一种航迹关联不确定度评定方法

文档序号:6586814阅读:392来源:国知局
专利名称:一种航迹关联不确定度评定方法
技术领域
本发明属于(fl、指挥控制或情报处理技术领域,具体涉及一种航迹关联不确定度
评定方法,该方法可以用于对多源航迹关联处理过程判定的关联航迹来源于同一个目标的 可疑程度进行评定。
背景技术
数据融合是对来自多传感器的数据进行再处理的过程,因此,传感器、目标及其环 境的特征是数据融合系统设计与参数整定的重要依据,它们对数据融合算法及其控制参数 的选取起着关键作用。在实际应用中,由于目标及其环境的特征提取也依赖于传感器的目 标探测数据,因此,传感器的探测性能以及对传感器探测性能掌握的准确程度,从根本上影 响数据融合系统生成融合态势的性能。 通常,传感器的探测精度和探测系统误差都是缓时变的过程随着时间推移,传感 器的探测精度会变差、系统误差会变大。传感器误差特性的变化,使得融合系统的数据关联 与合成算法的原有参数的适用性降低。在线、自动地估计出传感器系统误差和精度等重要 参数、并用于对传感器输入数据进行修正,是一种构建自适应型、学习型或智能型数据融合 系统的有效途径。 一种自适应航迹融合系统可以采用如图l所示的结构,它由数据预处理、 航迹关联、航迹关联不确定度评定、传感器系统误差与精度等参数估计、航迹合成等模块组 成,其中,数据预处理、航迹关联、航迹关联不确定度评定、传感器系统误差与精度参数估计 等四个模块共同构成自适应回路。 现有的传感器系统误差与精度等参数估计方法大部分是基于能够获得正确的多 源目标关联关系这一前提。但实际上,多源数据融合系统总会存在错误关联,无法做到航迹 关联判定总是正确的。为此,在传感器系统误差与精度等参数估计过程中,需要依靠人工进 行航迹关联关系筛选,以避免错误的目标关联关系对传感器系统误差与精度等参数估计造 成不良影响。由于需要人工参与,传感器系统误差与精度等参数的在线估计难以实现自动 化。

发明内容
本发明的目的在于提供了一种航迹关联不确定度评定方法,该方法用于对多源航
迹关联处理过程判定的关联航迹来源于同一个目标的可疑程度进行评定。 本发明一种航迹关联不确定度评定方法,其步骤如下 (1)生成若干个待评航迹对将来源于多个传感器的关联航迹,根据应用的需要, 生成若干个两两传感器的关联航迹的航迹对,对于每一个航迹对的航迹关联不确定度评定 分别按第(2)步至第(8)步进行; (2)目标航迹信息时间、空间对准将两传感器的异步、不同空间基准的航迹数 据,转换成相同时间和空间基准的航迹数据; (3)构造参评目标航迹集合为减小传感器系统误差的影响,需要限定参评目标
4航迹的空间分布范围,将在一定空间范围内的目标航迹构成参评目标航迹集合;
(4)计算标准化航迹似然度分别计算待评航迹对中的一个航迹与另一航迹的产 生信源的参评航迹集合中各航迹的统计距离,并基于此,修正待评的一对航迹的统计距离, 形成标准化航迹似然度; (5)计算用于描述传感器虚情、漏情和未检测区域的修正因子以传感器以往统 计数据、当前输出的航迹数据以及传感器探测能力,计算相应的修正因子;
(6)计算统计偏差矢量的标准差为减小传感器系统误差的影响,对参评航迹对 集合中的每一对航迹分别计算统计偏差矢量,并计算其标准差; (7)计算用于描述目标分布的修正因子以统计偏差矢量的标准差和目标分布的 统计距离的比值来考察目标分布的相对密集程度; (8)计算航迹对的航迹关联不确定度将第(2)步至第(7)步计算出的中间结果
进行综合,形成航迹对的航迹关联不确定度的评定结果。 所述步骤(7),按照下述方法计算用于描述目标分布的修正因子 用yip(t)表示航迹,t表示时间,下标中的两个字母ip分别表示信源号i和航迹号
P。根据在第(3)步中待评估的航迹对(yip(t), yjq(t))所构造的信源j的参评航迹集Aj,
在Aj中以yjr(t)表示与航迹yj,(t)的"统计距离"最近的航迹,在该步骤里,"统计距离"被
定义为z),〗w:[y^(0—y;W]v;^力(0[y力(0—y,(0],式中vip,jq(t)为两航迹yip(t)禾口yjq(t)
的误差协方差矩阵之和。 计算用于描述目标分布的修正因子 rD (i , p) = c X (3ip, jq (t)) /Dip (t) 其中,X^p,j,(t))为根据第(6)步计算出的统计偏差矢量的标准差,c为修正强度
因子,一般在区间(2. 5, 5. 5)之间取值,建议取4.0。 所述步骤(8),按照下述方法计算航迹关联不确定度 根据第(4)步、第(6)步、第(7)步的计算结果,计算yip(t)的航迹修正似然度 aip(t):=="如(/产(U))W 其中,a^(t)为yip(t)的标准化航迹似然度,X(Ut))为根据第(6)步计算出 的统计偏差矢量的标准差,r。(i, p)为根据第(7)步计算出的用于描述目标分布的修正因 子。同样,可计算^(t)。 再根据第(5)步,采用如下公式对航迹对(yip(t),yjq(t))的航迹关联不确定度进 行评定 Uip,jq(t) = l-min[aip(t), ajq(t)] *rc(i,p,j) *rc(j,q,i) *rf(i,p,j,q) 其中,rf (i, p, j, q)为航迹yip(t)和yjq(t)因虚情和漏情的关联不确定性修正因 子,r。(i,p, j)为信源j对航迹yip(t)关于未检测区域的修正因子;r。(j,q, i)为信源i对 航迹y化(t)关于未检测区域的修正因子。 本发明提供的航迹关联不确定度评定方法可以对数据融合系统判定的关联航迹 来源于同一个目标的可疑程度进行评定。融合系统可以用评定结果代替人工对航迹关联判 决结果进行筛选,只将航迹关联不确定度比较低的关联航迹数据用于传感器系统误差与精度参数估计,以支持传感器系统误差与精度等参数在线估计的自动化,并在此基础上构造 自适应型、学习型或智能型数据融合系统。 本发明一种航迹关联不确定度评定方法的优点是本发明综合考虑了传感器探测 能力、目标分布等因素对航迹关联不确定度的影响;能够合理反映目标间隔距离、传感器测 量误差、航迹关联的正确性、检测概率等与航迹关联不确定度之间的关系;航迹关联不确定 度的评定结果对传感器的系统误差、在评定中使用的传感器精度参数等不敏感;本发明可 以用于构建自适应型、学习型或智能型航迹数据融合系统。


图1是一种自适应航迹融合系统的结构; 图2是本发明提供的航迹关联不确定度评定方法的流程图;
图3是实例中雷达和目标分布示意图; 图4至图6为实例中航迹关联不确定度评定结果。其中,横坐标为目标间距,单位 为米,纵坐标为目标的关联不确定度,无量纲。
具体实施例方式
下面结合附图和实例对本发明作进一步详细的说明。
本发明一种航迹关联不确定度评定方法,其步骤如下
(1)生成若干个待评航迹对 对于有N个传感器的应用情况,其航迹关联不确定度评定可以根据需要通过多次 两两传感器航迹数据的航迹关联不确定度评定来实现。比如,对于有5个传感器的应用, 为进行传感器系统误差或精度参数估计而进行航迹关联关系筛选,需要对目标的几个输入 航迹的航迹关联不确定度进行评定,假设其中一个目标的输入航迹分别来源于第1个传感 器、第2个传感器、第4个传感器和第5个传感器,则可以以第1个传感器为基准,形成第1 个传感器与第2个传感器、第1个传感器与第4个传感器、第1个传感器与第5个传感器的 三个组合,通过3次两两传感器航迹数据的航迹关联不确定度评定,即通过对第1个传感器 与第2个传感器航迹数据的航迹关联不确定度评定、第1个传感器与第4个传感器航迹数 据的航迹关联不确定度评定、第1个传感器与第5个传感器航迹数据的航迹关联不确定度 评定,获得各传感器与第1个传感器航迹数据的航迹关联不确定度评定,从而满足传感器 系统误差或精度参数估计而进行航迹关联关系筛选的应用需求。 为便于后续各步骤的理解,在图3中示意了对2个传感器的航迹数据进行航迹关 联不确定度评定的情况。 在以下步骤中,仅对其中的一个航迹对的航迹关联不确定度评定进行说明。
(2)目标航迹信息时间、空间对准 对两个传感器的航迹数据进行时间对准与空间对准,一般简称为时空对准。
时间对准是使各传感器的航迹信息采用相同的时间基准,将各传感器的航迹信息 转换到一个相同时刻去表示。这里,相同时刻应当选择为需要评定航迹关联不确定度的时 刻。时间对准一般可以采用航迹最近的数据进行外推或二点线性插值算法。
空间对准是将各传感器的航迹信息转换到相同的空间基准,也就是将各传感器的航迹信息都转换到一个公共坐标系中去表示。这一公共坐标系可以取地心地固(Earth Centered Earth Fixed,ECEF)坐标系、某个传感器的当地地理坐标系或目标量测值位置的 当地地理坐标系等直角坐标系,推荐采用ECEF坐标系。 一般是将传感器的航迹信息从传感 器极坐标系下转换到传感器测量坐标系(为直角坐标系),进而再通过坐标转换、转换到公 共坐标系中表示。 (3)构造参评目标航迹集合 以状态矢量yip(t)表示经时间对准到t时刻、空间对准到公共坐标系的航迹,其 中,t表示时间,下标中的两个字母ip分别表示信源号i和航迹号p。为简化表示,可以省 略t,即可将yip(t)简写为yip。假设航迹关联模块认为yip(t)和y^(t)是一对关联航迹。 以Si表示yip(t)所在的水平面。 将信源i的位置投影到Si平面,并作为一角度为a的角的顶点,其中,该角的角等 分线通过yip(t);再将信源j的位置投影到Si平面,并作为一角度为a的角的顶点,其中, 该角的角等分线通过yip(t);以仏表示信源i和信源j的在Si平面上的投影落入这两个角 构成的共同区域内的航迹所构成的集合。这里,a的取值一般在30度到60度之间,建议 取45度。 以(yia,yjb)表示关联的一对航迹,将Ac = {(yia,yjb) | yia G ^或y化G 称为参评 航迹对集合,其元素的个数为n。。将构成A。的航迹对的所有航迹组成的集合称为U2,则将& ={yiJyic e ^或y^ e U2}信源i的参评航迹集,其元素的个数为& ;将A」={yjd|yjd G ^ 或yjd G U2}称为信源j的参评航迹集,其元素的个数为rij。
(4)计算标准化航迹似然度 定义rip,j,(t) = yip(t)-yj,(t),定义Vip(t)为航迹yi。(t)的误差协方差矩阵、定义 vjq(t)为航迹yjq(t)的误差协方差矩阵。定义Vip,jq(t) = cov(rip,jq(t)) = vip(t)+Vjq(t)
其中,Vip(t)、Vjq(t)可以采用以下计算过程获得 信源输出航迹在信源距离、方位、仰角方向上的误差标准差分别表示为Op 0e、 0 e,则以P。-diag(一,,cT^,0计算在信源的传感器测量坐标系中的目标航迹误差协方
差矩阵,其中diag表示对角阵。 以Cab表示从传感器测量坐标系向公共坐标系转换的过渡矩阵,在公共坐标系中, 航迹误差协方差矩阵Pb可以用下式计算
Pb = CabPa(Cab)T 定义两航迹在t时刻的统计距离为
Z^,力(0 = liwWv'^力(/)iV力(,)
定义航迹似然度
Z^(,) = eXp(_Z^,w(,)/2)类似的,可分别计算yip(t)与集合Aj中其他各航迹的航迹似然度,构成行向量
a* (,) = [." …;hx"j 其中,rij为集合Aj的元素个数。
定义yip(t)的标准化航迹似然度
7
"如(0 =
(1)


aip(t)的l-范数。
"I 一
式中,I |aip(t) I L表示向 类似的,可以计算as|jq(t)。
(5)计算用于描述传感器虚情、漏情和未检测区域的修正因子 信源都有一定的漏情率和虚情率。以Pfp, i、 Pfn, i分别表示信源i的虚情率和漏情 率。信源i的虚情率和漏情率取先验值,可分别由信源i在以往使用中或测试中的统计数
据计算确定。同样的方法对Pfp,j、Pfn,j取值。 定义关联航迹对(yip, yjq)的未关联率为 + 「 2. wc ,力=
(2) 则定义航迹yip (t)和yjq (t)因虚情和漏情的关联不确定性修正因子
rf(i,p, j,q) = (1—pfp,i) (1—Pfn,i) Q—Pfp,j) Q—Pfn,j) Q_nip,Jq)
以Q ip表示信源i对航迹p的探测不确定区域,探测不确定区域的形状和大小根 据航迹的误差协方差矩阵确定,使得目标实际落入该区域内的概率为99. 7%;以Q ip,j表示 Qip被信源j的探测范围所覆盖的部分,则取信源j关于未检测区域的修正因子
rc(i, p, j) = Qip,j/Qip (3)
同样,可计算r。(j,q,i)。
(6)计算统计偏差矢量的标准差 在实际应用中,统计距离的计算公式D2 = rTv—^中误差协方差矩阵v为实对称正
定矩阵,则存在唯一的实正定矩阵Q,满足v = QQT。 定义 d = Q—、 (4) d是一个矢量,本文称d为统计偏差矢量,其与统计距离D之间存在如下关系
I dI = D 对集合A。中的每一个关联对分别按式(4)计算统计偏差矢量db(t),其中,b = 1, 2,…,n。,并以之构成统计偏差矢量集合
d
则可分别计算3ip, jq (t)的均值和标准差五(U,)):丄IXW
(5) 当nc = 1时,取X(Ljq(t)) = 0。
(7)计算用于描述目标分布的修正因子 在集合Aj中,以y^(t)表示与航迹yj,(t)的"统计距离"最近的航迹,在该步骤里,
"统计距离"被定义为《W = [y i (0 _力(0K" (O[y力(0 - y > (0],需要注意的是,式中的误差协方差矩阵为Vip, jq而不是Vjq, J 定义用于描述目标分布的修正因子 rD (i , p) = c X (dip, jq (t)) /Dip (t) (6) 其中,c为修正强度因子,一般在区间(2.5,5.5)之间取值,建议取4.0。 类似的,可以计算r。(j,q)。 (8)计算航迹对的航迹关联不确定度 以式(1)、式(5)、式(6)定义yip(t)航迹修正似然度aip(t):
= pCU)h('》)=%(0"^, >(0 ( ) 同样,可计算、(t)。 在式(2)、式(3)、式(7)计算结果的基础上,采用如下公式对航迹对(yip(t), yjq(t))的航迹关联不确定度进行评定 Uip,jq(t) = l-min[aip(t),ajq(t)] *rc(i,p,j) *rc(j,q,i) "f(i,p,j,q) (8)
下面,以两个二维雷达的一对关联航迹的关联不确定度评定为例,来说明本发明 的具体实施方式
。 仿真示例中,1号二维雷达位于(0, -30km) 、2号二维雷达位于(25km, 20km),如图 3所示。二雷达的探测距离均为80公里。雷达在各独立测量方向上的误差模型取为
e迈(t) = es(t)+ec sin(P (t))+er(t) 其中, (t)为常值系统误差项,e。为周期性系统误差的幅度,13 (t)表示目标的方 位,er(t)为随机误差项。 在仿真实验中,两雷达的常值系统误差es的取值如表1所示 表1信源常值系统误差参数(距离米;方位度)
取值 编号雷达1的距 离es(t)取值雷达1的方 位ejt)取值雷达2的距 离es(t)取值雷达2的方 位ejt)取值
10000
21001. 51001. 0
3001001. 0
4-100-l. 51001. 0
5-100-l. 500 两雷达的距离e。均取为60米,方位e。均取为0. 3度,距离 (t)的标准差均取为
40米,方位er(t)的标准差均取为0. 2度。 假设两雷达的虚情率和漏情率都分别为1 % 。 仿真实验中,共模拟了 40个目标,分组编队航行,目标按顺时针依次编组为1-8 组,目标分组及其组号如图3所示。每组有五个目标,从左至右依次编号为1-5。在仿真中, 组内目标间的距离会取不同的值,从30m到3500m之间变化。
9
在仿真中,雷达分配给目标的航迹号依照下式计算 航迹号=(目标所在组的组号-1) X5+目标在组内的编号 例如,l号雷达分配给第1组的第3个目标的航迹号为3,其航迹用y^表示。 下面示例所有航迹关联都正确、雷达仿真中其常值系统误差参数按表1中第1组
取值的情况下,对航迹关联关系(y13,y23)的航迹关联不确定度的计算过程 (1)生成若干个待评航迹对 由于航迹关联关系(y13, y23)中只包含两个航迹,因此,生成的待评航迹对就是
(yi3, y23)。
(2)目标航迹信息时间、空间对准 采用将航迹数据外推到当前系统时间t的方法进行时间对准;采用将航迹数据都 转换到ECEF坐标系中完成空间对准。
(3)构造参评目标航迹集合 以S工表示y^(t)所在的水平面。将l号雷达的位置投影到S工平面并作为顶点, 以过y^(t)的射线为角等分线,作一45度锐角;再将2号雷达的位置投影到S工平面并作为 顶点,以过y^(t)的射线为角等分线,作一45度锐角;将投影落入这两个锐角构成的共同 区域内的航迹所构成的集合称为仏,则仏={yn (t) , y12 (t) , y13 (t) , y14 (t) , y15 (t) , y21 (t), y22 (t) , y23 (t) , y24 (t) , y25 (t)},并可构造参评航迹对集合A。以及航迹集合U2、 1号雷达的参 评航迹集A、2号雷达的参评航迹集4,这里,
0117]Ac = {(yn(t) , y21(t)) , (y12(t) , y22(t)) , (y13 (t) , y23 (t)) , (y14 (t) , y24 (t)), y15(t),y25(t))},U2 =仏,Ai = {yn (t) , y12 (t) , y13 (t) , y14 (t) , y15(t)} , A2 = {y21 (t) , y22 (t), y23(t) , y24(t) , y25(t)}。
0118] (4)计算标准化航迹似然度 利用式(l),即
0119] 0120]
0121] 计算航迹y^(t)的标准化航迹似然度 |13(0。对于不同的目标间距、不同次仿真、 雷达探测精度参数取不同的值,as|l3(t)的计算结果是不同的。 0122] 类似的,计算 |23(0。
0123] (5)计算用于描述传感器虚情、漏情和未检测区域的修正因子 0124] 关联航迹对(y13,y23)的未关联率为
w,+w,一2.w" 5 + 5 — 2x5 ^ 0125] 713,23=^~^-^ = ~^"~ = 0
0126] 0127] 0128] 0129] 0130]
因子
航迹y^(t)和y^(t)因虚情和漏情的关联不确定性修正因子 rf(l,3,2,3) = (1—Pfp,》 (1—pfna) (1—pfp,2) (1—pfn,2) (l_n13,23) =0. 99 X 0. 99 X 0. 99 X 0. 99 X 1. 0 "0. 96
这里,二个雷达探测范围完全覆盖航迹的不确定范围,因此,其未检测区域的修正 rc(l,3,2) = rc(2,3, 1) = 1. 0
100132] (6)计算统计偏差矢量的标准差 0133] 按式(5),即
固] ,力d力H(U))l
=飞i^——^-
0135] 计算集合A。中关联对的统计偏差矢量的标准差。对于不同的目标间距、不同次仿 真、雷达探测精度参数取不同的值,X (313,23 (t))的计算结果是不同的。 0136] (7)计算用于描述目标分布的修正因子 0137] 按式(6),即
0138] rD (i , p) = c X (3ip, jq (t)) /Dip (t)
0139] 计算用于描述目标分布的修正因子,其中,c取4.0。对于不同的目标间距、不同次 仿真、雷达探测精度参数取不同的值,rD (1 , 3)的计算结果是不同的。 0140] (8)计算航迹对的航迹关联不确定度 0141] 按式(7),即
0142] (0 ="如(,,5"争"")="如(,)"2("W,"0
0143] 计算航迹yu(t)、y^(t)的修正似然度。 0144] 按式(8),即
0145] Uip,jq(t) = 1—min[aip(t) , ajq(t)] *rc(i,p,j) *rc(j,q,i) *rf(i,p,j,q)
0146] 计算航迹对(y13(t),y23(t))的航迹关联不确定度,计算结果如图4所示。图中有 5条曲线,分别对应于评定过程中雷达探测精度参数的不同取值,当取其仿真中采用的实际 参数的1倍到5倍时,航迹对(y13(t) ,y23(t))的航迹关联不确定度评定结果分别对应于"l 倍的参数"曲线到"5倍的参数"曲线。 若雷达仿真采用表1中不同编号的系统误差参数时,在所有关联均正确的情况 下,采用以上计算步骤,对航迹对(y13(t),y23(t))的航迹关联不确定度进行计算,其计算结 果如图5所示。图中有5条曲线,分别对应于雷达仿真所采用的表1中不同编号的系统误 差参数,当取第l组到第5组系统误差参数时,航迹对(y13(t), y23(t))的航迹关联不确定 度评定结果分别对应于"第1组参数"曲线到"第5组参数"曲线。 若雷达仿真采用表1中编号为1的系统误差参数时,在评定过程中雷达探测精 度参数取其仿真中采用的实际参数,当存在错误航迹关联对时,例如发生了错误关联航迹 对(y13(t), y24(t))、 (y14(t), y^(t))、而其他航迹对均为正确关联的时,对航迹对(y13(t), y24(t))的航迹关联不确定度进行计算,其计算结果如图6所示。 本发明不仅局限于上述具体实施方式
,步骤(4)_(6)可以任意调换先后顺序,因 此,本领域一般技术人员根据本发明公开的内容,可以采用其它多种具体实施方式
实施本 发明。
权利要求
一种航迹关联不确定度评定方法,其特征在于其步骤如下(1)生成若干个待评航迹对将来源于多个传感器的关联航迹,根据应用的需要,生成若干个两两传感器的关联航迹的航迹对,对于每一个航迹对的航迹关联不确定度评定分别按第(2)步至第(8)步进行;(2)目标航迹信息时间、空间对准将两传感器的异步、不同空间基准的航迹数据,转换成相同时间和空间基准的航迹数据;(3)构造参评目标航迹集合为减小传感器系统误差的影响,需要限定参评目标航迹的空间分布范围,将在一定空间范围内的目标航迹构成参评目标航迹集合;(4)计算标准化航迹似然度分别计算待评航迹对中的一个航迹与另一航迹的产生信源的参评航迹集合中各航迹的统计距离,并基于此,修正待评的一对航迹的统计距离,形成标准化航迹似然度;(5)计算用于描述传感器虚情、漏情和未检测区域的修正因子以传感器以往统计数据、当前输出的航迹数据以及传感器探测能力,计算相应的修正因子;(6)计算统计偏差矢量的标准差为减小传感器系统误差的影响,对参评航迹对集合中的每一对航迹分别计算统计偏差矢量,并计算其标准差;(7)计算用于描述目标分布的修正因子以统计偏差矢量的标准差和目标分布的统计距离的比值来考察目标分布的相对密集程度;(8)计算航迹对的航迹关联不确定度将第(2)步至第(7)步计算出的中间结果进行综合,形成航迹对的航迹关联不确定度的评定结果。
2. 根据权利要求1所述的航迹关联不确定度评定方法,其特征在于所述步骤(7),按 照下述方法计算用于描述目标分布的修正因子用yip(t)表示航迹,t表示时间,下标中的两个字母ip分别表示信源号i和航迹号p。 根据在第(3)步中待评估的航迹对(yip(t),yjq(t))所构造的信源j的参评航迹集Aj,在Aj 中以yjr(t)表示与航迹yj,(t)的"统计距离"最近的航迹,在该步骤里,"统计距离"被定义为。"0 = [7; ")—y;(,)]v^,(0[y勿(0—y,W],式中vip,jq(t)为两航迹yip(t)禾口yjq(t)的误差协方差矩阵之和。计算用于描述目标分布的修正因子 rD(i, p) = c X(3ip,jq(t))/Dip(t)其中,X(3ip,jq(t))为根据第(6)步计算出的统计偏差矢量的标准差,c为修正强度因 子,一般在区间(2.5,5.5)之间取值,建议取4.0。
3. 根据权利要求1所述的航迹关联不确定度评定方法,其特征在于所述步骤(8),按 照下述方法计算航迹关联不确定度根据第(4)步、第(6)步、第(7)步的计算结果,计算yip(t)的航迹修正似然度aip(t):其中,a^(t)为y"t)的标准化航迹似然度,X(Ut))为根据第(6)步计算出的统 计偏差矢量的标准差,r。(i,p)为根据第(7)步计算出的用于描述目标分布的修正因子。同 样,可计算ajq(t)。再根据第(5)步,采用如下公式对航迹对(yip(t),yjq(t))的航迹关联不确定度进行评定Uip,jq(t) = 1-min[aip(t) , ajq(t)] 'r。(i,p,j) rc(j, q, i) rf (i, p, j, q)其中,rf(i, p, j, q)为航迹yip(t)禾Py^(t)因虚情和漏情的关联不确定性修正因子,rji, p, j)为信源j对航迹yip(t)关于未检测区域的修正因子;r。(j, q, i)为信源i对航迹yj,(t)关于未检测区域的修正因子。
全文摘要
一种航迹关联不确定度评定方法,其步骤如下(1)生成若干个待评航迹对;(2)目标航迹信息时间、空间对准;(3)构造参评目标航迹集合;(4)计算标准化航迹似然度;(5)计算用于描述传感器虚情、漏情和未检测区域的修正因子;(6)计算统计偏差矢量的标准差;(7)计算用于描述目标分布的修正因子;(8)计算航迹对的航迹关联不确定度。其优点在于综合考虑了传感器探测能力、目标分布等因素对航迹关联不确定度的影响;能够合理反映目标间隔距离、传感器测量误差、航迹关联的正确性、检测概率等与航迹关联不确定度之间的关系;评定结果对传感器的系统误差、在评定中使用的传感器精度参数等不敏感;本发明可以用于构建自适应型、学习型或智能型航迹数据融合系统。
文档编号G06K9/62GK101719221SQ200910273379
公开日2010年6月2日 申请日期2009年12月25日 优先权日2009年12月25日
发明者刘颢, 李燕菲, 肖厚, 陈世友 申请人:中国船舶重工集团公司第七0九研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1