的响应值的大小关系,判断所述当前像素点是否为边界上的像素点。 本发明实施例中根据像素点的方向信息不同,选择不同的检测模板,然后利用选
择的检测模板对像素点的响应值进行检测,通过将像素点的响应值与相邻像素点的响应值
进行比较,从而判断当前像素点是否为挂网图像的边界点,这种检测方法可以提高挂网图
像的边界定位精度,有利于后续对挂网图像的处理。
图1为本发明实施例中检测挂网图像的边界的方法流程图; 图2为本发明实施例中构造方向检测模板的方法流程图; 图3A为标准Gaussian算子分布图; 图3B为将标准Gaussian算子分别向左右平移一个单位后的分布图; 图3C为本发明实施例中S0G算子的分布图; 图4为本发明实施例中一种像素点边界方向的划分规则示意图; 图5为本发明实施例中构造特殊点检测模板的方法流程图; 图6为本发明实施例一的方法流程图; 图7为本发明实施例二的方法流程图; 图8为本发明实施例中挂网图像的边界检测的装置示意图; 图9A为一个待检测的挂网图像示例图; 图9B为利用本发明实施例提供的方法检测挂网图像的边界的效果示例图; 图9C为利用Gaussian检测模板检测挂网图像的边界的效果示例图。
具体实施例方式
本发明实施例中,根据挂网图像中当前像素点的属性,为当前像素点选择对应的 检测模板,然后将该检测模板应用于当前像素点,计算出当前像素点的响应值,再将响应值 与相邻像素点的响应值进行比较,如果当前像素点的响应值大于相邻像素点的响应值,且 其差值大于给定的阈值时,判定当前像素点为边界像素点。这种方法根据挂网图像中不同 像素点具体情况,选择适合该像素点的边界检测模板,因而可提高挂网图像边界检测的精 度。 本发明实施例中挂网图像的边界检测的基本流程如图l所示,主要包括以下步 骤 步骤101 :确定维数为NXN的多个检测模板。 本发明实施例中,为了能更精确的检测出挂网图像的边界,首先构造了多个检 测模板,其中,包括特殊点检测模板和方向检测模板,每个检测模板是由该检测模板的 Soble-Gaussian算子和标准Gaussian算子确定的。
其中,检测模板的Soble-Gaussian算子是根据该检测模板的具体情况,通过将标 准Gaussian算子进行一定的运算得到的。 步骤102 :根据当前像素点的属性信息,选择检测该像素点的检测模板。 其中,像素点的属性信息中记录有该像素点是否为单像素点的细线上的点,或,水
平方向或垂直方向上的特殊点,以及该像素点的方向等信息。 并且,如果当前像素点的属性信息记录当前像素点为单像素点的细线上的点,或, 水平方向或垂直方向上的特殊点,则选择特殊点检测模板作为当前像素点的检测模板;否 则,根据属性信息记录的当前像素点的边界方向,选择角度与该边界方向的角度相同的方 向检测模板为所述当前像素点的检测模板。 步骤103 :利用该检测模板,计算所述当前像素点的响应值。 具体地,将该检测模板的中心与当前像素点的重合,从挂网图像中获取nXn的像 素点阵,并将检测模板与该像素点阵做巻积,得到当前像素点的响应值。其中,n为大于1的 奇数,其数值是根据实际情况预先设置的,且为了满足能获取nXn个像素点,检测模板的
维数N应该不小于V^n。 步骤104 :根据计算所得响应值,与当前像素点相邻的像素点的响应值的大小关 系,确定当前像素点是否为边界上的像素点。 具体地,如果当前像素点的响应值大于所述相邻的像素点的响应值,且该响应值 与相邻的像素点的响应值的差值大于设定的阈值,则当前像素点为边界上的像素点,否则, 当前像素点为非边界上的像素点。 在具体实施过程中,如果当前像素点的边界方向不是45。方向,则可以选择在该 像素点的边界方向的法线方向上,与该像素点相邻的两个像素点,将当前像素点的响应值 与这两个相邻的像素点的响应值进行比较。 较佳地,如果当前像素点的边界方向为45。方向,则可以选择4个相邻的像素点, 将当前像素点的响应值与这4个像素点的响应值进行比较。其中,4个相邻的像素点为该像 素点的边界方向的法线方向上相邻的两个像素点,以及在当前像素点的边界方向上与分别 这两个像素点相邻的像素点。 具体地,确定多个方向检测模板的方法流程如图2所示,主要包括以下步骤
步骤201 :根据待检测像素点的方向的数量,确定方向检测模板的数量及每个方 向检测模板的角度。 在本发明实施例中,像素点的方向经过归一化处理后的方向,在具体实施过程中, 可将0° 360°平分为多个方向,比如,16个方向,待检测图像中的像素点的方向即为这 16个方向中一个方向,而方向检测模板的数量也就为16,每个方向检测模板的角度与16个 方向对应。 步骤202 :根据每个方向检测模板的角度,构造每个方向检测模板的 Soble-Gaussian算子。 具体地,构造一个方向检测模板的Soble-Gaussian算子的步骤包括 步骤202a :将标准Gaussian算子如图3A中的曲线,沿该方向检测模板的角度方
向向左平移一个单位得到第一 Gaussian算子,如图3B中的A曲线,其中,图中的X轴正向
为该检测模板的角度方向。
步骤202b :将标准Gaussian算子沿该方向检测模板的角度方向向右平移一个单 位得到第二Guassian算子,如图3B中的B曲线。 步骤202c :将所述第一 Gaussian算子减去所述第二 Guassian算子,其结果为该 方向检测模板的Soble-Gaussian算子,如图3C中的曲线。 步骤203 :利用每个方向检测模板的Soble-Gaussian算子,构造每个方向检测模 板的第一矩阵和第二矩阵。 具体地,如果方向检测模板的角度方向不是为水平或垂直的,即该方向检测模板 的角度不为O。 、90° 、180°或270° ,则该方向检测模板的第一矩阵的分布规律为
沿该方向检测模板的角度方向满足该检测模板的Soble-Gaussian算子分布。
如果方向检测模板的角度为O。 、90° 、180°或270° ,则该方向检测模板的第一 矩阵的分布规律为 以通过该方向检测模板的中心、与为该方向检测模板的角度方向的法线平行的直 线为界,在该直线的一侧,沿所述角度方向,满足正的该方向检测模板的Soble-Gaussian 算子分布,在该直线的另一侧,沿所述角度方向,满足负的标准Guassian算子分布。
其中,方向检测模板的第二矩阵的沿该检测模板的角度方向的法线方向,满足 Gaussian算子分布。 步骤204 :根据每个方向检测模板的第一矩阵和第二矩阵,获得每个方向检测模 板。 具体地,方向检测模板中的每项系数的值等于第一矩阵和第二矩阵中相应项的乘 积,即,假设一个方向检测模板的为矩阵A,其第一矩阵为矩阵B,第二矩阵为矩阵C,则有
aij = bijX Cij, 1《i《N, 1《j《N, 其中,N为大于1的整数;aij为矩阵A第i行第j列的元素,bij为第一矩阵的第i 行第j列的元素,Cij为第二矩阵的第i行第j列的元素。 在步骤202中,构造每个方向的Sobel-Guassian算子时,也可以将标准Guassian 算子在水平方向左右移动得到统一的Sobel-Guassian算子,然后,在步骤204中,利用上述 公式计算出每个方向检测模板的系数后,将每个方向检测模板的系数在该检测模板的角度 方向进行映射,映射后的结果为每个方向检测模板的系数。 在具体实施过程中,还可以先构造角度在一个象限内方向检测模板,然后通过变 换,得到其余的方向检测模板,以像素点的方向为16个方向为例,如图4所示,利用上述步 骤202至步骤204中的方法先构造角度在第一象限内方向检测模板,即dir0、dirl、dir2和 dir3方向上的方向检测模板,然后通过变换得到其它象限的方向检测模板,具体如下
dir4、 dir5、 dir6、 dir7方向上的方向检测模板,可以分别由dir0、 dirl、 dir2禾口 dir3方向上的方向检测模板作如下变换得到
X = Y
Y = -X 而dir8、dir9、dirl0、dir11方向上的方向检测模板,可以分别由dir0、dirl、dir2 和dir3方向上的方向检测模板作如下变换得到
X = -X
Y = -Y
9
dirl2、dirl3、dirl4、dir15方向上的方向检测模板,可以分别由dir0、dirl、dir2 和dir3方向上的方向检测模板作如下变换得到
X = -Y
Y = X 在实际操作中,还可以先构造角度在第二象限、第三象限或第四象限内的方向检 测模板,再通过变换得到其余的方向检测模板,也可以先构造角度在第一象限和第二象限 内的所有方向检测模板,再通过变换得到角度在其余两个象限内的其他检测模板,或是角 度在第一象限内的所有方向检测模板,以及其余角度在其余象限的一个或多个方向检测模 板,再通过变换得到其余的方向检测模板。 特殊点检测模板是用于检测单像素点的细线上的点,或,水平方向或垂直方向上 的特殊点的检测模板,在本发明实施例中,特殊点检测模板只有一个,图5示出了特殊点检 测模板的构造方法,主要包括以下步骤 步骤501 :根据标准Gussian算子,获取特殊点检测模板的Soble-Gaussian算子。
具体地,标准Gaussian算子向左平移一个单位,减去标准Gaussian算子向右平移 一个单位,获得特殊点检测模板的Soble-Gaussian算子。
步骤502 :构造特殊点检测模板的第一矩阵和第二矩阵。 其中,该第一矩阵以居中的一列行量为界,在该列行量的一侧的行向量满足负的 上述Soble-Gaussian算子分布,另一侧的行向量满足正的标准标准Gaussian算子分布。该 第二矩阵的列向量满足Gaussian算子分布。 步骤503 :利用该第一矩阵和第二矩阵,计算出特殊点检测模板的各个系数。
计算方法同前面计算方向检测模板的方法,在此不在赘述。
实施例1 图6提供了当前像素点为边界单像素点的细线,或,水平方向或垂直方向上的特 殊点时,确定所述当前像素点是否为边界上的像素点的方法流程,主要包括
步骤601 :确定检测当前像素点的检测模板为特殊点检测模板。
步骤602 :利用该特殊点检测模板,计算当前像素点的响应值。 步骤603 :判断当前像素点的响应值是否大于与该像素点相邻的像素点的响应 值,如果是,继续步骤604,否则,进入步骤606。 步骤604 :判断当前像素点与所述相邻像素点的响应值的差值是否大于设定的阈
值,如果是,继续步骤605,否则,进入步骤606。 步骤605 :确定所述当前像素点为边界上的像素点。 步骤606 :确定所述当前像素点为非边界上的像素点。 实施例2 图7提供了当前像素点不为单像素点的细线上的点,或水平、垂直方向上的特殊
点时,确定所述当前像素点是否为边界上的像素点的方法流程,主要包括 步骤701 :根据当前像素点的边界方向,选择与该边界方向角度一致的方向检测模板。 比如,如果当前像素点的边界方向为22.5。,则选择角度为22.5。的方向检测模 板作为当前像素点的边界检测模板。其中,方向检测模板为NXN的系数矩阵,N为大于1的整数。
步骤702 :利用该方向检测模板,计算当前像素点的响应值。 首先,将该方向检测模板的中心与当前像素点重合,从挂网图像中获取在该方向
检测模板的范围内的nXn个像素点,其中,n为大于l的奇数,且N三V^n;然后,将该方向
检测模板与获取的nXn个像素点组成的当前像素点阵作巻积,其结果即为当前像素点的 响应值。 步骤703 :判断当前像素点的响应值是否大于与该像素点相邻的像素点的响应 值,如果是,继续步骤704,否则,进入步骤706。 步骤704 :判断当前像素点与所述相邻像素点的响应值的差值是否大于设定的阈
值,如果是,继续步骤705,否则,进入步骤706。 步骤705 :确定所述当前像素点为边界上的像素点。 步骤706 :确定所述当前像素点为非边界上的像素点。 如图8所示,本发明实施提供的一种挂网图像的边界检测装置示意图,包括确定 单元80、选择单元81、计算单元82和判断单元83。其中, 确定单元80 ,用于根据确定的每个检测模板的Sob 1 e-Gaussian算子和标准 Gaussian算子,确定维数为NXN的检测模板。 其中,N为大于1的整数,所述Soble-Gaussian算子为标准Gaussian算子通过一 定运算得到的。 其中,检测模板包括特殊点检测模板和多个方向检测模板。方向检测模板和特殊 点检测模板为NXN的系数矩阵,其中N是大于1的整数,特殊点检测模板用来检测单像素 点的细线上的点,或,水平方向或垂直方向上的特殊点是否为边界像素点,而方向检测模板 用于检测除上述特殊点以外的其它像素点是否为边界像素点。 具体地,所述确定单元80进一步包括第一确定子单元800和第二确定子单元 801。其中, 第一确定子单元800,用于根据确定的每个方向检测模板的Soble-Gaussian算子 和标准Gaussian算子,确定多个方向检测模板。 进一步地,第一确定子单元800可以包括第一确定模块8000、第一构造模块8001 和第一获取模块8002。其中, 第一确定模块8000,用于根据待检测像素点的方向的数量,确定方向检测模板的 数量及每个方向检测模板的角度。 第一构造模块8001,用于根据所每个方向检测模板的角度,构造每个方向检测模 板的Soble-Gaussian算子。 第一获取模块8002,用于根据标准Gaussian算子、每个方向检测模板的 Soble-Gaussian算子和每个方向检测模板的角度,分别构造每个方向检测模板。
进一步地,第一确定子单元800还可以包括第二确定模块8003、第二构造模块 8004、第二获取模块8005和变换模块8006。其中, 第二确定模块8003,用于根据待检测像素点的方向的数量,确定方向检测模板的 数量及每个方向检测模板的角度。 第二构造模块8004,用于根据每个方向检测模板的角度,构造至少一个象限内的
11方向检测模板的Soble-Gaussian算子。 第二获取模块8005,用于根据标准Gaussian算子、所述至少一个象限内的方向检 测模板的Soble-Gaussian算子和所述至少一个象限内的每个方向检测模板的角度,分别 构造所述至少一个象限内的每个方向检测模板。 变换模块8006,用于将所述至少一个象限内的方向检测模板做对称变换,得到除 所述至少一个象限内的方向检测模板的其它方向检测模板。 第二确定子单元801,用于根据确定的特殊点检测模板的Soble-Gaussian算子和 标准Gaussian算子,确定特殊点检测模板。 进一步地,第二确定子单元801包括获取模块8010、构造模块8011和确定模块 8012。其中, 获取模块8010,用于将标准Gaussian算子向左平移一个单位后,减去将标准
Gaussian算子向右平移一个单位,获取所述特殊点检测模板的Soble-Gaussian算子。 构造模块8011,用于构造居中列向量的一侧的行向量满足负的获取模块8010
获取的Soble-Gaussian算子分布,居中列向量的另一侧的行向量满足正的标准标准
Gaussian算子分布的第一矩阵,以及列向量满足Gaussian算子分布的第二矩阵。 确定模块8012,用于将所述第一矩阵和第二矩阵按照设置的运算规则进行运算,
确定所述特殊点检测模板。 选择单元81,用于根据当前像素点的属性信息,从确定单元80确定的检测模板中 选择检测所述当前像素点的检测模板。 在确定好检测所述当前像素点的检测模板后,该装置调用计算单元82计算当前 像素点的响应值。 计算单元82,用于利用所述选择单元81选择的检测模板,计算所述当前像素点的 响应值。 具体地,所述计算单元82包括获取子单元820和计算子单元821。其中,
获取子单元820,用于将所述检测模板的中心与当前像素点重合,从挂网图像中获 取预先的设置的nXn个像素点作为当前像素点阵。
其中,n为大于1的整数,且N^ V^n。 计算子单元821,用于计算所述检测模板与所述当前像素点阵的巻积,即当前像素 点的响应值。 在获取当前像素点的响应值后,该装置调用判断单元83,将当前像素点的响应值
与相邻像素点的响应值进行比较,从而判断当前像素点是否为边界上的像素点。 判断单元83,用于根据所述计算单元82计算所得的响应值,与所述当前像素点相
邻的像素点的响应值的大小关系,判断所述当前像素点是否为边界上的像素点。 具体地,判断单元83可包括第一判断子单元830和第二判断子单元831。其中, 第一判断子单元830,用于判断所述当前像素点的响应值是否大于所述相邻的像
素点的响应值。如果当前像素点的响应值小于所述相邻像素点的响应值,则判定所述当前
像素点为非边界上的像素点,如果当前像素点的响应值大于所述相邻像素点的响应值,则
调用第二判断子单元831进行进一步的判断。 第二判断子单元831,用于在所述第一判断子单元830判断所述当前像素点的响应值大于所述相邻的像素点的响应值时,判断所述当前像素点的响应值与所述相邻的像素 点的响应值的差值是否大于设定的阈值。如果确定所述当前像素点的响应值与所述相邻的 像素点的响应值的差值大于设定的阈值,则确定所述当前像素点为边界上的像素点,反之 则不然。 利用本发明实施例提供的边界检测方法对图9A所述的挂网图像进行边界检测的 效果如图9B,而仅利用Gaussian检测模板对图9A的边界进行边界检测的效果如图9C所 示。 本发明实施例中,通过构造SOG模板,根据挂网图像的边界方向选择边界检测模 板,对挂网图像的边界进行检测,该方法不依赖于特定挂网方案,无需进行退网操作,能够 保证在高效低耗的前提下,直接对挂网图进行边界检测,提高边界定位的精度,解决传统算 法在挂网图像边界检测时的不足。 显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精 神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围 之内,则本发明也意图包含这些改动和变型在内。
1权利要求
一种挂网图像的边界检测方法,其特征在于,包括根据确定的每个检测模板的苏伯-高斯Soble-Gaussian算子和标准高斯Gaussian算子,确定维数为N×N的检测模板,其中,N为大于1的整数,所述Soble-Gaussian算子为标准Gaussian算子通过一定运算得到的;根据当前像素点的属性信息,选择检测所述当前像素点的检测模板;利用所述检测模板,计算所述当前像素点的响应值;根据所述响应值,与所述当前像素点相邻的像素点的响应值的大小关系,确定所述当前像素点是否为边界上的像素点。
2. 根据权利要求1所述的方法,其特征在于,所述检测模板包括特殊点检测模板和方向检测模板。
3. 根据权利要求2所述的方法,其特征在于,确定所述方向检测模板,包括根据待检测像素点的方向的数量,确定方向检测模板的数量及方向检测模板的角度;根据方向检测模板的角度,构造方向检测模板的Soble-Gaussian算子;根据标准Gaussian算子、方向检测模板的Soble-Gaussian算子和方向检测模板的角度,分别构造不同角度的方向检测模板。
4. 根据权利要求2所述的方法,其特征在于,确定所述方向检测模板,包括根据待检测像素点的方向的数量,确定方向检测模板的数量及方向检测模板的角度;根据每个方向检测模板的角度,构造至少一个象限内的方向检测模板的Soble-Gaussian算子;根据标准Gaussian算子、所述至少一个象限内的方向检测模板的Soble-Gaussian算子和所述至少一个象限内的每个方向检测模板的角度,分别构造所述至少一个象限内的不同角度的方向检测模板;将所述至少一个象限内的方向检测模板做对称变换,得到除所述至少一个象限内的方向检测模板的其它方向检测模板。
5. 根据权利要求3或4所述的方法,其特征在于,所述构造方向检测模板的Soble-Gaussian算子,包括将标准Gaussian算子沿该方向检测模板的角度方向向左平移一个单位得到第一Gaussian算子;将标准Gaussian算子沿该方向检测模板的角度方向向右平移一个单位得到第二Gimssian算子;将所述第一 Gaussian算子减去所述第二 Guassian算子,其结果为该方向检测模板的Soble-Gaussian算子。
6. 根据权利要求3或4所述的方法,其特征在于,所述构造方向检测模板,包括构造在该方向检测模板的角度方向满足一定规则的该方向检测模板的Soble-Gaussian算子或\和Gaussian算子分布的第一矩阵,以及在所述角度方向的法线方向满足Gaussian算子分布的第二矩阵;将所述第一矩阵和第二矩阵按照设置的运算规则进行运算,获得所述方向检测模板。
7. 根据权利要求6所述的方法,其特征在于,如果所述方向检测模板的角度为0。、90° 、180°或270° ,则所述第一矩阵的分布规律为,以通过该方向检测模板的中心、与为该方向检测模板的角度方向的法线平行的直线为 界,在该直线的一侧,沿所述角度方向,满足正的该方向检测模板的Soble-Gaussian算子 分布,在该直线的另一侧,沿所述角度方向,满足负的标准Guassian算子分布。
8. 根据权利要求6所述的方法,其特征在于,如果所述方向检测模板的角度不为0。、 90° 、180°或270° ,所述第一矩阵沿该方向检测模板的角度方向满足该检测模板的 Soble-Gaussian算子分布。
9. 根据权利要求2所述的方法,其特征在于,所述确定特殊点检测模板,包括标准Gaussian算子向左平移一个单位,减去标准Gaussian算子向右平移一个单位,获 得所述特殊点检测模板的Soble-Gaussian算子;构造在居中列向量的一侧的行向量满足负的所述Soble-Gaussian算子分布,在居中 列向量的另一侧的行向量满足正的标准标准Gaussian算子分布的第一矩阵,以及列向量 满足Gaussian算子分布的第二矩阵;将所述第一矩阵和第二矩阵按照设置的运算规则进行运算,获得所述特殊点检测模板。
10. 根据权利要求2所述的方法,其特征在于,所述选择检测所述当前像素点的检测模 板,包括如果所述当前像素点的属性信息记录当前像素点为单像素点的细线上的点,或,水平 方向或垂直方向上的特殊点,则确定检测所述当前像素点的检测模板为特殊点检测模板; 否则,根据所述属性信息记录的当前像素点的边界方向,选择角度与该边界方向的角度相同 的方向检测模板为所述当前像素点的检测模板。
11. 根据权利要求1所述的方法,其特征在于,所述计算所述当前像素点的响应值,包括将所述检测模板的中心与当前像素点重合,从挂网图像中获取预先的设置的nXn个 像素点作为当前像素点阵,其中,n为大于l的整数,且N2 V^n;计算所述检测模板与所述当前像素点阵的巻积,即当前像素点的响应值。
12. 据权利要求1所述的方法,其特征在于,所述确定所述当前像素点是否为边界上的 像素点,包括A、 判断所述当前像素点的响应值是否大于所述相邻的像素点的响应值,如果是,则继 续步骤B,否则,确定所述当前像素点为非边界上的像素点,结束;B、 判断所述当前像素点的响应值与所述相邻的像素点的响应值的差值是否大于设定 的阈值,如果是,则确定所述当前像素点为边界上的像素点,否则,确定所述当前像素点为 非边界上的像素点。
13. —种挂网图像的边界检测装置,其特征在于,包括确定单元,用于根据确定的每个检测模板的Soble-Gaussian算子和标准Gaussian算 子,确定维数为NXN的检测模板,其中,N为大于1的整数,所述Soble-Gaussian算子为标 准Gaussian算子通过一定运算得到的;选择单元,用于根据当前像素点的属性信息,从所述确定单元确定的检测模板中选择检测所述当前像素点的检测模板;计算单元,用于利用所述选择单元选择的检测模板,计算所述当前像素点的响应值; 判断单元,用于根据所述计算单元计算所得的响应值,与所述当前像素点相邻的像素 点的响应值的大小关系,判断所述当前像素点是否为边界上的像素点。
14. 根据权利要求13所述的装置,其特征在于,所述确定单元包括第 一确定子单元,用于根据确定的方向检测模板的Soble-Gaussian算子和标准 Gaussian算子,确定方向检测模板;第二确定子单元,用于根据确定的特殊点检测模板的Soble-Gaussian算子和标准 Gaussian算子,确定特殊点检测模板。
15. 根据权利要求14所述的装置,其特征在于,所述第一确定子单元包括 第一确定模块,用于根据待检测像素点的方向的数量,确定方向检测模板的数量及方向检测模板的角度;第 一 构造模块,用于根据所方向检测模板的角度,构造方向检测模板的 Soble-Gaussian算子;第一获取模块,用于根据标准Gaussian算子、方向检测模板的Soble-Gaussian算子和 方向检测模板的角度,分别构造不同角度方向检测模板。
16. 根据权利要求15所述的装置,其特征在于,所述第一确定子单元包括 第二确定模块,用于根据待检测像素点的方向的数量,确定方向检测模板的数量及方向检测模板的角度;第二构造模块,用于根据方向检测模板的角度,构造至少一个象限内的方向检测模板 的Soble-Gaussian算子;第二获取模块,用于根据标准Gaussian算子、所述至少一个象限内的方向检测模板的 Soble-Gaussian算子和所述至少一个象限内的方向检测模板的角度,分别构造所述至少一 个象限内的方向检测模板;变换模块,用于将所述至少一个象限内的方向检测模板做对称变换,得到除所述至少 一个象限内的方向检测模板的其它方向检测模板。
17. 根据权利要求14所述的装置,其特征在于,所述第二确定子单元包括 获取模块,用于将标准Gaussian算子向左平移一个单位后,减去将标准Gaussian算子向右平移一个单位,获取所述特殊点检测模板的Soble-Gaussian算子;构造模块,用于构造居中列向量的一侧的行向量满足负的所述Soble-Gaussian算子分布,居中列向量的另一侧的行向量满足正的标准标准Gaussian算子分布的第一矩阵,以及列向量满足Gaussian算子分布的第二矩阵;确定模块,用于将所述第一矩阵和第二矩阵按照设置的运算规则进行运算,确定所述特殊点检测模板。
18. 根据权利要求13所述的装置,其特征在于,所述计算单元包括 获取子单元,用于将所述检测模板的中心与当前像素点重合,从挂网图像中获取预先的设置的nXn个像素点作为当前像素点阵,其中,n为大于l的整数,且N^ Wn;计算子单元,用于计算所述检测模板与所述当前像素点阵的巻积,即当前像素点的响 应值。
19. 根据权利要求13所述的装置,其特征在于,所述判断单元包括第一判断子单元,用于判断所述当前像素点的响应值是否大于所述相邻的像素点的响 应值;第二判断子单元,用于在所述第一判断子单元判断所述当前像素点的响应值大于所述 相邻的像素点的响应值时,判断所述当前像素点的响应值与所述相邻的像素点的响应值的 差值是否大于设定的阈值。
全文摘要
本发明公开了一种挂网图像的边界检测方法和装置,用以解决现有技术中对挂网图像的边界定位精度不高,检测出来的边界存在间断的问题。该方法根据确定的每个检测模板的苏伯-高斯Soble-Gaussian算子和标准高斯Gaussian算子,确定维数为N×N的多个检测模板,然后根据当前像素点的属性信息,选择检测所述当前像素点的检测模板,再利用所述检测模板,计算所述当前像素点的响应值,并通过比较与所述当前像素点相邻的像素点的响应值的大小关系,确定所述当前像素点是否为边界上的像素点。根据本发明提出的方案,对挂网图像边界的各个方向都能直接进行边界检测,提高了挂网图像的边界定位精度。
文档编号G06T7/00GK101727667SQ20081022429
公开日2010年6月9日 申请日期2008年10月16日 优先权日2008年10月16日
发明者六尾敏明, 李平立, 纪延瑶, 袁梦尤 申请人:北京大学;方正国际软件(北京)有限公司;京瓷美达株式会社