专利名称:文档处理方法和系统的制作方法
技术领域:
本发明涉及文档处理技术,更具体地,涉及在企业搜索领域扩展作为搜索数据源 的文档集的方法和系统。
背景技术:
今天的企业拥有越来越多的、各式各样的电子文件和数据信息,如何让这些信息 成为企业业务发展甚至是战略决策的好帮手,是人们日益关注的问题。而企业搜索技术就 提供了一种有效的方式,来帮助企业处理这些日益增长的数据信息。然而,并非所有的数据 都适合作为企业搜索中的搜索数据源。传统的基于通用搜索引擎的搜索所依据的信息源是 海量信息源,搜索结果也是海量的数据信息,大量搜索结果可能不是用户想要的内容,企业 搜索用户很难从这样海量的数据信息中去除噪音而得到其想要的信息。基于这样的背景, 在企业搜索领域,为了特定的业务需求(例如,做某个行业的市场分析,或,选定投资的企 业),由于受到资源的限制,不可能把整个互联网的数据都收集下来做搜索,而是要在业务 需求的范围内,尽可能多的收集相关的信息资料。另一方面,随着网络上文档的飞速增长, 企业搜索的数据源也需要随之不断地更新和扩展,因此,如何有效的自动扩展企业搜索服 务的搜索数据源,并且帮助企业在海量网络数据中收集对业务有用的信息,去除不必要的 “噪音”信息以提高数据资源利用率,并节省搜索数据源的存储资源,是企业搜索技术领域 的重要挑战之一。现有技术中存在如下解决上述问题的方法由企业搜索服务的用户将其获得的比 较有价值的文档向企业搜索服务系统推荐,存储在企业搜索服务系统的信息存储装置中, 成为公共的企业搜索数据源;或者由企业搜索服务的系统管理员随时关注网络信息的变化 并且将有用的信息添加至企业搜索数据源中。然而上述这两种扩展搜索数据源的方式不能 依据企业搜索数据源中已有的文档自动实现扩展,而是完全依赖于企业搜索服务的用户以 及系统管理员的行为,费时费力且扩展数据源的效率很低。
发明内容
考虑到上述问题,希望提供能够自动进行文档扩展的技术方案,从而在无需大量 人工劳动的前提下保持文档的不断扩展,同时能够保持文档扩展的精度和准确度。与传统 的搜索引擎不同(传统的搜索引擎依赖于网页之间的超级链接进行数据的扩展),一般来 讲,企业搜索中,企业关心的信息具有具体的实体以及与之相关的主题。因此,这里提出的 技术方案,主要利用文章内容的关注实体和主题的分析,进一步挖掘企业用户对信息的需 求,从而做到文档的自动扩展。基于上述问题和目的,本发明提供能够自动进行文档扩展的文档处理方法及系 统。根据本发明的第一方面,提供一种文档处理方法,包括对给定的种子文档集中的 每篇种子文档执行下列操作以生成扩展文档集识别该种子文档的一个或多个实体词,所
5述实体词是表示该种子文档所关注的实体的词;依据所识别的每个实体词,识别该种子文 档的一个或多个与所依据的实体词相关的主题词;将所识别的每个主题词,以及识别所述 每个主题词时所依据的实体词组成实体词_主题词对;以及将每个所述实体词_主题词对 中的实体词和主题词同时作为关键词,通过网络获得一篇或多篇扩展文档,并将所述扩展 文档加入所述扩展文档集,所述扩展文档既包含所述每个实体词_主题词对中的实体词, 也包含所述每个实体词_主题词对中的主题词。根据本发明的第二方面,提供一种文档处理方法,包括接收给定的一个或多个实 体词-主题词对,每个所述给定的实体词-主题词对由一个实体词和一个主题词组成,所述 实体词_主题词对中的所有实体词组成实体词集合,并且每个实体词所在的实体词_主题 词对中的所有主题词组成对应于该实体词的主题词集合;以及对给定的候选文档集中的每 篇候选文档执行下列操作以生成过滤文档集识别该候选文档的一个或多个实体词,所述 实体词是表示该文档所关注的实体的词;依据所识别的每个实体词,识别该候选文档的一 个或多个与所依据的实体词相关的主题词;利用所述给定的实体词-主题词对中的实体词 和主题词以及该候选文档被识别的实体词和主题词,判断是否将该候选文档加入过滤文档 集,响应于判断结果为是,将该候选文档加入过滤文档集。根据本发明的第三方面,提供一种文档处理系统,包括应用于给定的种子文档集 中的每篇种子文档的下列装置以生成扩展文档集实体词识别装置,用于识别该种子文档 的一个或多个实体词,所述实体词是表示该文档所关注的实体的词;主题词识别装置,用 于依据所识别的每个实体词,识别该种子文档的一个或多个与所依据的实体词相关的主题 词;配对装置,用于将所识别的每个主题词,以及识别所述每个主题词时所依据的实体词组 成实体词_主题词对;以及文档扩展装置,将每个所述实体词_主题词对中的实体词和主题 词同时作为关键词,通过网络获得既包含所述每个实体词-主题词对中的实体词,也包含 所述每个实体词_主题词对中的主题词的一篇或多篇扩展文档,将所述扩展文档加入所述 扩展文档集。根据本发明的第四方面,提供一种文档处理系统,接收装置,用于接收给定的一个 或多个实体词_主题词对,每个所述给定的实体词_主题词对由一个实体词和一个主题词 组成,所述实体词_主题词对中的所有实体词组成实体词集合,并且每个实体词所在的实 体词_主题词对中的所有主题词组成对应于该实体词的主题词集合;以及应用于给定的候 选文档集中的每篇候选文档的下列装置以生成过滤文档集实体词识别装置,用于识别该 候选文档的一个或多个实体词,所述实体词是表示该文档所关注的实体的词;主题词识别 装置,用于依据所识别的每个实体词,识别该候选文档的一个或多个与所依据的实体词相 关的主题词;判断装置,利用所述给定的实体词-主题词对中的实体词和主题词以及该候 选文档被识别的实体词和主题词,判断是否将该候选文档加入过滤文档集,并且响应于判 断结果为是,将该候选文档加入过滤文档集。利用本发明的方法和系统,可以自动地实现对已有文档的扩展或过滤,而无需耗 费大量的人力成本;而且这种扩展或过滤是以对已有文档进行实体词-主题词分析为基础 的,提高了文档扩展或过滤的依据性、准确性。
图1是示出了根据本发明的文档处理方法的流程图;图2是示出了利用焦点实体词识别技术FNER识别文档的实体词的方法的流程图;图3是示出了利用焦点主题词识别技术FTD识别文档的主题词的方法的流程图;图4是根据本发明一实施例的基于通用搜索引擎的网络爬虫(WebCrawler)架构 图;图5A至图5G是对中文文档进行识别实体词和主题词操作各阶段过程的示意图;图6A至图6F是对英文文档进行识别实体词和主题词操作各阶段过程的示意图;图7是以图1所示的文档处理方法为基础的、包含了对处理后的文档的过滤步骤 的流程图;图7A是利用给定的实体词_主题词对过滤给定的候选文档集的文档处理方法的 流程图;图8是示出了根据本发明一实施例的过滤扩展文档集的方法的流程图;图8A是根据图7A所示的流程图中的过滤步骤的详细流程图;图9是示出了根据图1所示的文档处理方法的文档处理系统的结构图;图10是示出了根据图7和图8所示的文档处理方法的文档处理系统的结构图;图11是示出了根据图7A和图8A所示的文档处理方法的文档处理系统的结构图;图12是示出了根据本发明的方法的企业搜索服务系统的一种实现的结构图。
具体实施例方式下面结合
本发明的具体实施方式
。图1是示出了根据本发明的文档处理方法的流程图。图1所示的方法从步骤101 开始。对于种子文档集中的每篇种子文档,执行步骤101-104的操作。在步骤101中,识别 该种子文档的实体词。种子文档集是包含了至少一篇种子文档的文档集合,种子文档是指 确定需要对其进行扩展操作的文档。也就是说,种子文档集中包含的所有文档都需要进行 步骤101-104的操作。种子文档集中的种子文档可以在物理上存储于同一存储装置中,也 可以存储于不同的存储装置中。如果某文档虽然与种子文档在物理上存储于同一存储装置 中,或者通过某种共同的方式而获得(如均由企业搜索服务的用户推荐),但是只要该文档 不需要进行步骤101-104所示的扩展操作,那么该文档就不是种子文档,从而不包含在种 子文档集中。种子文档集包含的种子文档可以由企业搜索服务的用户推荐,例如用户在本 地或通过网络从远程服务器读取到其认为有价值的文档后,可以将该文档向企业搜索服务 器推荐,从而保存在种子文档集中。本领域技术人员可以了解,用户推荐只是生成种子文档 集的一种方式,还可以采用其它方式生成种子文档集,例如自动从其它数据库导入等。实体 词是文档中所包含的词,是指一篇文章内容上谈论的焦点的一个或多个命名实体。对每篇 文档可以识别出一个或多个实体词。可以利用焦点实体词识别技术(FNER)来识别文档中 的实体词,利用FNER技术识别实体词的方法具体在图2中示出并加以说明。响应于在步骤 101中识别出该种子文档的实体词,在步骤102中依据所识别出的实体词,识别该种子文档 的主题词。主题词是指不同于实体词的,表示一篇文章中与所识别的实体词相关的重要的 主题的词,并且具有某些词性特征(大多是名词或动词)。与实体词一样,主题词也是文档
7中的词。需要强调的是,主题词是与实体词相联系的,也就是说,要依据对某篇文档所识别 出的实体词来识别主题词。尽管识别主题词的过程中需要引入多种参数,但是某篇文档中 除所识别出的实体词外的其它词与实体词的联系是识别主题词过程中的重要且不可或缺 的参数。可以通过焦点主题词识别技术(FTD)来识别文档的主题词,利用FTD技术识别主 题词的方法具体在图3中示出并加以说明,本领域技术人员可以从图3所示的FTD流程图 以及对应的文字说明中了解到在识别主题词的过程中如何引入与实体词相关的参数,以体 现所识别的主题词与实体词的关联。还需要指出的是,依据同一个所识别出的实体词,可能 识别出一个或多个主题词,这是因为在某篇文档中,可能存在与这篇文档的某个实体词相 关的多个主题词。还要强调,主题词是与实体词对应的,具体而言,对于同一篇文档可能识 别出多个实体词,然后分别依据每个所识别出的实体词在这篇文档中识别主题词。通过步骤101和102已经识别出了种子文档集中的各个文档的实体词和主题词, 在步骤103中将所识别的每个主题词,以及识别所述每个主题词时所依据的实体词组成实 体词_主题词对。尤其要注意步骤103组成实体词-主题词对的方式,由于种子文档集中 可能包含多篇文档,每篇文档又可能被识别出多个实体词以及多个主题词,并不是将种子 文档集中的文档被识别出的所有实体词和主题词自由组对,而是将每个所识别出的主题词 与识别出该主题词时所依据的那个实体词组成实体词_主题词对。通过表1举例说明如下 (文档1、文档2和文档3都是种子文档集中的种子文档)表 1
文档编号文档1文档2文档3实体词AlA2A3A4A5Al主题词BlBlB2B3B4B5B2B5通过表1可以看出,在步骤101中对文档1识别出3个实体词分别是A1、A2和A3。 依据实体词Al,在步骤102中识别出对应于Al的主题词Bl ;依据实体词A2,在步骤102中 识别出对应于A2的主题词Bl ;依据实体词A3,在步骤102中识别出对应于A3的2个主题 词B2和B3。同样地,对文档2和文档3也识别出实体词和主题词。那么在步骤103中对上 述所识别出的实体词和主题词可以组成的实体词_主题词对即为以下8组A1-B1、A2-B1、 A3-B2、A3-B3、A4-B4、A5-B5、A1-B2和A1-B5,而不能组成A4-B5这样的实体词-主题词对, 因为主题词B5是依据实体词A5识别出的,而并非依据实体词A4识别出的。通过表1还可 以看出,同一篇文档可以被识别出多个实体词(例如文档2被识别出实体词A4和B5),依据 同一个实体词可以识别出多个主题词(例如在文档3中依据实体词Al识别出B2和B5两 个主题词),不同的文档可以被识别出相同的实体词(例如文档3和文档1都被识别出实体 词 Al)。在步骤104中将组好的每一实体词-主题词对中的实体词和主题词同时作为关键 词,通过网络搜索获取一篇或多篇扩展文档,从而由种子文档集生成扩展文档集,所述扩展 文档集是指由一篇或者多篇扩展文档组成的集合。以表1中可以组成的主题词对Al-Bl为 例,将Al-Bl作为关键词通过网络搜索下载新的文档(Al和Bl在搜索的过程中是“与”的 关系而并非“或”的关系),所下载的新的文档是既包含Al也包含Bl的文档,所下载的新的文档即构成扩展文档集。需要指出的是,可以利用多种方式实现自动通过网络搜索下载新 的文档的过程,例如可以通过基于网络爬虫(Web Crawler)技术的通用搜索引擎架构来下 载新的文档,图4示出了一个基于通用搜索引擎的Web Crawler架构图。综上所述,通过图1中的步骤101-104可以实现将种子文档集扩展为种子文档集 加扩展文档集,在企业搜索服务领域即实现了自动扩展原始搜索数据源文档的技术效果。图2是示出了利用FNER技术识别文档的实体词的方法的流程图。对于一篇特定 的文档,在步骤201中进行自动分词处理,也就是将文档中包含的单词一个一个地区分开。 可以采取最大匹配法(MM法)、逆向最大匹配法(0ΜΜ法)、逐词遍历匹配法和设立切分标志 法等方法来进行自动分词处理。自动分词处理结束之后在步骤202中进行自动词性标注 (POS Tagging),所谓词性,是指对词分为名词、动词、介词、形容词等类别。自动词性标注 (POS Tagging)可以通过基于概率统计和基于规则来实现通过计算机自动地给文档中的词 标注词性,具体可以采用CLAWS、VOLSUNGA等本领域常用的方法进行自动词性标注。自动词 性标注处理后的结果例如可以是将名词标注为η、将动词标注为ν、将形容词标注为a、将数 字标注为m等。在步骤203中识别候选实体词。首先要强调的是,所谓实体词,指的是表示 人名、地名或者组织名的词,实体词一定是名词,也就是一定是在步骤202中被标注为名词 (η)的词。识别候选实体词的技术基本上是对文章中的每个词抽取特征,例如,这个词的前 后两个词,前后词的词性,这个词是否出现在语义词典中的(人名的称谓,地名、组织名的 前缀和后缀等)。然后根据实体识别的统计模型进行分类判定,超过某个阈值的就判断为候 选实体词,这样就把候选实体词与普通的名词区别开了。在获得候选实体词的基础上,在步 骤204中对每个候选实体词抽出一系列的特征,将每个候选实体词被抽出的一些列特征的 特征值构成特征向量。例如e是在某篇文档中被识别出的一个候选实体词,对e这个实体 词抽取m个特征,则候选实体词e的特征向量即可表示为X= Ix1, x2,···, xffl}0关于所抽 出的关于候选实体词的特征可以是例如该候选实体词在文章中出现频率、是否在标题中出 现、其左边和右边的词是否是其它的候选实体词、该候选实体词在该文档中的分布等等。在 步骤205中设定阈值并且对特征向量中的每个特征值设定权重。需要指出的是,通常使用 机器学习的方式在步骤205中设定阈值并为每个特征值设定权重。一般地来讲,机器学习 算法的过程是这样的首先,手工准备一些标注好的训练样本集合(例如,每个类别里面包 含一定数量的属于该类的例子),然后,按照特定的方法进行特征抽取,由于分类的场景和 数据不一样,所以抽取的分类特征也各不相同,最后,机器学习算法读取每个训练样本的特 征,通过一定的学习准则(例如,正样本与负样本空间分割距离最大,或者,分类的误差最 小,等)得出分类模型,也就是每个特征的权重,即该特征对于分类的贡献程度,训练过程 结束。在线分类时,与训练过程类似,对未知类别的样本抽取特征,然后,应用训练阶段得到 的分类模型,计算该样本与每个类别的相似程度,根据一个预先设定的阈值进行最后分类 的判断。目前广泛应用的机器学习算法有多种,例如,朴素贝页斯算法(Naive-Bayes),决策 树算法(Decision Tree),支持向量机算法(Support Vector Machines),等等。其中,支持 向量机算法是目前公认的最好的分类算法,能够达到最优的分类准确率。在步骤206中,利 用下列公式计算每个候选实体词的分数Score(X)
mscore (χ)=办+ 乙(%*6)
9
其中,b表示在步骤205中设定的阈值,Wj表示特征Xj所占的权重,Wj可以为正 值,也可以为负值,当%为负值时表示对具有特征\的候选实体词被选为实体词具有负作 用。在步骤206中依据上述公式算得候选实体词的分数之后,在步骤207中将所算得的分 数与在步骤205中设定的阈值比较,如果score (χ)的值大于0,则将该候选实体词识别为实 体词,如果Score(X)值小于0,则不将该候选实体词识别为实体词。至此,对每一个在步骤 203中识别的候选实体词都进行相同的处理和判断,过滤识别出该文档的实体词。图3是示出了利用焦点主题识别(FTD)技术,依据所识别的实体词来识别文档的 主题词的方法的流程图。在步骤301中,对被识别了实体词的文档进行自动分词和自动标 注词性处理。需要注意,图3为了示意完整的FTD流程而加入了步骤301,实际上步骤301 在图2所示的FNER流程中已经实施过,所以无须在FTD流程中再次实施,完全可以直接利 用FNER流程中自动分词和自动词性标注的处理结果。在步骤302中,过滤文档中的停用词、 实体词和候选实体词。这里要过滤的实体词即为在图2所示的FNER流程中所识别出的实 体词,而停用词是指不可能成为主题词的一些词,例如形容词(美丽的、卓越的)、副词(的、 地)等。优选地,主题词是名词。次优地,主题词也可以是动词。可以利用自动词性标注的 结果来实现步骤302的过滤。在步骤303中,计算过滤后的文档中的每个剩余词与实体词 的距离。剩余词是指经过滤后,该文档剩下的词。剩余词与实体词的距离是指,剩余词与实 体词之间所间隔的词数,这里计算所间隔的词数时也要将被过滤掉的实体词、候选实体词 和停用词计算在内。这样做的依据是,通常主题词与实体词间的平均距离要比非主题词与 实体词间的平均距离小。在步骤304中,计算过滤后的文档中的每个剩余词与实体词在同 一句话中出现的频率。本领域技术人员可以了解,步骤303和步骤304集中体现了主题词 是与实体词相关的,也就是依据特定的被识别出的实体词来识别主题词。尤其需要指出的 是,步骤303和步骤304只是体现主题词与实体词的关系的两个示例性参数,能够体现主题 词与实体词的关系的参数还可以包括很多种,例如实体词与主题词在同一段落里同时出现 的频率、实体词与主题词在指定的距离范围内出现的频率、实体词与主题词在文档的子标 题和子标题下属的内容中同时出现的频率等。所谓实体词与主题词在指定的距离范围内出 现的频率,是指与实体词相隔某特定距离(如3个词)出现主题词的次数,也就是说,如果 一个词在与所识别的主题词相隔3个词之内出现,不论是相隔2个词还是相隔1个词,都可 就该特征值获得相同的权重和分值(特定距离内不再区分)。而所谓实体词与主题词在文 档的子标题和子标题下属的内容中同时出现的频率是指,在某些网络文档中,除了主标题 以外,还存在多个子标题,并且每个子标题下都附带有一段关于该子标题的内容,因此在文 档的子标题和子标题下属的内容中同时出现实体词和主题词的频率也能够体现实体词和 主题词的关系。综上所述,可以由多种参数(特征值)来体现实体词和主题词的关系,体现 依据所识别的实体词来识别主题词的“依据关系”。除了上面列举的多种参数(特征值外), 无论本领域技术人员利用何种参数,只要该参数能够体现实体词和主题词的关联,也就是 依据所识别的实体词来识别主题词,都落入本发明的保护范围。在步骤305中,对每个剩余词抽取其特征值,构成其特征向量。步骤305中抽取的 特征包括在步骤303和304中算得的距离和频率,还包括剩余词与实体词无关的其它一些 特征,例如剩余词在该篇文档中出现的频率、剩余词的长度、具有同一被识别出的实体词的 文档集合中包括该剩余词的文档的篇数等。在步骤306中,设定识别主题词的阈值,并且设定特征向量中的每个特征的权重值。同在步骤205中设定识别实体词的阈值并且对特征向 量中的每个特征值设定权重的步骤相同,步骤306也通过机器学习的方式设定识别主题词 的阈值以及特征向量中的每个特征的权重值。在步骤307中,对每一个剩余词,根据所设定 的权重值和特征向量Y= Iy1, y2,…,yj计算分数。计算公式为其中,c表示在步骤306中设定的阈值,wj表示特征yj所占的权重值,wj可以为 正值,也可以为负值,当wj为负值时表示对具有特征yj的剩余词被选为主题词具有负作 用。在步骤307中依据上述公式算得剩余词的分数之后,在步骤308中将所算得的分数与 在步骤306中设定的阈值比较,如果score (y)的值大于0,则将该剩余词识别为主题词,如 果score (y)值小于0,则不将该剩余词识别为主题词。至此,对每一个剩余词都进行相同的 处理和判断,过滤识别出该文档的对应于先前被识别出的实体词的主题词。下面给出一个对某篇具体的中文文档识别其实体词,并依据所识别的实体词识别 其主题词的实例1.利用FNER技术实现实体词识别步骤1自动分词及自动词性标注假设某给定的中文文档如图5A所示。用程序对该文档分词后效果如图5B所示, 利用程序进行自动词性标注后效果如图5C所示,其中/n表示名词/V表示动词/a表示形 容词/m表示数字。步骤2识别候选实体词如图5D所示,抽取的候选实体词包括公司名“建华”(根据周围的数码、公司等判 定)、地点名“中山”(通过边上的南迁判定)和人名“张三”(通过边上的总经理判定),这 些候选实体词在图5D中由黑体表示。步骤3对于每个候选实体词,抽出一系列的特征,例如,该候选实体词在文章中出 现的频率,是否在标题中出现,其左边和右边的词是否是候选实体词,候选实体词在文章中 的分布,等等。比如简单来说,如果只考虑频率信息的特征统计如下建华标题出现1次正文出现4次中山正文出现1次张三正文出现1次步骤4根据步骤3中识别的候选实体词,对每个候选实体词的特征向量X = Ix1, χ 2,…,xj应用FNER分类模型(机器学习得到),从而得到一个估计分值(概率),大于 设定的阈值,则判定为实体词(focusedentity)。利用下列公式计算每个候选实体词的分数score (χ)
mscore (χ) = b + ^w^x·^
j=i图5E的表中示出了利用上述公式计算实体词的过程和结果。其中,图5E的表中 的阈值0.5相当于公式中的b的相反数,即-b。因此,上例中得到的实体词为建华。2.依据所识别的实体词“建华”来识别主题词的具体过程。
步骤1根据每一个识别得到实体词,需要对该文档进行分词和词性标注。经自动 分词和自动词性标注处理后的文档如图5C所示。需要指出的是,在识别实体词时已经进行 了自动分词处理和词性标注处理,因此通常在识别主题词时无需再次进行自动分词和词性 标注处理。步骤2选择关注的词性类别(通常为名词)并过滤文档中的停用词(比如的。,) 以及所识别出的实体词。上述文档经过过滤处理后结果如图5F所示(斜体并添加下划线 标记的为被过滤的实体词)。需要指出的是,“张三”和“中山”两个候选实体词已经被过滤 掉而未在图5F中示出,“建华”实际上也被过滤掉,但是由于在识别主题词时要依据所识别 的实体词“建华”,因此在图5F中将“建华”以斜体并添加下划线的方式表示。步骤3通过考虑该文档的剩余词(即该文档被过滤掉所有的候选实体词之后剩下 的词)离开所识别的实体词的距离、剩余词与所识别的实体词在同一句话中出现的频率、 剩余词在文档中出现的次数等参数来应用FTD主题词识别技术(通过机器学习得到),并输 出主题词。比如该中文文档中的词的频率较高的为数码标题1次,正文6次公司正文3次产业标题1次正文1次科技正文2次对每一个剩余词,根据所设定的权重值和特征向量Y= {yi;y2,…,ym}计算分数。 计算公式为
/ 、 01score (y) = c +^Cwj ^j)
.j.=L图5G的表中示出了通过上述公式计算主题词的过程和结果。其中,图5G的表中 的阈值0.5相当于公式中的c的相反数,即-C。因此,上例中得到的主题词为“数码”。那 么,实体词_主题词对即为“建华_数码”。注文档1中的词“月”、“日”、“年”等通常会应为长度太短而得到较低的分数(太 短的词表达的意思通常有限)。下面给出一个对某篇具体的英文文档识别其实体词,并依据所识别的实体词识别 其主题词的实例1.利用FNER技术实现实体词识别步骤1自动词性标注假设某给定的英文文档如图6A所示。利用程序进行自动词性标注后效果如图6B 所示,其中/n表示名词/V表示动词/a表示形容词/m表示数字。需要指出的是,对于英文 文档而言,无需进行自动分词。步骤2识别候选实体词如图6C所示,抽取的候选实体词包括公司名“ JIANHUA” (根据周围TV等判定)、 地点名“Beijing”和“China” (通过边上的in、of等判定),这些候选实体词在图6C中由
黑体表示。步骤3对于每个候选实体词,抽出一系列的特征,例如,该候选实体词在文章中出
12现的频率,是否在标题中出现,其左边和右边的词是否是候选实体词,候选实体词在文章中 的分布,等等。比如简单来说,如果只考虑频率信息的特征统计如下JIANHUA标题出现1次正文出现2次China正文出现2次Beijing正文出现1次步骤4根据步骤3中识别的候选实体词,对每个候选实体词的特征向量X = Ix1, X2, -,XfflI应用FNER分类模型(机器学习得到),从而得到一个估计分值(概率),大于设 定的阈值,则判定为实体词(focusedentity)。利用下列公式计算每个候选实体词的分数score (χ)
mscore (χ) = b + Y^iw^x^
j=i图6D的表中示出了利用上述公式计算实体词的过程和结果。其中,图6D的表中 的阈值0. 5相当于公式中的b的相反数,即-b。因此,上例中得到的实体词为JIANHUA2.依据所识别的实体词“JIANHUA”来识别主题词的具体过程。步骤1根据每一个识别得到实体词,需要对该英文文档进行词性标注(不需要进 行自动分词)。经词性标注处理后的文档如图6B所示。需要指出的是,在识别实体词时已 经进行了词性标注处理,因此通常在识别主题词时无需再次进行词性标注处理。步骤2选择关注的词性类别(通常为名词)并过滤文档中的停用词(比如of)以 及候选实体词。上述文档经过过滤处理后结果如图6E所示(斜体并添加下划线标记的为 被过滤的实体词)。需要指出的是,China和Beijing两个候选实体词已经被过滤掉而未在 图6E中示出,JIANHUA实际上也被过滤掉,但是由于在识别主题词时要依据所识别的实体 词JIANHUA,因此在图6E中将JIANHUA以斜体并添加下划线的方式表示。步骤3通过考虑该文档的剩余词(即该文档被过滤掉所有的候选实体词之后剩下 的词)离开所识别的实体词的距离、剩余词与所识别的实体词在同一句话中出现的频率、 剩余词在文档中出现的次数等参数来应用FTD主题词识别技术(通过机器学习得到),并输 出主题词。比如该英文文档中的词的频率较高的为Home标题1次正文3次Appliance标题1次正文3次TV标题1次,正文2次Outlet标题1次正文1次Exhibition 正文 1 次对每一个剩余词,根据所设定的权重值和特征向量Y= {yi;y2,…,ym}计算分数。 计算公式为
/ \ mscore (y) = c + ^C^*^)
j=!图6F的表中示出了通过上述公式计算主题词的过程和结果。其中,图6F的表中 的阈值0.5相当于公式中的c的相反数,即-C。因此,上例中得到的主题词为“TV”。那么,该英文文档被识别出的实体词_主题词对即为“JIANHUA-TV”。通过上面给出的对中文文档和英文文档识别实体词,并依据实体词识别主题词的 示例可以看出,无论文档是何种语言,均可以通过本发明的方法和系统对其进行识别实体 词和主题词的操作。图7示出了以图1所示的文档处理方法为基础的、包含了对处理后的文档的过滤 步骤的流程图。图7与图1的区别在于增加了步骤701和步骤706。在步骤701中,接收 被企业搜索服务的用户推荐的种子文档,以生成种子文档集。在企业搜索服务环境下,用户 通过某种途径获得了一篇其认为比较有价值、可能会对其它用户的搜索有帮助的文档,就 可以将这篇文档推荐至企业搜索服务的数据源存储中心,成为种子文档,所有由用户推荐 的种子文档即构成种子文档集。执行推荐操作的具体方式优选地可以是用户通过点击企业 搜索系统中的“推荐”按钮,而导入其认为有价值的文档并将该文档发布在企业搜索系统的 搜索数据源中(种子文档集)。步骤702-705分别为图1中的步骤101-104,该4个步骤的 详细内容已在上文中介绍,在此不再详述。接下来,在步骤706中对扩展得到的扩展文档集 进行过滤,这相当于对扩展文档集进行精简,删除一些价值不大的文档。这样做的原因是, 在步骤705中,会将所有包含被用于进行网络搜索的关键词——即实体词_主题词对的文 档从网络上下载下来,以形成扩展文档集。而事实上很多这样的新的文档虽然包括了实体 词——主题词对这样的关键词,但是文档本身所关注的实体和主题与企业搜索服务的用户 所关注的实体和主题相差甚远,也就是说,仅通过步骤705而形成的扩展文档集会包含很 多“噪音”(没有价值或者不被用户感兴趣的文档),这是由于通用的互联网搜索引擎本身 搜索结果准确度有限,通常的搜索引擎是基于关键词的搜索,所以,返回的搜索结果虽然包 括搜索的关键词,但不一定是就是文章的主题。因此需要用之前从网络上搜索并下载这些 新的文档的关键词——即实体词-主题词对,对扩展文档集进行过滤形成过滤文档集,以去 除扩展文档集中的“噪音”,从而提高扩展种子文档集的精度和准确度。应当了解,对扩展文 档集进行过滤的步骤706不是必需的,因为可以根据不同的对文档扩展精度的需求而决定 是否需要去除扩展文档集中可能包含的“噪音”。通过图7所示的方法,既可以从网络上自 动下载新的文档,从而实现对文档的扩展,又可以对下载的新的文档进行过滤,从而保证了 文档扩展的精度和准确度,不会过度地消耗存储资源。需要指出的是,虽然在图7中,过滤文档的步骤是针对在图1中步骤104生成的扩 展文档集的文档进行的,而且过滤所用的实体词_主题词对是在图1所示的步骤103中生 成的实体词-主题词对,但是本领域技术人员可以理解,“过滤”所针对的对象可以是任意 的文档,可以人为地给定一个范围很大的文档集(如限定某存储装置中存储的所有文档均 是需要被过滤的文档),也可以通过网络(如因特网、以太网、企业内部局域网、城域网、无 线通信网络)等以一定的限定条件(如关键词)或者没有任何限定条件地获取大量的文 档,将这些文档组成的文档集作为要被过滤的候选文档集,也可能是,企业搜索的用户向企 业搜索系统推荐了过多的文档,为了去除一些价值不大的推荐文档,不是如图7所示的流 程那样对这些推荐的文档进行扩展,而是利用给定的实体词_主题词对过滤这些推荐的文 档。需要强调的是,候选文档集是由一篇或多篇候选文档组成的文档集合,其中每篇候选 文档都需要进行过滤操作。作为一种优选的实施方式,这样的候选文档集可以来自于按照 图1所示的步骤在步骤104中生成的扩展文档集,也就是说,扩展文档集中的扩展文档的一部分或者全部是需要进行过滤的候选文档,也就是说,图7A所示的候选文档集是图1所示 的扩展文档集的子集,或者候选文档集与扩展文档集具有交集。如果某文档不需要进行过 滤,那么该文档就不是候选文档,从而不包含在候选文档集中,无论该文档是否处于图1所 示的步骤104中生成的扩展文档集中,也无论该文档是否与其它候选文档在物理上存储在 同一存储装置中,或者是否以相同的方式获得。图7所示的步骤701-705在图7A中不是必 需的步骤,因为作为过滤依据的“实体词_主题词对”也可以是采用种种方式给定的(如手 动输入给定、通过网络远程给定、以一定规则对任意文档选取关键词给定)实体词_主题 词对,而不是在图1所示的步骤103中通过识别种子文档的实体词和主题词所组成的实体 词-主题词对。本领域技术人员可以直接利用给定的实体词-主题词对,对任意候选文档集 (无论该任意文档集的来源如何)进行过滤,简而言之,图7所示的流程图还可以是图7A 步骤701A——给定实体词-主题词对;步骤702A——给定候选文档集;步骤703A——利用 所述给定的实体词_主题词对中的实体词和主题词过滤所述候选文档集,以生成过滤文档 集。图7A和图7的联系在于,步骤701A中给定的实体词-主题词对可以来自于图7的步 骤704中组成的实体词-主题词对,且步骤702A中给定的候选文档可以是图7的步骤701 中的种子文档。在步骤701A接收的全部实体词-主题词对中的所有实体词可以组成实体 词集合,而对于这个实体词集合中的每个实体词,又可以将该实体词所对应的所有主题词 组成对应于该实体词的主题词集合,这里的“对应”是指通过实体词_主题词对表现出的对 应关系。图8示出了根据本发明一实施例的过滤扩展文档集的方法的流程图。对扩展文档 集中的每一篇扩展文档执行步骤801-806,也就是通过对每一篇扩展文档的过滤实现对整 个扩展文档集的过滤。首先在步骤801中识别该扩展文档的实体词,然后在步骤802中依 据所识别的实体词,识别该扩展文档的与所依据的实体词相关的主题词。步骤801和802 识别扩展文档集中的扩展文档的实体词和主题词的方式与识别种子文档集中的种子文档 的实体词和主题词的方式相同,具体内容参见图2和图3以及相应的文字部分,在此不再详 述。识别出该扩展文档的实体词和主题词后,在步骤803中将识别出的该扩展文档的实体 词与种子文档集中的实体词集合中的实体词进行比较,判断种子文档集中的实体词集合中 是否存在某实体词与在步骤801中识别出的扩展文档的实体词相同,如果存在,则进行后 续判断步骤804 ;如果所有的种子文档集中的实体词集合中的实体词均与在步骤801中识 别出的扩展文档的实体词不同,则在步骤806中确定该扩展文档集中的文档为需要被去除 的“噪音”,从而不将该文档加入过滤文档集。所谓种子文档集中的实体词集合是指对种子 文档集中的每篇种子文档执行步骤图1所示的101-104操作后所识别的全部实体词的集 合。需要指出的是,步骤802和803并没有绝对的执行上的先后顺序,既可以先识别出扩展 文档的实体词和主题词后再进行步骤803的判断,也可以识别出扩展文档的实体词之后就 直接进行步骤803的判断,判断结束后再应需要进行步骤802识别主题词。在步骤804中,进一步判断该扩展文档依据该实体词所识别出的主题词是否与依 据所述种子文档集的实体词集合中的所述某相同的实体词而识别出的某主题词相同,如果 存在这样的种子文档集中的某主题词,则进行至步骤805,将该扩展文档加入过滤文档集, 否则进行至步骤806,确定该扩展文档为需要被过滤的“噪音”,从而不将该扩展文档加入过 滤文档集。综上所述,通过图8所示的过滤扩展文档集的方法,可以实现去除扩展文档集中
15的“噪音”扩展文档的目的,从而提高扩展种子文档集的精度。显而易见,在企业搜索服务 环境下,种子文档集和过滤文档集是企业搜索服务数据源中的文档集,可以供企业搜索用 户检索,而扩展文档集由于其中存在“噪音”,因此不是企业搜索服务数据源中的文档集。当 然,在不需要对扩展文档集中的噪音进行过滤,也就是对扩展文档的精度要求不高的情况 下,由于不存在过滤文档集,因此种子文档集和扩展文档集是企业搜索服务数据源中的文 档集。需要指出的是,尽管图8示出的是对图1所示的步骤104生成的扩展文档集进 行过滤的详细步骤,但是显而易见,图8所示的步骤同样适用与在图7A所示的给定实体 词_主题词的情况下,对候选文档集进行过滤的过程,只要将图8各步骤中的“扩展文档”替 换为“候选文档”,将“种子文档集的实体词集合”替换为“给定的实体词_主题词对的实体 词集合”即可,具体参见图8A所示。图9示出了根据本发明的文档处理系统的结构图。该系统在图9中总体上由900 表示。具体地,图9所示的系统被配置为对种子文档集中的每篇种子文档执行下列操作以 生成扩展文档集。系统900包括实体词识别装置901、主题词识别装置902、配对装置903和 文档扩展装置904。实体词识别装置901识别该种子文档的实体词。主题词识别装置902 耦合于实体词识别装置901,依据所识别的实体词识别该种子文档的主题词。配对装置903 将实体词识别装置901识别出的实体词,以及主题词识别装置902依据该实体词识别出的 主题词组成实体词_主题词对。文档扩展装置904将配对装置903配成的实体词-主题词 对中的实体词和主题词同时作为关键词,利用网络搜索下载新的文档,以形成由所述扩展 文档组成的扩展文档集。需要指出的是,图9所示的系统中的装置901-904分别对应于图 1所示的方法中的步骤101-104,因此具体的实现过程在此不做详述。本领域技术人员可以 了解,利用图9所示的系统可以对种子文档集进行自动扩展,形成扩展文档集。在企业搜索 服务环境下,就是将搜索数据源的内容从原先的种子文档集自动扩展到种子文档集和扩展 文档集的总和。图10示出了根据本发明的优选实施例的文档处理系统的结构图。该系统在图10 中总体上由1000表示。具体地,图10所示的系统包括文档接收装置1001、实体词识别装置 1002、主题词识别装置1003、配对装置1004、文档扩展装置1005和文档过滤装置1006。与 图7所示的系统相比,图10所示的系统增加了文档接收装置1001和文档过滤装置1006。 文档接收装置1001接收被推荐的文档,以形成种子文档集,文档过滤装置1006对由文档扩 展1005得到的扩展文档集中的文档进行过滤,形成过滤文档集,从而去除扩展文档集中的 “噪音”,提高扩展种子文档集的精度。需要指出的是,图10所示的系统中的装置1001-1006 分别对应于图7所示的方法中的步骤701-706,而文档过滤装置1006又可进一步被配置为 实现图8所示的方法中的步骤801-806。图11示出了根据图7A和图8A所示的文档处理方法的文档处理系统的结构图。图 11所示的系统在总体上由1100表示,具体地,系统1100包括接收装置1101、实体词识别装 置1102、主题词识别装置1103和判断装置1104。接收装置1101对应于图7A所示的步骤 701A,用于接收给定的实体词-主题词对。实体词识别装置1102对应于图8A所示的步骤 801A,用于识别给定的候选文档集中的每篇候选文档的实体词。主题词识别装置1103对应 于图8A所示的步骤802A,用于依据所识别的实体词识别该候选文档与所依据的实体词相关的主题词。判断装置1104对应于图8A所示的步骤803A-805A,用于判断是否将该候选文 档加入过滤文档集。图12示出了根据本发明的方法的企业搜索服务系统的一种实现的结构图。下面 对图12中所标注的各个箭头进行详细说明。箭头1表示企业搜索服务用户通过网络信息 及服务,而并非通过企业搜索服务系统本身去获取其感兴趣的文档。图12所示的网络信 息及服务与企业搜索服务用户之间的连接可以使用常规的网络连接,例如令牌环、以太网、 WiFi或其它的常规通信标准。此外,所述的网络可以包括任何类型网络,包括因特网、广域 网(WAN)、局域网(LAN)、虚拟专用网(VPN)等。如果客户机通过因特网与服务器通信,则可 以通过传统的基于TCP/IP套接字的协议提供连接,并且客户机将利用因特网服务提供商 建立与服务器的连接。箭头2、3表示企业搜索服务用户将其通过网络信息及服务获得的有 价值的文档经由信息推荐模块向企业搜索服务系统的信息存储装置推荐。信息存储装置是 用于存储企业搜索服务的搜索数据源的存储装置。箭头4表示信息智能扩展模块接收信息 存储装置中存储的由用户推荐的文档,对这些文档进行扩展操作。信息智能扩展模块包括 自然语言处理模块,可以进行FNER实体词识别和FTD主题词识别。箭头5表示信息智能扩 展模块将识别出的实体词和主题词组成对后发送至信息定时下载模块,由信息定时下载模 块按照预定的时间间隔如箭头6所示向网络信息及服务提交搜索、下载的请求并下载扩展 的新文档。箭头7表示信息定时下载模块将下载下来的新文档发送至信息智能扩展模块, 由信息智能扩展模块对这些新文档进行过滤,去除其中的“噪音”,然后信息智能扩展模块 将过滤后剩余的新文档发送至信息存储装置,这些新文档即与之前用户推荐的文档一起成 为企业搜索服务的搜索数据源。过滤,如箭头9所示,企业搜索服务用户可以通过信息检索 模块来从信息存储装置中存储的被扩展后的搜索数据源中检索想要的文档。从图11所示 的系统可以看出,通过引入信息智能扩展模块和信息定时下载模块,既可以定时从网络上 自动下载新的文档,从而实现对文档的扩展,又可以对下载的新的文档进行过滤,从而保证 了文档扩展的精度和准确度,不会过度地消耗企业搜索服务系统的信息存储装置的存储资 源。通过以上对具体实施例的描述,本领域技术人员可以理解,上述的系统、装置和方 法可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、 CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电 子信号载体的数据载体上提供了这样的代码。本实施例的装置、服务器及其单元可以由诸 如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门 阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用由各种类型的处理 器执行的软件实现,也可以由上述硬件电路和软件的结合实现。虽然以上结合具体实施例,对本发明的利用远程应用处理本地文件的系统及方法 进行了详细描述,但本发明并不限于此。本领域普通技术人员能够在说明书教导之下对本 发明进行多种变换、替换和修改而不偏离本发明的精神和范围。应该理解,所有这样的变 化、替换、修改仍然落入本发明的保护范围之内。本发明的保护范围由所附权利要求来限定。
权利要求
一种对种子文档集中的种子文档进行扩展的方法,其中所述种子文档集包括至少一篇种子文档,所述方法包括识别所述种子文档的一个或多个实体词,所述实体词是表示所述种子文档所关注的实体的词;依据所识别的每个实体词,识别该实体词所在的种子文档的一个或多个与所依据的该实体词相关的主题词;将所识别的每个主题词,以及识别所述每个主题词时所依据的实体词组成实体词 主题词对;以及将每个所述实体词 主题词对中的实体词和主题词同时作为关键词,通过网络获得一篇或多篇扩展文档,所述扩展文档既包含所述每个实体词 主题词对中的实体词,也包含所述每个实体词 主题词对中的主题词。
2.如权利要求1所述的方法,其中依据所识别的每个实体词,识别该实体词所在的种 子文档的一个或多个与所依据的该实体词相关的主题词,包括依据该种子文档所包含的除 了所述一个或多个实体词之外的其它词与所依据的实体词之间的距离,识别该实体词所在 的种子文档的一个或多个与所依据的该实体词相关的主题词。
3.如权利要求1所述的方法,其中依据所识别的每个实体词,识别该实体词所在的种 子文档的一个或多个与所依据的该实体词相关的主题词,包括依据该种子文档所包含的除 了所述一个或多个实体词之外的其它词与所依据的实体词同时在该种子文档中的同一句 话中出现的频率,识别该实体词所在的种子文档的一个或多个与所依据的该实体词相关的 主题词。
4.如权利要求1所述的方法,还包括接收被推荐的种子文档,以形成所述种子文档集。
5.如权利要求1-4任一所述的方法,其中利用焦点实体词识别技术FNER来识别所述种 子文档的一个或多个实体词。
6.如权利要求1-5任一所述的方法,其中利用焦点主题词识别技术FTD来识别所述种 子文档的一个或多个主题词。
7.一种对候选文档集中的候选文档进行过滤的方法,所述候选文档集包括至少一篇候 选文档,所述方法包括接收给定的一个或多个实体词_主题词对,每个所述给定的实体词_主题词对由一个 实体词和一个主题词组成,所述实体词-主题词对中的所有实体词组成实体词集合,并且 每个实体词所在的实体词_主题词对中的所有主题词组成对应于该实体词的主题词集合; 以及识别所述候选文档的一个或多个实体词,所述实体词是表示所述候选文档所关注的实 体的词;依据所识别的每个实体词,识别该实体词所在的候选文档的一个或多个与所依据的该 实体词相关的主题词;利用所述给定的实体词-主题词对中的实体词和主题词以及所述候选文档被识别的 实体词和主题词,判断是否将所述候选文档加入过滤文档集,响应于判断结果为是,将所述 候选文档加入过滤文档集。
8.如权利要求7所述的方法,其中依据所识别的每个实体词,识别所述候选文档的一个或多个与所依据的实体词相关的主题词,包括依据该候选文档所包含的除了所述一个或 多个实体词之外的其它词与所依据的实体词之间的距离,识别该候选文档的一个或多个与 所依据的实体词相关的主题词。
9.如权利要求7所述的方法,其中依据所识别的每个实体词,识别所述候选文档的一 个或多个与所依据的实体词相关的主题词,包括依据所述候选文档所包含的除了所述一个 或多个实体词之外的其它词与所依据的实体词同时在所述候选文档中的同一句话中出现 的频率,识别所述候选文档的一个或多个与所依据的实体词相关的主题词。
10.如权利要求7-9任一所述的方法,其中利用所述给定的实体词-主题词对中的实体 词和主题词、以及所述候选文档被识别的实体词和主题词,判断是否将所述候选文档加入 过滤文档集进一步包括对所述候选文档执行下列操作响应于所述候选文档的实体词与所述实体词集合中的任一实体词均不同,判断不将所 述候选文档加入所述过滤文档集。
11.如权利要求7-9任一所述的方法,其中利用所述给定的实体词-主题词对中的实体 词和主题词、以及所述候选文档被识别的实体词和主题词,判断是否将所述候选文档加入 过滤文档集进一步包括对所述候选文档执行下列操作响应于所述候选文档的实体词与所述实体词集合中的某实体词相同,且依据所述候选 文档的实体词而识别出的所述候选文档的主题词与对应于所述实体词集合中的某实体词 的主题词集合中的任一主题词均不同,判断不将所述候选文档加入所述过滤文档集。
12.如权利要求7-9任一所述的方法,其中利用所述给定的实体词-主题词对中的实体 词和主题词、以及所述候选文档被识别的实体词和主题词,判断是否将所述候选文档加入 过滤文档集进一步包括对所述候选文档执行下列操作响应于所述候选文档的实体词与所述给定的实体词_主题词对的实体词集合中的某 实体词相同,且依据所述候选文档的实体词而识别出的所述候选文档的主题词与对应于所 述实体词集合中的某实体词的主题词集合中的某主题词相同,判断将所述候选文档加入所 述过滤文档集。
13.如权利要求7-12任一所述的方法,其中利用焦点实体词识别技术FNER来识别所述 候选文档的一个或多个实体词。
14.如权利要求7-13任一所述的方法,其中利用焦点主题词识别技术FTD来识别所述 候选文档的一个或多个主题词。
15.如权利要求7-14任一所述的方法,所述候选文档集包括权利要求1-6中任一所述 的扩展文档的至少一部分。
16.如权利要求7-15任一所述的方法,所述给定的实体词-主题词对是权利要求1-6 中任一对所述种子文档集中的所有种子文档识别出的实体词_主题词对。
17.—种对种子文档集中的种子文档进行扩展的系统,所述种子文档集包括至少一篇 种子文档,所述系统包括实体词识别装置,用于识别所述种子文档的一个或多个实体词,所述实体词是表示该 文档所关注的实体的词;主题词识别装置,用于依据所识别的每个实体词,识别该实体词所在的种子文档的一 个或多个与所依据的该实体词相关的主题词;配对装置,用于将所识别的每个主题词,以及识别所述每个主题词时所依据的实体词 组成实体词-主题词对;以及文档扩展装置,将每个所述实体词_主题词对中的实体词和主题词同时作为关键词, 通过网络获得一篇或多篇扩展文档,所述扩展文档既包含所述每个实体词-主题词对中的 实体词,也包含所述每个实体词-主题词对中的主题词。
18.如权利要求17所述的系统,其中主题词识别装置被配置为利用焦点主题词识别技 术FTD来识别所述种子文档的一个或多个主题词。
19.如权利要求17-18任一所述的系统还包括被配置为执行权利要求2-5任一所述的 方法的装置。
20.一种对候选文档集中的候选文档进行过滤的系统,所述候选文档集包括至少一篇 候选文档,所述系统包括接收装置,用于接收给定的一个或多个实体词_主题词对,每个所述给定的实体词_主 题词对由一个实体词和一个主题词组成,所述实体词-主题词对中的所有实体词组成实体 词集合,并且每个实体词所在的实体词-主题词对中的所有主题词组成对应于该实体词的 主题词集合;以及实体词识别装置,用于识别所述候选文档的一个或多个实体词,所述实体词是表示该 文档所关注的实体的词;主题词识别装置,用于依据所识别的每个实体词,识别该实体词所在的候选文档的一 个或多个与所依据的该实体词相关的主题词;判断装置,利用所述给定的实体词_主题词对中的实体词和主题词以及所述候选文档 被识别的实体词和主题词,判断是否将所述候选文档加入过滤文档集,并且响应于判断结 果为是,将所述候选文档加入过滤文档集。
21.如权利要求20所述的系统,所述候选文档集包括权利要求1-6中任一所述的扩展 文档的至少一部分。
22.如权利要求20所述的系统,所述给定的实体词-主题词对是对权利要求1-6中任 一所述的种子文档集中的所有种子文档识别出的实体词_主题词对。
23.如权利要求20-22任一所述的系统,还包括被配置为执行权利要求8-16任一所述 的方法的装置。
全文摘要
本发明涉及文档处理技术,更具体地,涉及在企业搜索领域扩展作为搜索数据源的文档集的方法和系统。本发明提供一种对种子文档集中的种子文档进行扩展的方法,其中所述种子文档集包括至少一篇种子文档,所述方法包括识别所述种子文档的一个或多个实体词,所述实体词是表示所述种子文档所关注的实体的词;依据所识别的每个实体词,识别该实体词所在的种子文档的一个或多个与所依据的该实体词相关的主题词;将所识别的每个主题词以及识别所述每个主题词时所依据的实体词组成实体词-主题词对;将每个所述实体词-主题词对中的实体词和主题词同时作为关键词,通过网络获得一篇或多篇扩展文档。
文档编号G06F17/30GK101901235SQ200910203108
公开日2010年12月1日 申请日期2009年5月27日 优先权日2009年5月27日
发明者包胜华, 崔洁, 张俐, 苏中, 苏辉 申请人:国际商业机器公司