专利名称:图像法水稻氮肥施肥推荐方法
技术领域:
本发明涉及水稻施肥管理技术领域。
背景技术:
目前,水稻一般按不同单叶的叶色诊断或SPAD读数指标指导施氮,然后根 据产量高低,确定叶色诊断指标的适宜值。由于所设计的叶色诊断指标的水平数 是有限的,而且不同水平之间是不连续的,因此所得结果不够准确,并且容易受 到研究者主观因素的影响。
近年来,遥感测试技术在作物氮素诊断方面得到非速发展,主要是通过某些 特定光谱检测作物冠层的光反射和光吸收性质来检测作物营养状况的技术。但由 于在田间环境中,植物冠层光谱反射特征影响因素众多、情况复杂,因此在实际 应用中需要排除这些因素的制约就比较困难。对设备和数据处理技术要求高,价 格昂贵,较难推广。GreenSeeker手持式光谱仪是一种作物研究与诊断工具,通 过测量冠层NDVI值来衡量作物生物量和含氮量,确定施氮量,但NDVI值受土壤 类型、土壤水分、土表覆盖度波动大,诊断结果还受到土壤供肥状况的影响等, 应用结果不够准确。
我国水稻年种植面积达4. 2亿亩左右,传统的水稻氮肥管理特点主要存在 氮肥投入产出不高、施肥技术不到位、氮肥利用率低等问题。随农村劳动力的转 移,水稻种植和管理人员素质普遍较低,现代稻作管理技术难以普及到位。
发明内容
本发明首先所要解决的技术问题提供一种快速、准确、低成本高效率和基于模型的图像法水稻氮肥施肥推荐方法。为此,本发明采用以下技术方案它包括 以下步骤
(1) .提供肥力大小已知的培育环境的目标水稻氮肥施肥方法推荐模型,所述 氮肥施肥推荐方法与水稻冠层的叶色值相对应;
(2) .提供氮肥施肥目标的水稻冠层的数码图像,并计算数码图像中的叶色值;
(3) .判断氮肥施肥目标的肥力大小,对照所述目标水稻氮肥施肥方法推荐模
型中相应叶色值所对应的氮肥施肥方法,获得水稻氮肥施肥方案推荐方法。
传统的水稻氮素营养诊断都是基于实验室条件,在试验取样、测定、数据分
析等方面都需要耗费大量的人力、物力,耗时较长、费用较高,还必须具备专业
素质,难以实现快速指导,而贻误农民对水稻施肥的要求。由于采用本发明的技
术方案,能避免传统水稻氮素营养诊断所需的实验室条件和单叶比色存在的问
题,可以通过数码照片显示图像的颜色信息进行远程或非现场诊断,无需取样分
析,实现了快速、经济、可靠的氮素营养诊断和施肥技术推荐,能够实现采用计
算机处理的田间氮肥智能化和科学化管理。
本发明另一个所要解决的技术方案是提供一种水稻氮肥施肥方法推荐模型 的建立方法,所述水稻氮肥施肥方法推荐模型能够用于上述图像法水稻氮肥施肥 推荐方法。为此,本发明采用以下技术方案它包括以下步骤
(1) .提供肥力大小己知的培育环境,对于目标水稻在不同氮素营养状态下的 氮肥施肥方法;
(2) .提供该培育环境的目标水稻冠层的数码图像中叶色值与氮素营养状态的 关系模型;
(3) .根据叶色值与氮素营养状态的关系模型和不同氮素营养状态下的氮肥施 肥方法,对于目标水稻,建立与叶色值对应的水稻氮肥施肥方法推荐模型。
通过本发明的技术方案,能够建立与叶色值对应的水稻氮肥施肥方法推荐模 型,能快速、经济、可靠地提供氮肥施肥推荐方法,为采用计算机处理的田间氮
5肥智能化和科学化管理,建立标准数据库。
本发明再一个所要解决的技术问题提供一种叶色值与水稻氮素营养状态的 关系模型的建立方法,所述叶色值与水稻氮素营养状态的关系模型能够应用于水 稻氮肥施肥方法推荐模型。为此,本发明采用以下技术方案对目标材料水稻品 种,在肥力大小已知的培育环境中,进行等级施氮量处理,测定各等级施氮量处 理后水稻的叶片叶绿素含量、叶片氮含量、叶面积指数和叶片形态,确定水稻叶 面积、叶绿素含量和叶片形态与氮素营养状态的关系;
对各等级施氮量处理后的水稻,分别提供其冠层的数码图像,测定各数码图 像中的叶色值,并对照各数码图像所对应的水稻的叶片叶绿素含量、叶片氮含量、 叶面积指数和叶片形态,建立以下关系模型
(1) .叶色值与叶片氮含量的关系模型,
(2) .叶色值与片叶绿素含量的关系模型,
(3) .叶色值与叶面积指数的关系模型,
(4) .叶色值与叶片形态的关系模型;
根据水稻叶面积、叶绿素含量和叶片形态与氮素营养状态的关系以及上述关 系模型,建立针对已知肥力环境和目标材料水稻品种的叶色值与水稻氮素营养状 态的关系模型。
用于采用本发明的技术方案,本发明利用水稻冠层的数码彩色图像,筛选能 够理想表达水稻群体生长的颜色特征和叶面积特征,建立数码图像信息与植株叶 绿素含量、叶片氮含量、叶面积指数、叶片形态等反映水稻生长发育指标的关系, 分析不同氮素营养状况下水稻叶面积、叶绿素含量和含氮量等农艺参数的动态变 化,建立水稻不同生育时期的生长特性和营养水平的图像分类和图像信息标准 库,为方便、经济、可靠地提供氮肥施肥推荐方法建立基础。
图1为本发明的模型建立方法和氮肥施肥推荐方法的综合流程图。
图2a为叶片挺直程度为披时的示意图。
图2b为叶片挺直程度为较披时的示意图。
图2c为叶片挺直程度为一般时的示意图。
图2d为叶片挺直程度为较挺时的示意图。
图2e为叶片挺直程度为挺时的示意图。
具体实施例方式
在水稻氮营养状态诊断及相应的氮肥施肥方法推荐中,需要根据目标材料水 稻品种,建立相应的模型数据库,所谓目标材料水稻品种或者目标水稻,是指需 施肥水稻的品种。以下实施例以超级稻国稻6号为例。
实施例l,叶色值与水稻氮素营养状态的关系模型的建立
对目标材料水稻品种,在肥力大小已知的培育环境中,进行等级施氮量处理, 测定各等级施氮量处理后水稻的叶片叶绿素含量、叶片氮含量、叶面积指数和叶 片形态,确定水稻叶面积、叶绿素含量和叶片形态与氮素营养状态的关系;
所述培育环境可以是田间、水槽及盆钵等培育环境,
所述氮素营养状态是指水稻群体植株的氮素含量水平,其测量方法是田间取 代表性植株,放在烘箱里105'C杀青,6(TC左右烘干称量,用凯氏定氮法测定植 株含氮量,根据测出的植株氮素含量水平确定氮素营养状态;
所述肥力是指土壤背景肥力,其大小判断按以下方法根据土壤含氮量水平 或不施肥情况下水稻产量的水平确定土壤供氮水平,即土壤肥力的大小。用凯氏 定氮法测定土壤全氮含量,根据土壤全氮含量值确定土壤肥力。土壤全氮含量1.75g/kg以上为高肥力,土壤全氮含量1.00-1. 75g/kg为中等肥力,土壤全氮 含量1.00g/kg以下为低肥力。
所述等级施氮是这样进行的施氮量按照一定等级,如某方案相邻等级施氮 量相差每公顷30公斤一级进行施肥,即每公顷施氮30公斤、60公斤、90公斤、 120公斤、150公斤、180公斤、210公斤。
所述叶片叶绿素含量是指叶绿体色素含量,是反映植株叶片光合作用水平的 一个指标。它的测定方法是用96%乙醇(或80%丙酮)提取叶片叶绿素提取 液,利用分光光度计在波长665nm、 649nm下测定吸光度,按公式计算叶绿素的 含量,或者用叶绿素含量测定仪SPAD-502直接测定叶片叶绿素含量;
所述叶片氮含量是指群体叶片的总体含氮量水平,它的测定方法是取能反 应群体的代表性水稻植株,把所有绿色叶片放在烘箱里105'C杀青,6(TC左右烘 干称量,用凯氏定氮法测定叶片含氮量;
所述叶面积指数是指水稻群体绿色叶面积总量与相对应的土地面积之比值, 是反映水稻群体大小的一个指标,它的测定方法是用叶面积测定仪测定水稻群 体绿色叶面积总量,按叶面积系数=水稻绿色叶片面积之和/该稻田面积计算叶面 积指数。
所述叶片形态是指叶片的披挺程度,它的测定方法是按照叶片挺直程度可 分为披、较披、 一般、较挺、挺。
对各等级施氮量处理后的水稻,分别提供其冠层的数码图像,所述水稻冠层 的数码图像为该培育环境中的水稻群体的冠层数码图像,比如, 一块实验田中某 一个区域的水稻的冠层数码照片。
测定各数码图像中的叶色值,所述叶色值是指数田间拍摄码图像色彩的综 合,反映水稻群体氮素水平,其测量方法采用计算机进行,具体为利用基于RGB 颜色分量运算与色域压縮的图像处理方法,进行田间水稻群体生长状态即时提 取,利用滚动自学习方法和时空域多证据增强的纹理表面质量视觉检测方法对数码图像进行数字化处理,根据图像的像素分布、亮度和颜色等信息判别叶色值。 从而建立超级稻数码图像中的叶色值与田间植株叶片叶绿素含量、叶片氮含 量、叶面积指数和叶片形态的对应关系信息库。
在此基础上,对照各数码图像所对应的水稻的叶片叶绿素含量、叶片氮含量、 叶面积指数和叶片形态,利用计算机建立以下叶色值与以下主要农艺参数的关系 模型-
(1) .叶色值与叶片氮含量的关系模型,
(2) .叶色值与片叶绿素含量的关系模型,
p).叶色值与叶面积指数的关系模型,
(4).叶色值与叶片形态的关系模型;
根据水稻叶面积、叶绿素含量和叶片形态与氮素营养状态的关系以及上述关 系模型,建立针对己知肥力环境和目标材料水稻品种的叶色值与水稻氮素营养状 况的关系模型,该关系模型可以将水稻氮素营养状况分为若干级,每个级对应某 个叶色值或叶色值区域。该关系模型中,植株叶面积指数、叶片叶绿素含量和叶 片形态特征四项指标,在根据其与氮素营养状态的关系被氮素营养状态代位后, 其在与叶色值的关系中,不是平等的,而是加权的,氮素营养状态=(植株叶片
含氮量*权重1+叶面积指数*权重2+叶片叶绿素含量*权重3+叶片形态*权重4) / (权重l+权重2+权重3+权重4)。加权的系数根据不同的水稻品种而不同,一
般来说植株叶片含氮量的权重大于叶面积指数的权重,叶面积指数的权重大于
叶片叶绿素含量的权重和叶片形态的权重,叶片叶绿素含量的权重和叶片形态的
权重大致相当,超级稻品种权重参数权重1=0.5,权重2=0.3,权重3=0.1,权重 4=0.1,其它品种的水稻也可参照并通过实践修正。氮素营养状态分成五级,理 想值=5、较理想值=4、 一般=3、较差=2、差=1。
在实施中,为了增加操作便利性,可以按照叶色值的不同将叶色值按照大小 分为多个叶色值归属区,将叶色值按照大小归属至不同的叶色值归属区,从而建
9立各叶色值归属区与水稻氮素营养状况的关系模型。
在具体实施中,对于同一品种的水稻,最好建立不同肥力的培育环境下的叶 色值与水稻氮素营养状态的关系模型,这样,在实际诊断中,可以选择与氮肥施 肥目标的肥力相当的关系模型,以方便诊断并提高准确程度。
实施例2,水稻氮肥施肥方法推荐模型的建立
(1) .提供肥力大小已知的培育环境,对于目标水稻的在不同氮素营养状态下 的氮肥施肥方法,该氮肥施肥方法,可以由专家根据品种、肥力、氮肥营养状态 而具体制定。
(2) .提供按照实施例1的方法建立的在该肥力条件下的叶色值与水稻氮素 营养状态的关系模型,
。).根据叶色值与氮素营养状态的关系模型和不同氮素营养状态下的氮肥施 肥方法,对于目标水稻,建立与叶色值对应的水稻氮肥施肥方法推荐模型。
在实施中,最好建立不同肥力的培育环境下的叶色值与水稻氮素营养状态的 关系模型,并据此建立不同肥力的培育环境下的叶色值与水稻氮肥施肥方法推荐 模型,这样,在实际诊断和推荐操作时,可以选择与氮肥施肥目标的肥力相当的 关系模型,以方便诊断并提高施肥推荐方法的准确程度。
实施例3图像法水稻氮肥施肥推荐方法,其特征在于它包括以下步骤
(1) .提供按照实施例2的方法建立的肥力大小已知的培育环境的目标水稻氮
肥施肥方法推荐模型,
(2) .提供氮肥施肥目标的水稻冠层的数码图像,该数码图像可以是从近地面 或地面数码图像拍摄,并从目标地发至异地的远程处理中心,由处理中心利用图 像识别软件分析的数码图像,进行图像识别区分,并计算数码图像中的叶色值,
(3) .判断氮肥施肥目标的肥力大小,对照所述目标水稻氮肥施肥方法推荐模型中相应叶色值所对应的氮肥施肥方法,获得水稻氮肥施肥方推荐方法。
当提供有不同培育环境的目标水稻氮肥施肥方法推荐模型时(所述不同培育 环境的肥力大小不同),应选择与氮肥施肥目标的肥力大小相同或接近的培育环 境的目标水稻氮肥施肥方法推荐模型,对照该目标水稻氮肥施肥方法推荐模型中 相应叶色值所对应的氮肥施肥方法,获得水稻氮肥施肥方推荐方法。
当经过判断,氮肥施肥目标与目标水稻氮肥施肥方法推荐模型的培育环境的 肥力大小有差异时,最好根据肥力大小差异,对所述目标水稻氮肥施肥方法推荐 模型中相应叶色值所对应的氮肥施肥方法进行修正,获得水稻氮肥施肥方案推荐 方法,所述修正的方法是待推荐水稻氮肥施肥方案数码图像叶色值与相对应氮 肥施肥方法,在培育环境的肥力较大条件下,施氮量适当减低,在培育环境的肥 力较小条件下,施氮量适当增加,增减值大小不超过级差水平,如上述的级差施 氮量30公斤/公顷。
通过计算机进行上述处理后,所获得的施肥推荐方法可以通过手机短信、农 民信箱和电子邮件等反馈给稻农,稻农按照提供的方案进行田间施肥实施。
权利要求
1.图像法水稻氮肥施肥推荐方法,其特征在于它包括以下步骤(1)提供肥力大小已知的培育环境的目标水稻氮肥施肥方法推荐模型,所述氮肥施肥推荐方法与水稻冠层的叶色值相对应;(2)提供氮肥施肥目标的水稻冠层的数码图像,并计算数码图像中的叶色值;(3)判断氮肥施肥目标的肥力大小,对照所述目标水稻氮肥施肥方法推荐模型中相应叶色值所对应的氮肥施肥方法,获得水稻氮肥施肥推荐方法。
2. 如权利要求1所述的图像法水稻氮肥施肥推荐方法,其特征在于它提供有 不同培育环境的目标水稻氮肥施肥方法推荐模型,所述不同培育环境的肥力大小 不同;并选择与氮肥施肥目标的肥力大小相同或接近的培育环境的目标水稻氮肥 施肥方法推荐模型,对照该目标水稻氮肥施肥方法推荐模型中相应叶色值所对应 的氮肥施肥方案,获得水稻氮肥施肥方案推荐方法。
3. 如权利要求1所述的图像法水稻氮肥施肥推荐方法,其特征在于它判断氮 肥施肥目标与目标水稻氮肥施肥方法推荐模型的培育环境的肥力大小差异,并根 据肥力大小差异,对所述目标水稻氮肥施肥方法推荐模型中相应叶色值所对应的 氮肥施肥方案进行修正,获得水稻氮肥施肥方案推荐方法。
4. 如权利要求1所述的图像法水稻氮肥施肥推荐方法,其特征在于所述水 稻冠层的数码图像为氮肥施肥目标中的水稻群体的冠层数码图像。
5. 水稻氮肥施肥方法推荐模型的建立方法,其特征在于它包括以下步骤-(1) 提供肥力大小已知的培育环境,对于目标水稻在不同氮素营养状态下的 氮肥施肥方法;(2) 提供该培育环境的目标水稻冠层的数码图像中叶色值与氮素营养状态 的关系模型;(3) 根据叶色值与氮素营养状态的关系模型和不同氮素营养状态下的氮肥施肥方法,对于目标水稻,建立与叶色值对应的水稻氮肥施肥方法推荐模型。
6. 如权利要求5所述的水稻氮肥施肥方法推荐模型的建立方法,其特征在于 所述水稻冠层的数码图像为该培育环境中的目标水稻群体的冠层数码图像。
7. 叶色值与水稻氮素营养状态的关系模型的建立方法,其特征在于对目标材料水稻品种,在肥力大小已知的培育环境中,进行等级施氮量处理,测定各等 级施氮量处理后水稻的叶片叶绿素含量、叶片氮含量、叶面积指数和叶片形态,确定水稻叶面积、叶绿素含量和叶片形态与氮素营养状态的关系;对各等级施氮量处理后的水稻,分别提供其冠层的数码图像,测定各数码图 像中的叶色值,并对照各数码图像所对应的水稻的叶片叶绿素含量、叶片氮含量、 叶面积指数和叶片形态,建立以下关系模型(1) 叶色值与叶片氮含量的关系模型;(2) 叶色值与片叶绿素含量的关系模型;(3) 叶色值与叶面积指数的关系模型;(4) 叶色值与叶片形态的关系模型;根据水稻叶面积、叶绿素含量和叶片形态与氮素营养状态的关系以及上述关 系模型,建立针对己知肥力环境和目标材料水稻品种的叶色值与水稻氮素营养状 态的关系模型。
8. 如权利要求7所述的水稻氮肥施肥方法推荐模型的建立方法,其特征在于 按照叶色值的不同分为多个叶色值归属区,建立各叶色值归属区与水稻氮素营养 状态的关系模型。
9. 如权利要求7所述的叶色值与水稻氮素营养状态的关系模型的建立方法, 其特征在于所述水稻冠层的数码图像为该培育环境中的水稻群体的冠层数码图像。
全文摘要
本发明提供了一种图像法水稻氮肥施肥推荐方法,它包括以下步骤提供目标水稻氮肥施肥方法推荐模型;提供水稻冠层的数码图像,并计算数码图像中的叶色值;判断氮肥施肥目标的肥力大小,获得水稻氮肥施肥方案推荐方法。本发明还提供了一种能够用于上述图像法水稻氮肥施肥推荐方法的水稻氮肥施肥方法推荐模型的建立方法,本发明还提供了一种叶色值与水稻氮素营养状态的关系模型的建立方法。本发明利用水稻冠层的数码彩色图像,筛选能够理想表达水稻群体生长的颜色特征和叶面积特征,建立水稻不同生育时期的生长特性和营养水平的图像分类和图像信息标准库,为方便、经济、可靠地提供氮肥施肥推荐方法建立基础。
文档编号G06F19/00GK101604359SQ200910100740
公开日2009年12月16日 申请日期2009年7月20日 优先权日2009年7月20日
发明者朱德峰, 林贤青 申请人:中国水稻研究所