专利名称:一种直线立体匹配方法
技术领域:
本发明属于摄影测量和图像处理技术领域,特别是涉及一种直线匹配方法。
背景技术:
立体匹配是摄影测量和图像处理领域长期研究的一个基本问题,它的目的是获取目标场景的三维信息,方法是匹配从两个不同视点图像中提取出来的特征集。直线是立体匹配应用的一种重要特征,国内外很多学者致力于基于直线的立体匹配问题。
目前,直线立体匹配是一个公认的难题,主要体现在以下两个方面第一,由于场景遮挡、图像噪声以及直线提取过程中的不确定性等问题的影响,造成从不同图像中提取的同名直线特征的属性出现差异,不易准确生成直线特征匹配对假设;第二,匹配过程中没有严格的去模糊约束机制,从而难于区分真实匹配对假设和虚假匹配对假设。为了得到可靠的匹配结果,绝大多数已有匹配算法将直线立体匹配问题转化为一个优化求解问题,为得到全局一致的匹配结果,普遍应用唯一性约束,即限定直线特征之间的对应关系只能是“一配一”的。事实上,直线特征之间还可能存在“一配多”甚至“多配多”等复杂对应关系,其产生的原因主要是遮挡和特征不确定性,体现在以下三个方面第一,提取过程中一条直线特征被分割成多段;第二,一条三维直线在某个观测视角中的投影被遮挡而断裂成多段;第三,一组互连的空三维直线共面且该平面通过其中一个相机的摄影中心,则这组三维直线在一幅图像中的投影共线并连接成一条直线特征,而在另一幅图像中的投影则由多条直线特征组成。
当前,对于包含复杂对应关系的直线立体匹配问题有两种解决思路第一,基于特征整体变换的方法。假定一幅图像或模型中的一组直线与另一幅图像或模型中的一组直线间存在参数一致的几何变换,搜索整体变换误差最小情况下的直线特征间对应关系作为匹配结果。这类方法通常应用于二维图像配准或基于模型的二维/三维目标识别、姿态参数求解等,而对求解基于立体像对的匹配问题则很难适用;第二,对直线进行编组的方法。应用较多的是断裂直线编组和感知编组方法。断裂直线编组是在单幅图像中将共线的临近直线编为一组,然后以编组为单位参与匹配。该方法可以部分解决断裂直线造成的复杂匹配问题,但对于直线特征提取不完整性严重的情况仍然难以得到满意的匹配结果;感知编组是依据拓扑关系将同一幅图像中形成特定的几何形状的直线特征编为一组,这种思路的优点是编组之间的匹配有更多的属性信息可用于消除模糊性,且可以在一定程度上补充因直线提取过程造成的直线特征不完整部分。这两种编组方法的缺点在于分别在不同图像内对直线进行编组,由于投影变换和遮挡等问题,编组结果由一幅图像到另一幅图像可能是变化的,难以保证编组过程的稳定,并且,它们除对少数断裂直线的兼容外,并不能完全解决所有“一配多”和“多配多”的对应性问题,尤其是包含多条非共线直线的复杂对应性问题。
发明内容
本发明的目的是提供一种直线立体匹配方法,能够对直线立体匹配中的遮挡问题和特征不确定性问题进行建模,对实现对直线间“一配一”、“一配多”或“多配多”在内的各种对应关系的求解。
本发明方法对该问题进行求解的工作流程是利用提取的直线特征从统计意义上恢复对应的投影直线→由恢复的投影直线生成所有直线特征编组→选取最可靠的直线特征编组作为匹配问题的解。
本发明的技术方案是,一种直线立体匹配方法,具体包括下述步骤 已知从不同视角获取的同一场景的两幅图像,分别记为左图像I1和右图像I2,它们的成像参数已知;对图像I1和I2进行边缘检测的结果分别为图像E1和E2,图像E1和E2中每个边缘点的灰度梯度相位已知;从左图像I1中提取的直线特征的集合为其中,任意一个直线特征l1i的端点分别为s1,1i(x1,1i,y1,1i)和s1,2i(x1,2i,y1,2i),在l1i上每隔3个像素长度取一个点,将这些点在I1中的灰度梯度相位平均值记为θ1i;从右图像I2中提取的直线特征的集合为其中,任意一个直线特征l2i的端点为s2,1i(x2,1i,y2,1i)和s2,2i(x2,2i,y2,2i),在l2i上每隔3个像素长度取一个点,将这些点在I2中的灰度梯度相位平均值记为θ2i。
第一步,利用直线特征集合恢复投影直线段 本发明将针对直线特征提取不完整以及提取断裂这两类不确定性问题,依据图像E1和E2中满足指定搜索范围的边缘点,估计每个提取的直线特征对应的投影直线段的端点,求解端点位置参数的概率密度函数,从而在统计意义上恢复投影直线段。
对于任意一个直线特征γ=1或γ=2,由它的两个已知端点计算的中点坐标记为(xγ,0i,yγ,0i),长度记为dγi,经过它的直线记为lγi。由lγi恢复的投影直线段记为
它的两个端点
和
到
的距离分别记为
和
由
恢复
的过程等效为求解
和
的概率密度函数的过程。与
的任意一个端点相关的距离参数
的概率密度函数求解步骤如下 第1步,搜索用于估计投影直线段端点的有效边缘点
的有效边缘点是指在指定搜索范围内用于估计
的端点
位置的边缘点。
搜索有效边缘点的方法包括确定搜索范围和在该范围内选择有效边缘点两个过程。有效边缘点的搜索范围包括空间搜索范围和灰度梯度相位搜索范围,由3个门限值来确定 Th表示
的有效边缘点到直线lγi的距离最大值,最优取值为3个像素; Tτ表示
的两个相邻的有效边缘点在直线lγi上的投影间距离的最大值,最优取值为3个像素,它和Th共同确定空间搜索范围; Tθ指定
的有效边缘点的灰度梯度相位搜索范围为[θγi-Tθ,θγi+Tθ],最优取值为
弧度。
将lγi的端点sγ,qi视为
的第0个有效边缘点,记为(x(0),y(0)),它在直线lγi上的投影记为(xp(0),yp(0),此时,且 搜索有效边缘点的方法由以下两个步骤组成,它们被循环执行,从搜索第1个有效边缘点开始,直到确定的搜索范围内不再有边缘点被找到。
第1)步,确定端点
的有效边缘点的搜索范围 当k=1时,第k个有效边缘点的空间搜索范围R(1)表示为以下四个点(u1(1),v1(1))、(u2(1),v2(1))、(u3(1)v3(1))和(u4(1),v4(1))顺次连接而成的矩形 其中,
的第k个有效边缘点的灰度梯度相位搜索范围为 当k>1时,第k个有效边缘点的搜索范围由R(k)和Ω(k)表示,确定方法为 计算投影点(xp(k-1),yp(k-1))到(xp(k-2),yp(k-2))的距离,记为τ(k-1),第k个有效边缘点的空间搜索范围R(k)由四个点(u1(k),v1(k))、(u2(k),v2(k))、(u3(k),v3(k))和(u4(k),v4(k))顺次连接而成 其中,λu、λv和m的取值与k=1时相同; 第k个有效边缘点的灰度梯度相位搜索范围为Ω(k)=Ω(1)。
第2)步,在搜索范围内选择有效边缘点 当k>0时,将同时落在R(k)和Ω(k)范围内的边缘点的集合记为Ak。选取Ak中在直线lγi上的投影到点(xp(0),yp(0))距离最小的边缘点作为第k个有效边缘点(x(k),y(k)),它在直线lγi上的投影记为(xp(k),yp(k))。
第2步,计算与端点相关的距离参数的概率密度函数 假定得到
的n个有效边缘点,计算与
相关的距离参数
概率密度函数。
如果0≤n≤3,
的概率密度函数为 ρ的最优取值为0.25; 如果n>3,
的概率密度函数计算方法由以下步骤组成 第1)步,计算
的函数
其中,nt表示
的有效边缘点中在直线lγi上的投影到点(xγ,0i,yγ,0i)距离小于
的数目,h(k)是(x(k),y(k))到直线lγi的距离,当γ=1时,θ(k)表示E1中的边缘点(x(k),y(k))的灰度梯度相位,当γ=2时,θ(k)表示E2中的边缘点(x(k),y(k))的灰度梯度相位。
第2)步,计算
的近似导数
其中,Δt的最优取值为3个像素。
第3)步,计算参数η1 其中,η0的最优取值为0.25, 第4)步,计算
的概率密度函数 第一步恢复得到的所有投影直线段的集合记为和每条投影直线段的端点都是以概率密度函数的形式从统计意义上描述的。
第二步,对恢复投影直线段进行特征编组 通过生成一个投影直线段匹配关系图求解,生成的无向图记为G,方法包括下述步骤 第1步,生成投影直线段匹配关系图的节点 计算
中任意一条投影直线段
与
中任意一条投影直线段
的对应关系测度;如果这个测度大于一个指定的门限,则判定它们是匹配的,并由
和
生成G的一个节点,节点属性等于这个测度。
记生成的所有节点集合V={vα|α=1,2,…,M},任意一个节点vα的属性记为μα。
第2步,判定投影直线段匹配关系图中任意两个节点间的连接关系 任取集合V中的两个元素vα和vβ,假定与它们相对应的投影直线段匹配对分别为
和
判定它们之间连接关系的方法包括下述步骤 第1)步,计算vα和vβ的相容关系测度 任意两个节点的相容性取决于它们对应的投影直线段匹配对包含在任意一幅图像中的两条投影直线段的相容性。计算投影直线段
和
的相容关系测度
以及
和
的相容关系测度
如果且则判定vα和vβ是相容的,计算节点vα和vβ的相容关系测度为否则,直接判定节点vα和vβ在图G中不可连接,并返回判定其它节点间的连接关系。
第2)步,判定节点vα和vβ是否为直接可组合关系,计算组合关系测度 如果i=a或j=b,判定节点vα和vβ是直接可组合的,其组合关系测度为Fc(vα,vβ)=1,进入第4)步; 如果i≠a且j≠b,计算
和
属于同一条真实投影直线段的概率
以及
和
属于同一条真实投影直线段的概率
如果或则判定节点vα和vβ是直接可组合的,且组合关系测度为进入第4)步;否则,进入第3)步。
第3)步,判定节点vα和vβ是否为间接可组合关系,计算组合关系测度 以集合V中的元素为节点,建立一个新的无向图g,如果任意两个节点是直接可组合的,则将它们在g中连接起来,连接边权重等于第2)步计算的组合关系测度。如果图G中节点vα和vβ在图g中对应的节点之间存在至少一条路径,则判定它们是间接可组合的,组合关系测度为其中,m表示不含环的路径数,Dist(b)等于第b条不含环的路径上所有连接边权重的最小值;否则,直接判定它们在图G中不可连接,并返回判定其它节点间的连接关系。
第4)步,计算节点vα和vβ之间的连接边权重 将投影直线段匹配关系图G中的节点vα和vβ进行连接,计算连接边权重为 W(vα,vβ)=Fu(vα,vβ)·Fc(vα,vβ) 当α=β时,指定W(vα,vβ)=0。
第3步,生成直线特征编组并计算可靠性测度 计算图G的所有极大团,记为Q={cw|w=1,2,…,NQ},任意一个极大团cw是集合V的子集。利用每个极大团生成一个直线特征编组,计算该直线特征编组的可靠性测度为 第三步,选取最可靠的直线特征编组,确定提取的直线特征间的匹配关系 按照下述方法生成直线特征编组关系图GF利用每个生成的直线特征编组生成图GF的一个节点,节点属性等于相对应的直线特征编组的可靠性测度,如果任意两个直线特征编组中不包含相同的投影直线段,则在图GF中连接它们对应的节点。
计算图GF的所有极大团,其中,每个极大团的能量等于该极大团中包含的所有节点的属性值之和,选取能量最大的极大团包含的直线特征编组作为最可靠的直线特征编组。
在每个直线特征编组中,投影直线段之间的匹配关系是确定的,并且,这些恢复的投影直线段与提取的直线特征是一一对应的,从而,提取的直线特征间匹配关系也是确定的,结合已知的成像参数,依据摄影测量理论可以求解匹配的直线特征对应的三维直线段。
本发明的有益效果是 本发明利用直线特征恢复投影直线段并构造投影直线段特征编组的方法,能够建立起直线特征间包括“一配一”、“一配多”和“多配多”在内的各种对应关系;本发明第一步中通过搜索有效边缘点估计投影直线端点的方法,可以提高投影直线段端点估计的可靠性,并能够定量描述估计结果的可靠性;本发明第二步中对恢复投影直线段进行特征编组时,采用了图论中求解极大团的方法,将复杂的特征编组过程转化为一个经典的数学问题来求解,利于实现;本发明第二步中生成投影直线段匹配关系图的节点和判定节点间连接关系的方法,以投影直线段端点估计的可靠性为基础,计算了节点对应的投影直线段匹配对的匹配可能性以及同一幅图像中的两条投影直线段间的相容关系测度和组合关系测度,可以方便和准确地计算每个直线特征编组的可靠性,提高匹配结果的正确性。
图1是本发明所述的直线立体匹配方法流程示意图; 图2是本发明第一步所述的恢复投影直线段示意图; 图3是本发明第二步的第1步所述的计算
中任意一条投影直线段
与
中任意一条投影直线段
的对应关系测度的示意图; 图4是本发明第二步的第2步所述的计算投影直线段
和
的相容关系测度
的示意图; 图5是本发明第二步的第2步所述的计算
和
属于同一条真实投影直线段的概率
的示意图。
具体实施例方式 下面结合附图对本发明作进一步解释。
图1是本发明所述的直线立体匹配方法流程示意图本发明技术方案的输入是已知成像参数的立体图像对、立体图像的边缘检测结果以及由立体图像提取的直线特征,技术方案的输出是在左右图像提取的直线特征之间建立起来的匹配关系。其中,第一步是利用直线特征集合恢复投影直线段,包括第1步,搜索用于估计投影直线段端点的有效边缘点,第2步,计算与端点相关的距离参数的概率密度函数;第二步是对恢复投影直线段进行特征编组,包括第1步,生成投影直线段匹配关系图的节点,第2步,判定投影直线段匹配关系图中任意两个节点间的连接关系,第3步,生成直线特征编组并计算可靠性测度;第三步,选取最可靠的直线特征编组,确定提取的直线特征间的匹配关系。
图2是本发明方法第一步所述的利用提取的直线特征恢复投影直线段的方法示意图lγi是任意一条由图像中提取的直线特征,sγ,1i和sγ,2i是它的端点,(xγ,0i,yγ,0i)是它的中点,
和
由lγi恢复的投影直线段的端点,
和
分别是端点
和
到点(xγ,0i,yγ,0i)的距离,R(1)、R(2)和R(3)是在计算
的概率密度函数时确定的第1、2和3个有效边缘点的空间搜索范围,它们中的点表示确定的有效边缘点,图中圆圈内给出了搜索有效边缘点的局部放大效果示意图。
图3是本发明第二步的第1步所述的计算
中任意一条投影直线段
与
中任意一条投影直线段
的对应关系测度的示意图I1和I2是左右图像,它们中的两条实线表示用于恢复
和
的直线特征l1i和l2j,为了提高对于部分遮挡问题的适应性,对应关系测度的计算只依据直线特征l1i和l2j的相对应部分,R1i表示I1中经过l1i的端点的核线与I1的边界围成的阴影区域,T1i表示由l1i的端点在I2中确定的核线与I2的边界围成的阴影区域,R2j表示由l2j的端点在I1中确定的核线与I1的边界围成的阴影区域,T2j表示I2中经过l2j的端点的核线与I2的边界围成的阴影区域,D1表示l1i位于内的长度,D2表示l2j位于内的长度,w是设定的矩形图像块的宽度,最优取值为5个像素,r=D2/D1,IL1i和IR1i表示以D1为长、w为宽并且以l1i位于的部分为公共长边的两块矩形图像区域,IL2j和IR2j表示以D2为长、(w·r)为宽并且以l2j位于的部分为公共长边的两块矩形图像区域,IL2ji和IR2ji表示对IL2j和IR2j进行插值计算后得到两块与IL1i和IR1i尺寸相同的图像区域,插值方法可采用最近邻插值、双线性插值或三线性插值。
如果D1与l1i的长度d1i之比小于0.2,或者D2与l2j的长度d2j之比小于0.2,则指定对应关系测度否则,判定
和
满足核线约束,对区域IL1i与IL2ji、IR1i与IR2ji分别进行归一化互相关运算,得到两个归一化灰度互相关系数
和
选择
和
中较大的一个作为
和
的对应关系测度。
图4是本发明第二步的第2步所述的计算投影直线段
和
的相容关系测度
的示意图e1是图像I1的核点,经过它的虚线表示核线,
和
是两条恢复的投影直线段,
和
上的实线部分分别表示用于恢复它们的直线特征l1i和l1α,s1,1i和s1,2i是l1i的端点,s1,1α和s1,2α是l1α的端点,(x1,0i,y1,0i)和(x1,0α,y1,0α)分别表示l1i和l1α的中点,如果经过s1,1i或s1,2i的核线与l1α所在直线的交点位于s1,1α和s1,2α之间,或者经过s1,1α或s1,2α的核线与l1i所在直线的交点位于s1,1i和s1,2i之间,则
和
的相容关系测度为否则,选择l1i和l1α的位于经过点(x1,0i,y1,0i)和(x1,0α,y1,0α)的两条核线之间的端点,假定它们是s1,1i和s1,1α,Ji是经过
的核线与L1i的延长线的交点,q1i是Ji与(x1,0i,y1,0i)之间的距离,Jα是经过s1,1i的核线与l1α的延长线的交点,q1α是Jα与(x1,0α,y1,0α)之间的距离,计算
和
的相容关系测度为 其中,q1i可表示成
的函数,q1α可由s1,1i计算得到,d1i和d1α分别表示提取的直线特征l1i和l1α的长度。
图5是本发明第二步的第2步所述的计算
和
属于同一条真实投影直线段的概率
的示意图
和
是两条恢复的投影直线段,
和
上的实线部分分别表示用于恢复它们的直线特征l1i和l1α,选择
和
的相互靠近的端点,假定它们是
和
和
可以合并的概率的计算方法包括以下步骤 第1)步,判定
和
是否共线 如果下面的不等式组不成立,则判定
和
不共线,
和
可以合并的概率计算过程结束;否则,判定它们共线,进入第2)步。
其中, ε的最优取值是π/20。
(x1,1i,y1,1i)和(x1,2i,y1,2i)分别表示s1,1i和s1,2i的坐标;(x1,1α,y1,1α)和(x1,2α,y1,2α)分别表示s1,1α和s1,2α坐标。
第2)步,计算
和
可以合并的概率 计算
和
可以合并的概率为 其中,S表示点(x1,0i,y1,0i)和(x1,0α,y1,0α)之间的距离。
下面详细说明本发明中的其它有关细节。
第一点,极大团求解方法 本发明中涉及的所有无向图的极大团求解算法均采用一种快速的极大团求解算法,具体参见Tomita E,Tanaka A,Takahashia H.The worst-case timecomplexity for generating all maximal cliques and computational experiments.Theoretical Computer Science,2006,36328-42。
第二点,离散积分求解方法 本发明方案中涉及的一元和二元积分运算全部采用牛顿-柯特斯内差求积公式,具体参见丁丽娟和程杞元著《数值计算方法》,北京北京理工大学出版社,2005年,第168-174页。
权利要求
1.一种直线立体匹配方法,其特征在于,包括下述步骤
已知从不同视角获取的同一场景的两幅图像,分别记为左图像I1和右图像I2,它们的成像参数已知;对图像I1和I2进行边缘检测的结果分别为图像E1和E2,图像E1和E2中每个边缘点的灰度梯度相位已知;从左图像I1中提取的直线特征的集合为其中,任意一个线特征l1i的端点分别为s1,1i(x1,1i,y1,1i)和s1,2i(x1,2i,y1,2i),在l1i上每隔3个像素长度取一个点,将这些点在I1中的灰度梯度相位平均值记为θ1i;从右图像I2中提取的直线特征的集合为其中,任意一个直线特征l2i的端点为s2,1i(x2,1i,y2,1i)和s2,2i(x2,2i,y2,2i),在l2i上每隔3个像素长度取一个点,将这些点在I2中的灰度梯度相位平均值记为θ2i;
第一步,利用直线特征集合恢复投影直线段
对于任意一个直线特征γ=1或γ=2,由它的两个已知端点计算的中点坐标记为(xγ,0i,yγ,0i),长度记为dγi,经过它的直线记为lγi;由lγi恢复的投影直线段记为
它的两个端点
和
到(xγ,0i,yγ,0i)的距离分别记为
和
由lγi恢复
的过程等效为求解
和
的概率密度函数的过程;与
的任意一个端点相关的距离参数
的概率密度函数求解步骤如下
第1步,搜索用于估计投影直线段端点的有效边缘点
的有效边缘点是指在指定搜索范围内用于估计
的端点
位置的边缘点;
有效边缘点的搜索范围包括空间搜索范围和灰度梯度相位搜索范围,由3个门限值来确定
Th表示
的有效边缘点到直线lγi的距离最大值;
Tτ表示
的两个相邻的有效边缘点在直线lγi上的投影间距离的最大值;
Tθ指定
的有效边缘点的灰度梯度相位搜索范围为[θγi-Tθ,θγi+Tθ];
将lγi的端点sγ,qi视为
的第0个有效边缘点,记为(x(0),y(0)),它在直线lγi上的投影记为(xp(0),yp(0)),此时,且
搜索有效边缘点的方法由确定端点的有效边缘点的搜索范围和在搜索范围内选择有效边缘点两个步骤组成,它们被循环执行,直到确定的搜索范围内不再有边缘点被找到;
第2步,计算与端点相关的距离参数的概率密度函数
假定得到
的n个有效边缘点,计算与
相关的距离参数
概率密度函数
第一步恢复得到的所有投影直线段的集合记为和
第二步,对恢复投影直线段进行特征编组
通过生成一个投影直线段匹配关系图求解,生成的无向图记为G,方法包括下述步骤
第1步,生成投影直线段匹配关系图的节点
计算
中任意一条投影直线段
与
中任意一条投影直线段
的对应关系测度;如果这个测度大于一个指定的门限,则判定它们是匹配的,并由
和
生成G的一个节点,节点属性等于这个测度;
记生成的所有节点集合V={vα|α=1,2,…,M},任意一个节点vα的属性记为μα;
第2步,判定投影直线段匹配关系图中任意两个节点间的连接关系
任取集合V中的两个元素vα和vβ,假定与它们相对应的投影直线段匹配对分别为
和
判定它们之间连接关系并计算连接边权重W(vα,vβ);
第3步,生成直线特征编组并计算可靠性测度
计算图G的所有极大团,记为Q={cw|w=1,2,…,NQ},任意一个极大团cw是集合V的子集;利用每个极大团生成一个直线特征编组,计算该直线特征编组的可靠性测度为
第三步,选取最可靠的直线特征编组,确定提取的直线特征间的匹配关系
按照下述方法生成直线特征编组关系图GF利用每个生成的直线特征编组生成图GF的一个节点,节点属性等于相对应的直线特征编组的可靠性测度,如果任意两个直线特征编组中不包含相同的投影直线段,则在图GF中连接它们对应的节点;
计算图GF的所有极大团,其中,每个极大团的能量等于该极大团中包含的所有节点的属性值之和,选取能量最大的极大团包含的直线特征编组作为最可靠的直线特征编组;
在每个直线特征编组中,投影直线段之间的匹配关系是确定的,并且,这些恢复的投影直线段与提取的直线特征是一一对应的,从而,提取的直线特征间匹配关系也是确定的,结合已知的成像参数,依据摄影测量理论可以求解匹配的直线特征对应的三维直线段。
2.根据权利要求1所述的直线立体匹配方法,其特征在于,搜索有效边缘点的方法是;
第1)步,确定端点
的有效边缘点的搜索范围
当k=1时,第k个有效边缘点的空间搜索范围R(1)表示为以下四个点(u1(1),v1(1))、(u2(1),v2(1))、(u3(1),v3(1))和(u4(1),v4(1))顺次连接而成的矩形
其中,
的第k个有效边缘点的灰度梯度相位搜索范围为
当k>1时,第k个有效边缘点的搜索范围由R(k)和Ω(k)表示,确定方法为
计算投影点(xp(k-1),yp(k-1))到(xp(k-2),yp(k-2)的距离,记为τ(k-1),第k个有效边缘点的空间搜索范围R(k)由四个点(u1(k),v1(k))、(u2(k),v2(k))、(u3(k),v3(k))和(u4(k),v4(k))顺次连接而成
其中,λu、λv和m的取值与k=1时相同;
第k个有效边缘点的灰度梯度相位搜索范围为Ω(k)=Ω(1);
第2)步,在搜索范围内选择有效边缘点
当k>0时,将同时落在R(k)和Ω(k)范围内的边缘点的集合记为Ak;选取Ak中在直线lγi上的投影到点(xp(0),yp(0))距离最小的边缘点作为第k个有效边缘点(x(k),y(k)),它在直线lγi上的投影记为(xp(k),yp(k))。
3.根据权利要求2所述的直线立体匹配方法,其特征在于,计算与
相关的距离参数
的概率密度函数,方法是;
如果0≤n≤3,
的概率密度函数为
ρ的最优取值为0.25;
如果n>3,
的概率密度函数计算方法由以下步骤组成
第1)步,计算
的函数
其中,nt表示
的有效边缘点中在直线lγi上的投影到点(xγ,0i,yγ,0i)距离小于
的数目,h(k)是(x(k),y(k))到直线lγi的距离,当γ=1时,θ(k)表示E1中的边缘点(x(k),y(k))的灰度梯度相位,当γ=2时,θ(k)表示E2中的边缘点(x(k),y(k))的灰度梯度相位;
第2)步,计算
的近似导数
其中,Δt的最优取值为3个像素;
第3)步,计算参数η1
其中,η0的最优取值为0.25,
第4)步,计算
的概率密度函数
4.根据权利要求3所述的直线立体匹配方法,其特征在于,判定集合V中的任意两个元素vα和vβ之间连接关系并计算连接边权重W(vα,vβ)的方法包括下述步骤
第1)步,计算vα和vβ的相容关系测度
计算投影直线段
和
的相容关系测度
以及
和
的相容关系测度
如果且则判定vα和vβ是相容的,计算节点vα和vβ的相容关系测度为否则,直接判定节点vα和vβ在图G中不可连接,并返回判定其它节点间的连接关系;
第2)步,判定节点vα和vβ是否为直接可组合关系,计算组合关系测度
如果i=a或j=b,判定节点vα和vβ是直接可组合的,其组合关系测度为Fc(vα,vβ)=1,进入第4)步;
如果i≠a且j≠b,计算
和
属于同一条真实投影直线段的概率
以及
和
属于同一条真实投影直线段的概率
如果或则判定节点vα和vβ是直接可组合的,且组合关系测度为进入第4)步;否则,进入第3)步;
第3)步,判定节点vα和vβ是否为间接可组合关系,计算组合关系测度
以集合V中的元素为节点,建立一个新的无向图g,如果任意两个节点是直接可组合的,则将它们在g中连接起来,连接边权重等于第2)步计算的组合关系测度;如果图G中节点vα和vβ在图g中对应的节点之间存在至少一条路径,则判定它们是间接可组合的,组合关系测度为其中,m表示不含环的路径数,Dist(b)等于第b条不含环的路径上所有连接边权重的最小值;否则,直接判定它们在图G中不可连接,并返回判定其它节点间的连接关系;
第4)步,计算节点vα和vβ之间的连接边权重
将投影直线段匹配关系图G中的节点vα和vβ进行连接,计算连接边权重为
W(vα,vβ)=Fu(vα,vβ)·Fc(vα,vβ)
当α=β时,指定W(vα,vβ)=0。
全文摘要
本发明提供一种直线立体匹配方法,能够对直线立体匹配中的遮挡问题和特征不确定性问题进行建模,对实现对直线间“一配一”、“一配多”或“多配多”在内的各种对应关系的求解。本发明方法对该问题进行求解的工作流程是利用提取的直线特征从统计意义上恢复对应的投影直线→由恢复的投影直线生成所有直线特征编组→选取最可靠的直线特征编组作为匹配问题的解。本发明通过搜索有效边缘点估计投影直线端点的方法,可以提高投影直线段端点估计的可靠性;对恢复投影直线段进行特征编组,采用了图论中求解极大团的方法,利于实现;计算每个直线特征编组的可靠性,提高了匹配结果的正确性。
文档编号G06T7/00GK101635052SQ20091004419
公开日2010年1月27日 申请日期2009年8月26日 优先权日2009年8月26日
发明者文贡坚, 王继阳, 回丙伟 申请人:中国人民解放军国防科学技术大学