基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法

文档序号:6606937阅读:340来源:国知局
专利名称:基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法
技术领域
本发明涉及一种加速退化试验寿命预测及可靠性评估方法,属于加速试验评估技 术领域。
背景技术
越来越多长寿命高可靠性产品的出现,使产品寿命与可靠性评估更加困难。基于 产品性能退化信息预测产品寿命及可靠度成为一种有效途径。为了针对这些难以获得失效 数据,但可以获得性能退化数据的产品进行可靠性评估,出现了退化试验的方法。目前性能退化预测主要有两种思路1.将性能退化量随时间变化的随机过程各样本函数称为退化轨迹,基于退化轨迹 进行预测。该方法能够对单个样本的退化轨迹描述得比较精确,但是缺乏对样本总体退化 规律在宏观上的统计描述。2.将性能退化量在不同时刻所服从分布的参数看作随机变量,基于退化量分布进 行预测。该方法能够对所有样本退化的统计规律进行宏观描述。根据以上两种思路以及对退化随机过程描述的全面性,性能退化预测研究现状又 可大致分为四种情况1.基于退化轨迹预测,但是仅采用确定性单调回归函数描述退化轨迹,未考虑退 化轨迹的随机性及周期性。2.基于退化量分布预测,但是仅采用确定性单调回归函数描述退化量分布的参数 变化,未考虑退化量分布参数变化的随机性及周期性。前两种情况均将产品退化轨迹或退化量分布参数假设为单调回归函数,进行产品 性能退化预测。然而,实际工程中由于受到环境干扰及设备控制等因素影响,性能退化量必 然存在随机性及周期性变化,若不考虑这些变化则对产品退化随机过程描述不够准确。于是,又出现后两种研究情况3.基于退化轨迹预测,不仅采用确定性单调回归函数描述退化轨迹,还应用时间 序列、灰色理论等方法描述退化轨迹的随机性及周期性。4.基于退化量分布预测,不仅采用确定性单调回归函数描述退化量分布的参数变 化,还应用时间序列等方法描述退化量分布参数变化的随机性,但是对退化量分布参数的 随机性描述仅限于退化量分布参数为方差平稳随机情况。对于最后一种情况,由于退化量分布的不同参数属于不同的非平稳时序类型,仅 将所有参数的随机部分视为方差平稳随机时序的假设过于简单,与实际情况不完全相符。 可见,目前基于退化轨迹的性能退化预测已经有较全面的分析方法,而基于退化量分布的 性能退化预测,目前还未见较为全面合理的分析方法。鉴于基于退化量分布的性能退化预 测相比基于退化轨迹方法具有能够把握样本总体退化统计规律的优势,并考虑到产品性能 退化随机过程中的多种因素影响,因此,一种新的能够全面合理描述性能退化随机过程的
8基于退化量分布的产品性能退化预测方法亟待研究。此外,为了在更短的时间内获得更多有效的产品性能退化信息,借鉴加速寿命试 验的原理,进一步出现了加速退化试验的方法。对于加速退化试验的产品寿命预测及可靠性评估,目前已有基于加速退化试验退 化轨迹并采用时序分析等方法考虑加速退化随机过程随机性和周期性的产品寿命预测及 可靠性评估研究,但是尚未出现基于加速退化试验退化量分布并考虑退化量分布参数变化 随机性和周期性的产品寿命预测及可靠性评估研究。同样由于基于退化量分布的加速退化 试验分析方法对产品总体退化趋势把握得更加准确,因此,一种新的针对加速退化试验能 够全面合理描述性能加速退化随机过程的基于退化量分布的产品寿命预测及可靠性评估 方法亟待进一步研究。非平稳时序也可称为非平稳随机信号,若时间序列的均值和方差不依赖于时间, 而其自相关函数仅依赖于时间差,这种时间序列称为平稳时序,反之则称为非平稳时序。常 见的非平稳时序类型包括方差平稳时序、相关系数平稳时序等。非平稳时序分析利用现代 统计学和信息处理技术,能充分挖掘非平稳时序的自相关性,刻画时序随机性波动规律,是 一种适于描述退化随机过程的方法。因此采用非平稳时序分析方法,从退化量分布角度出 发,进行性能退化产品的寿命预测方法研究为一种有效途径。进而,可以通过基于退化量 分布非平稳时序分析的性能退化预测,并建立各退化量分布参数非平稳时序与应力水平关 系的加速模型,从而给出基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方 法。在国内外现有相关加速退化试验产品寿命预测及可靠性评估方法文献中,尚未见到基 于退化量分布非平稳时序分析方法的报道。然而,基于退化量分布非平稳时序分析在加速退化试验产品寿命预测中的应用需 要解决以下问题首先,产品退化量分布中不同参数对应不同的非平稳时序类型,如何从众多非平 稳时序类型中,确定退化量分布各参数的非平稳时序类型,需要根据退化随机过程的统计 特性,进行合理的分析研究。其次,针对确定了非平稳时序类型的退化量分布各参数时序,如何找到相应非平 稳时序类型的分析方法,从而分别对其进行描述和预测,需要对各种非平稳时序的统计建 模方法进行深入研究。此外,在加速退化试验中,需要将加速应力下的退化量分布参数外推至正常应力 下的量值,然而退化量分布中的不同参数与应力水平大小的关系也不相同,如何根据现有 加速模型的理论,建立不同参数与应力水平大小的关系,需要给出符合工程实际情况的分 析依据。另外,退化量分布参数变化具有随机性和周期性,如何在加速应力的条件下,根据 实际工程中产品退化随机性和周期性的特点,合理地通过应力水平分别外推退化量分布参 数的随机部分和周期部分在正常应力水平下的时序,并采用相应类型的非平稳时序分析方 法进行描述,也是需要突破的一个难点。最后,工程实际中,不同产品样本的退化失效阈值并不总是固定的常数,往往是一 个随机变量,而基于退化轨迹的性能退化预测方法由于只能根据某一固定的失效阈值分别 给出各产品样本的预测寿命,无法考虑失效阈值服从某一随机分布的情况,因而无法给出随机失效阈值下寿命预测的结果。如何在寿命预测中考虑随机失效阈值的情况,给出基于 退化量分布非平稳时序分析的加速退化试验寿命预测方法,是寿命预测领域的又一难点。

发明内容
本发明的目的是为了解决现有的基于退化量分布的性能退化预测方法对退化试 验统计数据随机过程的描述不够全面合理,以及现有的基于退化量分布时序分析的性能退 化预测方法难以直接应用于加速退化试验产品寿命预测及可靠性评估的问题,采取基于退 化量分布非平稳时序分析的技术手段,达到通过加速退化试验数据的宏观统计特性预测得 到与工程实际情况更为相符的产品寿命及可靠性评估的技术效果。本发明提出所研究的性能退化过程假设1.产品的性能退化过程总体趋势具有单调性。即性能退化总体趋势不可逆。2.退化过程中,所有产品的采样时刻相等。3.随着时间的变化,退化量分布的类型不变,仅参数变化。为便于说明,本说明书中所有未经解释的字母含义均由下述假设解释在单一应 力水平下,且不需要对不同的应力水平加以区分时,设共有η个产品样本进行试验,每个产 品采样间距均为At,总采样个数为m,则试验时间长度为τ = Afm。以yt表示产品在t 时刻的性能退化量或性能退化量的单调非线性变换,如对数变换,以yti表示第i个产品样 本的yt。当yt服从某位置-尺度分布时,任意时刻的位置参数与尺度参数分别记为
σΛ它们可确定yt在t时刻分布情况。例如1.当性能退化量服从正态分布时,yt表示性能退化量,其分布参数为μ t和σ/;2.当性能退化量服从对数正态分布时,yt表示性能退化量的对数,yt服从正态分 布,其分布参数为3.当性能退化量服从形状参数为θ t、尺度参数为Jlt的威布尔分布时,yt表示性 能退化量的对数,Yt服从极值分布,其分布参数为μ t = In nt和^/=7/没/。μ JPa/的估计值可由yt的样本均值P,和样本方差V得到。由于歹,和乂是按时间顺 序变化的随机变量,因此是时间序列,并且是随时间具有一定退化趋势的非平稳时间序列。不同类型的非平稳时序建模方法迥异,因此在对退化量分布参数采用时序分析方 法建模前,必须先对退化量分布参数进行非平稳性分析,以确定各参数的非平稳时序类型。 由于产品退化量分布参数时序为统计量无法直接从试验中测得,因此需先对可直接测得的 产品性能退化轨迹时序进行非平稳性分析,根据退化轨迹时序的非平稳时序类型,进而推 出退化量分布参数时序的非平稳时序类型。1.产品样本退化轨迹时序非平稳性分析实际工程中,通常假设产品各样本在长度为τ的时间段内第i个产品样本退化轨 迹yti为相互独立的方差平稳时序,其中,t = 1,2,...,τ,i = 1,2,...,η。由方差平稳 时序分解原理,yti可分为确定性时序dti和平稳随机时序rti的叠加yti = dti+rti(1)2.样本均值时序非平稳性分析由样本均值的定义,可知yti的样本均值灭的时序表达式为
其中$为dti的样本均值,斤为rti的样本均值,显然g同样为确定性时序力同样为 平稳时序,因此灭仍是方差平稳时序,可对y,采用方差平稳时序方法建模。3.样本方差时序非平稳性分析样本方差V时序表达式为 式(3)中第一项为确定性时序。式⑶第二项中,巧)为平稳时序且对不同的产品样本i相互独立,当(式-承) 对不同的产品样本i可表示为不同常数与同一个关于时刻t的非零函数的乘积时,即(4,-^) = 6,g(i)"' = l,2,-.-,n(4)其中g(t)为与时刻t有关但与样本i无关的非零函数,bi为与t无关但与i有关 的常数。式(3)第二项可表示为
1 “ 一-X^dil ~dt){rn-Tt) (5)
2 n= ~(f,i
η由于为平稳时序,则式⑶第二项相当于非零确定性时序与平稳时序 之积。根据相关系数平稳随机过程的定义定义设{軋t 6 Td (-00,+co)}是随机过程,如果1. {xt, t e Τ}是二阶矩过程2.对任意的 t,t+t' eT,有P{t,t + t')= If0Ji^ =p(t')
^JVar (χ, )Var(xt+l,)则{xt,t e τ}是相关系数平稳随机过程。相关定理定理设Xt为相关系数平稳随机过程,则Zt = (xt-E (xt))/I (t)为平稳随机过程,其 中Var(Xt) = 02I2(t),σ为与t无关的常数。由此,本发明提出推论如下推论任一非零确定性时序与平稳时序之积为相关系数平稳时序。证明设 iT<=[l,+co),Zt为任一平稳时序,Kt)为任一关于t的非零函数,则 {I(t),t= 1,2,···,Τ}为一非零确定性时序,则对任意的t,t+t' e T,有E(I(t)zt) = I(t) E (zt)Var(I(t)zt) = I2 (t) Var (Zt)
11
PjttU')- CoV卿,,!(“φ,+;)
l{t)l{t^){E{ztzM,)-E{zt)E{zt+t,))二-/ =~>外)吨+ 广⑷由此可知I (t) Zt为相关系数平稳时序。证毕。因此,当(式-g)满足式(4)条件时,式(3)第二项为相关系数平稳时序。式(3)第三项中,当rti四阶矩存在时,(例如当rti为正态平稳时序时其四 阶矩存在),则…同为平稳时序且四阶矩存在。且五(r,-U2与t无关,并对任意的 t, t+t' ζΤ〔[1,+α)),有Cov〔(r(i+,,),,(ru ―幻2)= £〔( + ~rt+l·)2-E(r{l+iy-rl+, Jy^rll -T1)2 -E(rtl-rt)2)j=2^Cov(ril+r)i-rt+i,,Ktl-^f则-巧)2为平稳时序,式(3)第三项也为平稳时序。当(r, -Tj)很小时(接近于零),平稳时序(r, -;^)2相对于& -巧)为一可忽略的高阶
小量,且式⑶第二项中…,-巧)的系数(式-孑)的绝对值随t单调递增,因而式(3)第三项 相对式(3)第二项也为可忽略的高阶小量。因此,本发明对样本方差乂建模时仅考虑式(3)前两项,因而将乂时序视为确定性 时序与相关系数平稳时序之和。基于上述假设和分析,本发明提供的基于退化量分布非平稳时序分析的加速退化 试验产品寿命预测方法主要包括以下具体五个步骤步骤一、试验数据采集及预处理;由试验设备采集到的原始退化时序通常难以直接对其进行时序分析,为了避免过 大的退化量值对时序分析造成的影响,提高退化量分布参数模型的拟合精度,并且统一原 始退化时序的初值以及退化失效的判据,应对每个产品的原始退化时序分别作初值化的预处理。步骤二、退化量分布的参数估计;采用皮尔逊X 2拟合优度检验方法对每一应力水平下各时刻对应的预处理后数据 分别进行退化量分布假设检验。计算其退化量分布的样本均值和样本方差时序,从而得到 退化量分布参数的估计。步骤三、退化量分布参数时序建模;(1)产品样本退化轨迹时序检验在对每一应力水平下退化量分布参数时序建模之前,需先对所有应力下所有产品
12样本的退化轨迹时序进行建模,以检验产品退化轨迹时序是否符合其为方差平稳时序以及 式(3)第三项是否符合其为平稳时序的假设,若两个假设均符合则可采用本发明的方法进 行退化量分布参数时序建模,否则不能采用本发明方法分析。具体方法如下在产品性能退化过程中,产品除自身退化特性外,往往还受到环境及设备因素影 响,包括周期性和随机性影响,因此每个产品样本退化轨迹时序yti的确定性部分dti还可进 一步分解为单调趋势项fti和周期项cti的叠加yti = dti+rti = fti+cti+rti(6)fti可采用线性回归函数描述fti = bjt+f0i其中I3i表示退化轨迹时序yti的退化率,f0i表示fti的初值。fti也可采用可转化为线性回归函数的单调非线性回归函数描述fti = big(t)+f0i(7)其中g(t)为单调非线性回归函数,与样本i无关。当g(t) =t时,公式(7)与公 式(6)相同。从yti减去fti后,Cti可采用适用于挖掘数据潜在周期性规律的潜周期模型描述, 由于同一批受试产品样本所受到的环境及设备影响相同,因此不同样本的Cti理论上也相 同,则有
(8)其中q、ω”…、^分别为cti的角频率个数、角频率、幅值、相位,与样本i无关。再从yti-fti减去Cti后,需对剩下的随机项rti进行平稳性检验和正态性检验。可 采用轮次检验法进行平稳性检验。若rti通过了平稳性检验,说明产品退化轨迹时序符合 方差平稳时序的假设,否则不符,不能采用本发明方法分析,分析中止。采用皮尔逊X2拟 合优度检验方法进行正态性假设检验。若rti通过了正态性检验,说明式(3)第三项符合平 稳时序的假设,否则对^ -Q2采用轮次检验法进行平稳性检验,若-Q2通过了平稳性检 验,说明式(3)第三项符合平稳时序的假设,否则不符,不能采用本发明方法分析,分析中 止。检验通过的rti可采用传统平稳时序分析方法中工程应用最广泛、建模简单且适于预测 的自回归模型描述
(9)其中Pi Srti的自回归模型阶数,%为rti的自回归系数,eti为rti的白噪声, r(t-jH为(t-j)时刻下第i个产品样本的随机项。(2)样本均值时序退化建模样本均值只具有与样本退化轨迹时序相同的结构和类型,其公式为
(10) 其中7、ζ分别为P,的趋势项、周期项,b为歹,的退化率,f0为Τ;的初值,P、ηj、εt为巧的自回归模型阶数、自回归系数、白噪声。灭各项建模方法与yti相同。从灭减去Z和5;后,应对f采用轮次检验法进行平稳性检验。若厂通过了平稳性检验, 继续对5建模;否则调整义和g模型的参数,重新对义和g建模,直至过平稳性检验。(3)样本方差时序退化建模对于样本方差V,由于各样本退化轨迹的周期项Cti理论上相同,即Q 二巧,且各样 本退化轨迹已进行初值化处理,即样本退化轨迹的初值^ = &,有dtl-I1= (blg{t) + f0l +Ct)-(bg(t) + /0+c,) = {b, -b)g{t)(11)即公式(4)成立的条件满足,则式(3)第二项为相关系数平稳时序。将式(3)第一项称为V的趋势项fst,第二项称为Y的相关系数平稳项xt,有sf = fsl + χ,则样本方差ν趋势项fst的模型为fst = bsg2(t)其中bs表示样本方差V的退化率。样本方差相关系数平稳项Xt的模型为 其中fxt表示相关系数平稳项Xt的确定性部分,称为相关系数平稳趋势项,是关于 t的非零函数,rxt表示相关系数平稳项Xt的随机性部分,称为相关系数平稳随机项,是平稳 时序,ο ,为rxt的标准差,与t无关,ο xt为Xt的标准差,是关于t的非零函数。Qxt可由|xt|的均值函数得到,即 其中札为待定系数,令 贝Ij 有xt = fxtrxt = E(|xt|)rxt即相关系数平稳项xt可视为|xt|的均值模型E(|Xt|)与平稳时序rxt之积。 E(IxJ)可采用单调回归函数描述E(|xt|) = bxg(t)(19)其中bx为待定系数。从Xt中除去相关系数平稳趋势项fxt后,对剩余的相关系数平稳随机项rxt采用轮 次检验法进行平稳性检验,若检验通过,对rxt可采用自回归模型描述 其中px、nxj、ε xt为rxt的自回归模型阶数、自回归系数、白噪声。否则,调整fxt的模型参数,重新对fxt建模,直到rxt通过平稳性检验。则退化量分 布样本方差<的最终表达式为
14
步骤四、基于退化量分布的加速退化建模;步骤三给出的是单一应力水平下的退化量分布参数时序建模方法,对于加速退化 试验,还需将不同单一应力水平下的退化量分布参数时序折合至同一应力水平,即正常应 力水平。为便于说明,本说明书中其余所有未经解释的字母含义均由下述假设解释假设 加速退化试验中共有k个应力水平Sj, j = 1,2,…,k。每个应力水平下的采样间距均为 At,各应力水平下的采样个数为m」,则各应力水平下的试验时间长度为、=At·!^。(1)样本均值时序加速退化建模在加速寿命试验的寿命预测中,通常采用产品在各应力下的寿命特征,例如寿命 均值,建立其与应力水平的关系作为产品的加速模型。而在加速退化试验中,根据累积损伤等效原理,在保持退化数据的累积退化量不 变的条件下,其退化速率与退化时间成反比,因此对于样本均值时序,可采用其退化率作为 寿命特征,建立其与应力水平的关系作为产品的加速模型。通过加速模型,可将不同应力水 平下的退化率进行转换,通过对采样间距进行折合,从而折算为同一应力水平下的样本均 值时序。根据疲劳累积损伤等效原理,产品在第i个应力水平Si下工作τ i时间的累积退 化量等于此产品在第j个应力水平Sj下工作τ j时间的累积退化量,其中i,j = 1,2,…, k,i兴j。可将加速退化试验的样本均值时序在应力水平Sj, j =,2,…,k下的试验持续时 间、及采样间距At在保持折算前后采样个数不变的情况下,按样本均值时序退化率-应 力水平关系折算为正常应力水平Stl下的试验持续时间τ μ及采样间距Δ、。以bj表示在第j个应力水平Sj下样本均值时序的退化率,则bj与应力水平的关
系可采用传统的加速模型表示 其中,A、B都是待定参数4〈幻为应力水平Sj的已知函数。由公式(22)可得到正常应力下样本均值时序的退化率Iv则有b0· τ 0J = bj ‘ τ ^ j = 1,2,…,k(23)折算到正常应力下的试验持续时间为 在保持折算前后采样个数不变的情况下,折算到正常应力水平下的采样间距为 以此类推,就可以将所有应力水平Sj下的样本均值时序折算到正常应力水平S。。由于样本均值时序的趋势项反映产品自身退化的确定性变化,与产品受到的应力 水平有关,因此,应对不同应力水平下样本均值时序的趋势项进行采样间距折合。同样,样本均值时序的随机项反映产品性能自身退化的不确定性变化,也与应力水平相关。因此也应对样本均值时序不同应力水平下的随机项进行采样间距折合。然而,样本均值时序的周期项仅与对产品施加应力的设备控制特性等环境因素有 关,与产品自身退化特性无关,从而也与应力的水平无关,因此不同应力水平样本均值时序 的周期项理论上相同,而无需对其进行采样间距折合。(2)样本方差时序加速退化建模在加速寿命试验中,通常认为产品在不同应力水平下寿命分布的尺度参数或尺度 参数的估计,即样本方差,是相同的。而在加速退化试验中,产品的寿命定义为从试验开始 时刻起产品性能随时间退化直至退化量穿越产品失效阈值的总时间,如果假设产品在不同 应力水平下寿命分布的样本方差仍然相同,由于同一应力水平下产品退化量分布的样本方 差时序包含随时间单调确定性变化的趋势,则在任一相同时刻下,不同应力水平下的产品 退化量分布的样本方差必然是不同的,且其大小与应力水平相关。假设在同一失效阈值下,各应力水平下产品的寿命分布样本方差相同,则有 其中,<,s' 2均表示第j个应力水平下寿命分布样本方差,其大小与应力水平无 关,D为产品失效阈值,与应力水平无关,b,,为第j个应力水平下第i个样本退化轨迹的退 化率,bj为第j个应力水平下退化量分布样本均值的退化率。在同一时刻下,各应力水平下产品的退化量分布样本方差退化率为
(27)其中,\表示第j个应力水平下退化量分布样本方差退化率。当公式(26)中远小于b」,且bj远小于1时,(bji-bpbj相对公式(26)中其 他各项很小可忽略不计,则公式(26)可近似为 则在第j个应力水平下,退化量分布样本方差的退化率\与寿命分布样本方差 s' 2仅相差b/的D2倍。因此本发明基于退化量分布样本均值退化率bj与应力水平的关系,即公式(22), 建立产品样本方差时序的退化率与应力水平的关系 可采用该关系得到正常应力水平下样本方差时序的退化率,根据疲劳累积损伤等 效原理对不同应力水平下样本方差时序进行采样间距折合,从而得到正常应力水平下样本 方差时序。
样本方差时序仅与与退化轨迹时序的随机项及趋势项有关,因此样本方差时序各 项均与应力水平有关,应对不同应力水平下样本方差时序各项进行采样间距折合。步骤五、基于退化量分布的寿命预测;(1)样本均值时序预测将各应力水平下的样本均值时序的趋势项和随机项分别折合至正常应力。根据时序模型最佳(最小均方误差)预测原理,由公式(10),当某一应力水平下试验总时间为τ
时,该应力水平下的样本均值时序趋势项和随机项的向前1步最佳预测值殳+/、计算公
式分别为_L=0g(r + /) + /0,/ = l,2,...(30)rT+l =(31)对正常应力下样本均值时序的趋势项和随机项分别进行预测至某一给定时刻,该 给定时刻的选取原则是该时刻应至少能超过该产品平均寿命。样本均值时序的周期项向前1步最佳预测值计算公式为
汽ι
cT+l = ZCIj cos(<y; (r + /) + φ)(32)
y=i将周期项预测至与正常应力下趋势项和随机项预测的相同时刻,再与正常应力下 趋势项和随机项直接相加,得到各应力下折合为正常应力下样本均值时序的预测时序。再对各应力折合为正常应力下样本均值时序的预测时序按各应力下的产品样本 个数进行加权平均后得到产品正常应力下样本均值时序的预测时序凡,》加权平均的方法为假设第j个应力水平下共有~个产品样本进行试验,j = 1,
2,. . .,k,第j个应力水平折合为正常应力下的样本均值时序预测时序为,则加权平均后
得到产品正常应力下样本均值时序的预测时序凡,为 k7。, 歹。y,(33)
M(2)样本方差时序预测将各应力下的样本方差时序折合至正常应力。由公式(21),当某一应力水平下试 验总时间为τ时,该应力水平下的样本方差时序的向前1步最佳预测值计算公式为
Pxs2r+l = fs(T+l) + Ιχ(τ+ι/χ{τ+ι) = ^2 ( - + /) + (r + /) · Σ Vx/x(T+l.J}J = 1,2,··· (34)对正常应力下样本方差时序预测至与正常应力下样本均值时序预测的相同时刻, 得到各应力下折合为正常应力下样本方差时序的预测时序。再对各应力折合为正常应力下样本方差时序的预测时序按各应力下的产品样本 个数进行加权平均后得到产品正常应力下样本方差时序的预测时序‘。加权平均的方法为假设第j个应力水平下共有~个产品样本进行试验,j = 1, 2,. . .,k,第j个应力水平折合为正常应力下的样本方差时序预测时序为·,则加权平均后得到产品正常应力下样本方差时序的预测时序‘为 kS201 =^njS20jl(35)
M(3)寿命预测根据被试产品以往失效情况的经验,假设产品的失效阈值D为某一常数,可得到 退化量或退化量的线性变换yt,t = 1,2,...在t时刻到达D的概率,即常数失效阈值下产 品可靠度Rt 1.当性能退化量服从正态分布或对数正态分布时,Yt服从正态分布,若yt随t单
调上升,产品可靠度R1=I -P{y,>=Di =Φ((D-y0t) /s0l)(36)其中Stlt为4的正平方根。若yt随t单调下降,产品可靠度Rt=I -P {y, <=D} -\-0{{EhyJ I ^0,)(37)2.当性能退化量服从威布尔分布时,yt服从极值分布,若yt随t单调上升,产品可
靠度R,=l -P {yt>=D} =1 -exp (- exp (Ih y0t) / s0t)(38)若yt随t单调下降,产品可靠度R1 =1 -P (yt<=D) =exp(-expiD~yJ I s0t)(39)此时,产品寿命定义为产品性能穿越失效阈值的概率为Rt时,所对应的时刻t,而 并非产品性能第一次穿越失效阈值的时刻,因此t时刻的可靠度Rt实际上反映的是可靠度 与寿命的关系。然而,在工程实际中,产品的失效阈值大多情况是随机的,即产品的失效阈值D同 样服从某一分布,该分布的类型可根据被试产品以往的失效情况的经验得到。当yt代表产 品性能退化量或退化量的单调非线性变换时,由于原始退化时序经过了初值化预处理,yt 的初值为1或1的与退化量相同的非线性变换,表示为队。此时,yt,t = 1,2,...在t时 刻到达D的概率,即随机失效阈值下产品可靠度Rt变为1.若yt随t单调上升,失效阈值D应不小于yt的初值Dtl,产品可靠度为 [_] =^Piyl >=D}= \\ fD{D)f^dDdy,
y'>=D(40)= £Vd (D) fyi (yt)dDdyt其中fD(D)表示D的分布密度函数,Λ, (yt)表示yt在t时刻的分布密度函数。2.若yt随t单调下降,失效阈值D应不大于yt的初值Dtl,产品可靠度为Rt^-P{y,<=D}^ jj fD(D)fyi(yi)dDdy, m=ttMD)fy,{yt)dDdy<本发明的优点在于1.本发明提出一种全新的基于退化量分布非平稳时序分析的性能退化预测方法,该方法能够对所有样本退化的统计规律进行宏观描述,并且不仅考虑产品性能退化过程中 的单调确定性趋势,同时考虑了退化的随机性和周期性波动,得到反映产品退化随机过程 波动性规律的产品可靠度与寿命关系预测。与传统仅考虑产品退化单调确定性相比,本发 明对退化过程的描述更加全面,与基于退化轨迹的性能退化预测方法相比更加宏观,从而 提高了性能退化预测结果的可信度。2.本发明提出的退化量分布各参数的非平稳时序类型是由工程实际中可测得的 产品退化轨迹时序类型推导而来,因此相比仅基于假设的退化量分布参数时序分析更符合 工程实际。3.本发明针对不同退化量分布参数时序的不同非平稳时序类型,分别提出相应非 平稳时序类型的分析方法,其中针对退化量分布样本方差时序,提出相关系数平稳时序定 义的推论,证明退化量样本方差时序包含相关系数平稳时序的部分,并给出其建模方法,从 而解决了退化量分布各参数非平稳时序的建模难题,并可将其推广于任一具有与之相同非 平稳时序类型的时序分析问题。4.本发明首次提出一种基于退化量分布非平稳时序分析的加速退化试验寿命预 测及可靠性评估方法,该方法不仅能够对加速应力下所有样本退化的统计规律进行宏观描 述,对加速退化过程的退化量分布参数时序分析全面,并能将加速应力下的退化量分布外 推至正常应力,得到反映产品加速退化随机过程波动性规律的产品可靠度与寿命关系预 测,提高了寿命预测及可靠性评估结果的可信度,且与正常应力水平下的性能退化预测相 比更加省时高效。5.本发明将加速应力下的退化量分布参数外推至正常应力下的量值时,依据现有 针对寿命分布的加速模型建模原理,由退化量分布参数与寿命分布的关系,推导得出不同 退化量分布参数与应力水平大小的关系,能够提出合理的退化量分布参数加速模型,为采 用基于退化量分布参数非平稳时序分析的方法进行加速退化试验寿命预测提供了可能。6.本发明考虑了退化量分布参数变化的随机性和周期性,在加速应力的条件下, 根据工程实际中产品退化随机性和周期性的不同产生原理,通过应力水平分别外推退化量 分布参数中的随机部分和周期部分至正常应力水平,并采用相应类型的时序模型进行建 模,从而解决了加速退化试验中对退化量分布参数时序难以进行全面描述的问题。7.本发明考虑了失效阈值为随机分布的情况,通过建立失效阈值的分布与加速 退化试验的产品性能退化量分布之间的关系,首次提出了随机失效阈值下基于退化量分布 非平稳时序分析的加速退化试验产品寿命预测方法,克服了基于退化轨迹的加速退化试验 产品寿命预测无法考虑随机失效阈值情况的不足,相比假设失效阈值为常数的寿命预测方 法,本发明方法的产品寿命与可靠度关系预测结果更符合工程实际情况。


图1是本发明基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方 法的流程图;图Ia是步骤一试验数据采集及预处理实施流程;图Ib是步骤二退化量分布参数估计实施流程;图Ic是步骤三(1)退化轨迹时序检验实施流程;
图Id是步骤三(2)样本均值时序建模实施流程;
图Ie是步骤三(3)样本方差时序建模实施流程;
图If是步骤四(1)样本均值时序加速退化建模实施流程;
图Ig是步骤四(2)样本方差时序加速退化建模实施流程;
图Ih是步骤五基于退化量分布的寿命预测实施流程;
图2是退化轨迹为单调回归函数时的退化随机过程;
图3是实际退化随机过程;
图4是实施例1试验设备及电路系统的结构示意图5是实施例1经初值化预处理后的试验至失效的原始退化时序;
图6是实施例1退化轨迹时序及退化轨迹时序模型拟合结果;
图7是实施例1退化轨迹时序随机项时序;
图8是实施例1样本均值时序及其趋势项模型拟合结果;
图9是实施例1样本均值时序减去其趋势项后的时序;
图10是实施例1样本方差时序及其趋势项模型拟合结果;
图11是实施例1样本均值退化率-应力关系;
图12是实施例1折合至6. 5v的样本均值随机项时序;
图13是实施例1样本方差退化率_应力关系;
图14是实施例1折合至正常应力水平的样本方差时序减去其趋势项后的绝对值
时序及其相关系数平稳趋势项模型拟合结果;图15是实施例1折合至正常应力水平的样本方差时序相关系数平稳随机项时 序;图16是实施例1折合至正常应力水平的样本均值时序;图17是实施例1正常应力水平的样本均值时序预测时序;图18是实施例1折合至正常应力水平的样本方差时序;图19是实施例1正常应力水平的样本方差时序预测时序;图20是实施例1分别采用本发明方法和仅采用单调回归函数分析方法得到的寿 命与可靠度关系。图中1-实施例1中6. 5V下的数据,2-实施例1中7. OV下的数据,3-实施例1 中7. 5V下的数据,4-实施例1中8. OV下的数据,5-实施例1中各应力水平下的模型拟合 结果,6-实施例1中各应力水平下的退化率,7-实施例1中退化率-应力关系,8-实施例 1中采用本发明方法常数失效阈值情况下得到的寿命可靠度关系,9-实施例1中采用常数 失效阈值情况下基于退化量分布的仅采用单调回归函数分析方法得到的寿命可靠度关系, 10-实施例1中采用本发明方法随机失效阈值情况下得到的寿命可靠度关系,11-实施例1 中采用随机失效阈值情况下基于退化量分布仅采用单调回归函数分析方法得到的寿命可 靠度关系。
具体实施例方式下面将结合附图和实施例1对本发明作进一步的详细说明。本发明是一种基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法。首先对本发明方法的意义进行详细说明。产品退化量分布反映了退化随机过程的一维分布,其基本数字特征为均值和方 差。若各样本退化轨迹为单调回归函数,退化随机过程如图2。可知,退化量分布均值和方 差也为单调回归函数。然而工程中,由于产品受到各种环境因素影响,实际的退化随机过程如图3。可知, 当各样本退化轨迹为随机时序时,退化量分布均值和方差也可能为随机时序。当随机时序 具有自相关性时,则时序取值不仅与当前时刻有关,且与其历史时刻取值有关。若仍采用单 调回归函数描述退化量分布均值和方差时序,则反映不出退化过程随机波动的自相关性, 从而影响退化预测结果。因此,应对退化量分布均值和方差采用时序分析方法描述。下面对实施方式进行具体介绍,进行方法执行之前进行如下假设1.产品的性能退化过程总体趋势具有单调性。即性能退化总体趋势不可逆。2.退化过程中,所有产品的采样时刻相等。3.随着时间的变化,退化量分布的类型不变,仅参数变化。并假设在单一应力水平下,且不需要对不同的应力水平加以区分时,共有η个产 品样本进行试验,每个产品采样间距均为At,总采样个数为m,则试验时间长度为τ = Δ t · m。以yt表示产品在t时刻的性能退化量或性能退化量的某种非线性变换,如对数变 换,以yti表示yt的第i个产品样本。当yt服从某位置_尺度分布时,任意时刻的位置参数 与尺度参数分别记为μ t和σΛ它们可确定yt在t时刻分布情况。具体方法实施流程如图1所示,通过如下步骤实现步骤一、试验数据采集及预处理;实施流程如图la。采集加速退化试验数据,对试验观测的原始退化时序经初值化 预处理。具体为分别对各产品样本的原始退化时序采用公式(7)建立趋势项,分别将各产 品样本的原始退化时序全部时刻的数据除以其趋势项的初值,则处理后的所有产品样本原 始退化时序趋势项的初值均为1。步骤二、退化量分布的参数估计;实施流程如图lb。采用皮尔逊X 2拟合优度检验方法对各时刻对应的预处理后数 据分别进行退化量分布假设检验。具体为取6个数据量值宽度相等的区间,尽量保证每个 区间包含2个以上产品样本,在0.05显著性水平下,则χ 2理论值为7. 815。若χ 2检验值 小于理论值,则接受数据分布假设。1.当性能退化量服从正态分布时,yt表示性能退化量,其分布参数为μ t和σ/;2.当性能退化量服从对数正态分布时,yt表示性能退化量的对数,yt服从正态分 布,其分布参数为3.当性能退化量服从形状参数为θ t、尺度参数为Ilt的威布尔分布时,yt表示性 能退化量的对数,yt服从极值分布,其分布参数为μ t = In nt和07/</0/。μ t和σ/的估 计值可由yt的样本均值j和样本方差得到。由于力和5/是按时间顺序变化的随机变量, 因此是时间序列,并且是具有一定退化趋势的非平稳时间序列。步骤三、退化量分布参数时序建模;(1)产品样本退化轨迹时序检验实施流程如图lc。在对每一应力水平下退化量分布参数时序建模之前,需先对所有应力下所有产品样本的退化轨迹时序进行建模,以检验产品退化轨迹时序是否符合其为 方差平稳时序以及式(3)第三项是否符合其为平稳时序的假设,若两个假设均符合则可采 用本发明的方法进行退化量分布参数时序建模,否则不能采用本发明方法分析。具体方法 如下在产品性能退化过程中,产品除自身退化特性外,往往还受到环境及设备因素影 响,包括周期性和随机性影响,因此每个产品样本退化轨迹时序yti的确定性部分dti还可进 一步分解为单调趋势项fti和周期项cti的叠加,见公式(6)。fti可采用线性回归函数或可 转化为线性回归函数的单调非线性回归函数公式(7)描述。从yti减去fti后,Cti可采用适用于挖掘数据潜在周期性规律的潜周期模型描述, 由于同一批受试产品样本所受到的环境及设备影响相同,因此不同样本的Cti理论上相同, 则有公式⑶。再从yti_fti减去cti后,需对剩下的随机项rti进行平稳性检验和正态性检 验。采用轮次检验法对不同产品样本的rti分别进行平稳性检验。具体为将rti按时间 分为20等份,对各份数据的均方值进行轮次计算,在0. 05显著性水平下,若轮次数在64至 125间时,则rti平稳,否则不平稳。若rti通过了平稳性检验,说明产品退化轨迹时序符合方差平稳时序的假设,否则 不符,不能采用本发明方法分析,分析中止。采用皮尔逊X 2拟合优度检验方法对不同产品样本的rti分别进行正态性假设检 验。具体为取6个数据量值宽度相等的区间,尽量保证每个区间包含的数据个数相近,在 0.05显著性水平下,则X2理论值为7. 815。若χ 2检验值小于理论值,则接受正态分布假 设,否则不接受。若rti通过了正态性检验,说明式(3)第三项符合平稳时序的假设,否则对(r,-η)2 采用轮次检验法进行平稳性检验,若-斤)2通过了平稳性检验,说明式(3)第三项符合平 稳时序的假设,否则不符,不能采用本发明方法分析,分析中止。检验通过的rti可采用传统平稳时序分析方法中工程应用最广泛、建模简单且适 于预测的自回归模型公式(9)描述。(2)样本均值时序退化建模实施流程如图ld,样本均值灭具有与样本退化轨迹时序相同的结构和类型,见公 式(10)。灭各项建模方法与yti相同。从灭减去样本均值趋势项义和样本均值周期项ζ后,应对样本均值随机项^采用轮 次检验法进行平稳性检验,方法同rti的平稳性检验。若斤通过了平稳性检验,继续对斤建模; 否则调整义和g模型的参数,重新对Z和ζ建模,直至斤通过平稳性检验。(3)样本方差时序退化建模实施流程如图le,对于样本方差V,由于各样本退化轨迹的周期项Cti理论上相同, 即Q 二巧,且各样本退化轨迹已进行初值化处理,即初值^ = &,有公式(11)。即公式⑷ 成立的条件满足,则式(3)第二项为相关系数平稳时序。将式(3)第一项作为i/的趋势项以fst表示,第二项作为〃/的相关系数平稳项以Xt 表示,有公式(12)。
样本方差s/趋势项fst的模型为公式(13)。样本方差V相关系数平稳项Xt的模型为公式(14)。公式(14)中的。xt可由| Xt 的均值函数得到,即公式(15)。令公式(15)中的相关系数平稳趋势项fxt等于|xt|的均值 函数,见公式(16),则有公式(17)和公式(18)。即相关系数平稳项Xt可视为|xt|的均值 模型E(|Xt|)与相关系数平稳随机项rxt之积。E(|Xt|)可采用单调回归函数公式(19)描 述。从Xt中除去fxt后,对剩余的rxt采用轮次检验法进行平稳性检验,若检验通过,对 rxt可采用自回归模型公式(20)描述。否则,调整fxt的模型参数,重新对fxt建模,直到rxt 通过平稳性检验。则退化量分布样本方差Z的最终表达式为公式(21)。步骤四、基于退化量分布的加速退化建模;步骤三给出的是单一应力水平下的退化量分布参数时序建模方法,对于加速退化 试验,还需将不同单一应力水平下的退化量分布参数时序折合至同一应力水平,即正常应 力水平。假设加速退化试验中共有k个应力水平S」,j = 1,2,"·Λ。每个应力水平下的采 样间距均为At,各应力水平下的采样个数为Hlj,则各应力水平下的试验时间长度为、= Δ t · ITijO(1)样本均值时序加速退化建模实施流程如图lf,在加速寿命试验的寿命预测中,通常采用产品在各应力下的寿 命特征,例如寿命均值,建立其与应力水平的关系作为产品的加速模型。而在加速退化试验中,根据累积损伤等效原理,在保持退化数据的累积退化量不 变的条件下,其退化速率与退化时间成反比,因此对于样本均值时序,可采用其退化率作为 寿命特征,建立其与应力水平的关系作为产品的加速模型。通过加速模型,可将不同应力水 平下的退化率进行转换,通过对采样间距进行折合,从而折算为同一应力水平下的样本均 值时序。根据疲劳累积损伤等效原理,产品在第i个应力水平Si下工作τ i时间的累积退 化量等于此产品在第j个应力水平Sj下工作τ j时间的累积退化量,其中i,j = 1,2,…, k,i兴j。可将加速退化试验的样本均值时序在应力水平Sj下的试验持续时间τ j及采样 间距At在保持折算前后采样个数不变的情况下,其中j = 1,2,…,k,按样本均值时序退 化率-应力水平关系折算为正常应力水平Stl下的试验持续时间τ μ及采样间距Δ、。以bj表示在第j个应力水平Sj下样本均值时序的退化率,则bj与应力水平的关 系可采用传统的加速模型公式(22)表示。由公式(22)可得到正常应力下样本均值时序的退化率bQ,则有公式(23),折算到 正常应力下的试验持续时间为公式(24)。在保持折算前后采样个数不变的情况下,折算到 正常应力水平下的采样间距为公式(25)。以此类推,就可以将所有应力水平Sj下的样本均值时序折算到正常应力水平S。。由于样本均值时序的趋势项反映产品自身退化的确定性变化,与产品受到的应力 水平有关,因此,应对不同应力水平下样本均值时序的趋势项进行采样间距折合。同样,样本均值时序的随机项反映产品性能自身退化的不确定性变化,也与应力 水平相关。因此也应对样本均值时序不同应力水平下的随机项进行采样间距折合。
然而,样本均值时序的周期项仅与对产品施加应力的设备控制特性等环境因素有 关,与产品自身退化特性无关,从而也与应力的水平无关,因此不同应力水平样本均值时序 的周期项理论上相同,而无需对其进行采样间距折合。(2)样本方差时序加速退化建模实施流程如图lg,在加速寿命试验中,通常认为产品在不同应力水平下寿命分布 的尺度参数或尺度参数的估计,即样本方差,是相同的。而在加速退化试验中,产品的寿命 定义为从试验开始时刻起产品性能随时间退化直至退化量穿越产品失效阈值的总时间,如 果假设产品在不同应力水平下寿命分布的样本方差仍然相同,由于同一应力水平下产品退 化量分布的样本方差时序包含随时间单调确定性变化的趋势,则在任一相同时刻下,不同 应力水平下的产品退化量分布的样本方差必然是不同的,且其大小与应力水平相关。假设在同一失效阈值下,各应力水平下产品的寿命分布样本方差相同,则有公式 (26)。在同一时刻下,各水平下产品的退化量分布样本方差退化率为公式(27)。当公式 (26)中bji-bj远小于bj,且bj远小于1时,(、吐」)…相对公式(26)中其他各项很小可忽 略不计,则公式(26)可近似为公式(28)。因此本发明基于退化量分布样本均值退化率bj与应力水平的关系,即公式(22), 建立产品样本方差时序的退化率与应力水平的关系公式(29)。可采用该关系得到正常应力水平下样本方差时序的退化率,根据疲劳累积损伤等 效原理对不同应力水平下样本方差时序进行采样间距折合,从而得到正常应力水平下样本 方差时序。样本方差时序仅与与退化轨迹时序的随机项及趋势项有关,因此样本方差时序各 项均与应力水平有关,应对不同应力水平下样本方差时序各项进行采样间距折合。步骤五、基于退化量分布的寿命预测;实施流程如图Ih。(1)样本均值时序预测将各应力水平下的样本均值时序的趋势项和随机项分别折合至正常应力。根据时 序模型最佳(最小均方误差)预测原理,由公式(10),当某一应力水平下试验总时间为τ
时,该应力水平下的样本均值时序趋势项和随机项的向前1步最佳预测值$+/、计算公 式分别为公式(30)和公式(31)。对正常应力下样本均值时序的趋势项和随机项分别进行 预测至某一时刻,预测时刻的选取原则是该时刻应至少能超过该产品平均寿命。样本均值时序的周期项向前1步最佳预测值色+/计算公式为公式(32),将周期项预 测至与正常应力下趋势项和随机项预测的相同时刻,再与正常应力下趋势项和随机项直接 相加,得到各应力下折合为正常应力下样本均值时序的预测时序。再对各应力折合为正常应力下样本均值时序的预测时序按各应力下的产品样本 个数进行加权平均后得到产品正常应力下样本均值时序的预测时序艽,,见公式(33)。(2)样本方差时序预测将各应力下的样本方差时序折合至正常应力。由公式(21),当某一应力水平下试 验总时间为τ时,该应力水平下的样本方差时序的向前1步最佳预测值计算公式为公式(34),对正常应力下样本方差时序预测至与正常应力下样本均值时序预测的相同时刻, 得到各应力下折合为正常应力下样本方差时序的预测时序。再对各应力折合为正常应力下样本方差时序的预测时序按各应力下的产品样本 个数进行加权平均后得到产品正常应力下样本方差时序的预测时序4,见公式(35)。(3)寿命预测根据被试产品以往失效情况的经验,假设产品的失效阈值D为某一常数,可得到 退化量或退化量的线性变换yt在t时刻到达D的概率,其中t = 1,2,...,即常数失效阈值 下产品可靠度Rt:1.当性能退化量服从正态分布或对数正态分布时,Yt服从正态分布,若yt随t单 调上升,产品可靠度为公式(36),若yt随t单调下降,产品可靠度为公式(37)。2.当性能退化量服从威布尔分布时,yt服从极值分布,若yt随t单调上升,产品可 靠度为公式(38),若yt随t单调下降,产品可靠度为公式(39)。此时,产品寿命定义为产品性能穿越失效阈值的概率为Rt时,所对应的时刻t,而 并非产品性能第一次穿越失效阈值的时刻,因此t时刻的可靠度Rt实际上也反映的是可靠 度与寿命的关系。然而,在工程实际中,失效阈值大多情况是随机的,即产品的失效阈值D同样服从 某一分布,该分布的类型可根据被试产品以往的失效情况的经验得到。当yt代表产品性能 退化量或退化量的单调非线性变换时,由于原始退化时序经过了初值化预处理,yt的初值 为1或1的与退化量相同的非线性变换,表示为队。此时,yt,t = 1,2,...在t时刻到达 D的概率,即随机失效阈值下产品可靠度Rt变为1.若yt随t单调上升,失效阈值D应不小于yt的初值Dtl,产品可靠度为公式(40)。2.若yt随t单调下降,失效阈值D应不大于yt的初值Dtl,产品可靠度为公式(41)。实施例1 步骤一、试验数据采集及预处理;对同一批次55个某电子产品进行4应力水平恒定应力加速退化试验,试验设备及 电路系统的结构如图4所示。通过电源对电子产品施加额定电压,以串联电阻R两端电压 值V作为观测数据。采样间距为1分钟。试验参数如表1:表1试验参数 对试验观测的原始退化时序进行初值化预处理,则所有产品经初值化预处理后的 原始退化时序趋势项初值均为1。为了更好地说明本发明结果的合理性,本次加速退化试验额外进行到了各应力水 平下的所有产品样本均失效为止,经初值化预处理后的试验至失效的原始退化时序如图5 所示。表1中给出的采样个数仅用于加速退化分析,并非本次试验至产品失效时的采样个数。步骤二、退化量分布的参数估计;采用皮尔逊X 2拟合优度检验方法对各时刻对应的预处理后数据分别进行退化量 分布假设检验。根据产品个数,本发明取6个数据量值宽度相等的区间,以保证每个区间包 含2个以上产品样本,在0.05显著性水平下,则χ 2理论值为7. 815。若χ 2检验值小于理 论值,则接受数据分布假设。对该数据所有时刻退化量分布类型的χ 2检验平均值如表2:表2退化量分布X 2检验平均值 可知,威布尔分布检验不通过,取X 2检验平均值最小的对数正态分布为退化量分 布。取经过预处理后原始退化时序的对数作为yt,则此时所有产品退化轨迹时序趋势项的 初值均为0,如图6。计算退化量分布样本均值和样本方差时序,从而得到退化量分布参数 的估计。步骤三、退化量分布参数时序建模;1.产品样本退化轨迹时序检验对退化轨迹时序进行趋势项和周期项建模,减去这两项后,得到随机项如图7。对 随机项采用轮次检验法进行平稳性检验。各产品结果如表3 :表3退化轨迹时序随机项平稳性检验 可知全部产品随机项平稳。则该批产品退化轨迹时序为方差平稳时序。对随机项 采用皮尔逊X 2拟合优度正态分布检验结果如表4 表4退化轨迹时序随机项正态分布检验 可知产品随机项基本符合正态分布。则认为随机项四阶矩存在。2.样本均值时序退化建模样本均值时序的趋势项如图8,模型为Jxt =-\.9\x\0-5tx\Jlt=-6.61x\Q-5t'\f3! =-1.28χ10"4 11,74, =-4.18xl0'4iu,减去趋势项后,可见各应力水平下样本均值时序具有明显的周期性波动,并且所 有应力水平下的周期波动频率大致相同,如图9,说明样本均值时序周期项与应力水平大小 无关的分析合理。再减去周期项,对随机项进行平稳性检验,结果如表5。表5样本均值时序随机项平稳性检验
6. 5V7. OV7. 5V8. OV1226473102可知随机项通过平稳性检验。3.样本方差时序退化建模样本方差时序的趋势项如图10,模型为flst = 1. 55X10_11t2·2, f2st = 1. 63X IO-1V'2,f3st = 6. 02X l(T10t2·2,f4st = 3. 85X l(T9t2·2,减去样本方差时序趋势项,得到相关系数平稳项。再除去相关系数平稳趋势项,对 相关系数平稳随机项进行平稳性检验,结果如表6。表6样本方差时序相关系数平稳随机项平稳性检验 可知相关系数平稳随机项通过平稳性检验。
步骤四、基于退化量分布的加速退化建模;1.样本均值时序加速退化建模根据样本均值时序趋势项得到各应力水平下的样本均值时序退化率,采用电应力 加速模型逆幂律模型,建立其退化率与应力水平关系,如图11。将样本均值时序随机项按样本均值退化率与应力水平关系进行采样间距折合,图 12所示为统一折合为6. 5v下的随机项。可见折合后各应力水平下随机项变化趋势相似,说 明样本均值时序随机项与应力水平相关的分析合理。2.样本方差时序加速退化建模根据样本方差时序趋势项得到各应力水平下的样本方差时序退化率,因样本方差 时序退化率约为样本均值时序退化率4次方的某一与应力水平无关的倍数,故采用与样本 均值时序加速模型相同类型的逆幂律模型,建立样本方差时序退化率与应力水平关系,如 图13。样本方差时序减去样本方差趋势项后,由公式(3)可知应得到相关系数平稳项及 一个量值相对很小的平稳随机项,将这两项的绝对值及相关系数平稳趋势项按样本方差时 序退化率与应力水平关系折合至正常应力水平6. 3v如图14。可见,各应力水平下的数据变 化趋势相似,说明样本方差时序各项均与应力水平相关的分析合理。其绝对值在零时刻的 量值几乎为零,说明平稳随机项贡献的随时间变化平稳的量值只占整个时序量值的很小一 部分,而相关系数平稳项贡献的量值随时间上升趋势明显,占整个时序量值的绝大部分,这 与前面样本方差时序非平稳性分析的结果吻合,说明对于该平稳随机项确实可予以忽略, 将这两项仅视为相关系数平稳项的处理方法合理。折合至6. 3v的相关系数平稳随机项如图15。各应力水平下的数据变化趋势相似。步骤五、基于退化量分布的寿命预测;1.样本均值时序预测将各应力水平下的样本均值时序的趋势项和随机项折合到正常应力水平6. 3v。将 6. 3v的趋势项和随机项预测至30000分钟,再将各应力水平下的周期项预测至相应的时刻 与之相加,则得到6. 3v下的样本均值时序预测时序。图16为折合到6. 3v下的样本均值时 序。按各应力水平样本个数加权平均后得到6. 3V下的样本均值时序预测时序如图17。2.样本方差时序预测将各应力水平下的样本方差时序折合到正常应力水平6. 3v。图18所示为统一折 合为6. 3v下的样本方差时序。将6. 3v下的样本方差时序预测至30000分钟,并按各应力 水平样本个数加权平均后如图19。3.寿命预测根据本次试验的实际失效情况,见图5,取产品失效阈值为原始退化时序趋势项初 值的93%,即对于经初值化预处理后的原始退化时序,失效阈值即为常数93%,得到可靠 度与寿命关系预测结果。如图20。可见,采用本发明基于退化量分布非平稳时序分析得到 的可靠度与寿命关系预测曲线相比仅采用单调回归函数分析方法能反映出退化随机过程 的波动性规律。另外,根据本次试验的实际失效阈值的分布情况,见图5,采用皮尔逊X 2拟合优度 检验方法分别对各应力下所有产品样本失效时刻对应的预处理后数据进行失效阈值分布假设检验,见表7。表7失效阈值分布X 2检验平均值 可知,该电子产品失效阈值服从对数正态分布,对数正态分布的均值为93%,得到 可靠度与寿命关系预测结果。如图20。可见,采用随机失效阈值下基于退化量分布非平稳 时序分析得到的可靠度与寿命关系预测结果相比仅采用常数失效阈值下的可靠度与寿命 关系预测结果的分散性更大一些,这与本次试验的实际失效情况更为相符。该批电子产品 的中位寿命预测为25810分钟。本发明的研究分析和实例应用表明,对于实际工程中大多数产品,其各样本退化 轨迹为非平稳随机时序,则其退化量分布的参数估计往往也为非平稳随机时序。因而本发 明从退化量分布角度出发,提出样本均值和样本方差时序的非平稳时序分析方法,从而得 到反映产品退化随机过程波动性规律的产品可靠度与寿命关系预测。实际上,这种可靠度的波动性是由于产品可靠度被定义为产品在各时刻退化量穿 越失效阈值的概率,在退化量分布参数估计随时间并非单调性变化的实际情况下,产品可 靠度也因此不随时间单调下降,而是在单调下降的总体趋势下,还具有一定波动性。这种波 动性既包含与当前时刻相关的周期性波动,也包含与历史时刻相关的随机性波动。
权利要求
基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法,其特征在于性能退化过程假设(1)产品的性能退化过程总体趋势具有单调性;(2)退化过程中,所有产品的采样时刻相等;(3)随着时间的变化,退化量分布的类型不变,仅参数变化;基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法主要包括以下具体五个步骤步骤一、试验数据采集及预处理;步骤二、退化量分布的参数估计;采用皮尔逊χ2拟合优度检验方法对每一应力水平下各时刻对应的预处理后数据分别进行退化量分布假设检验,计算其退化量分布的样本均值和样本方差时序,从而得到退化量分布参数的估计;步骤三、单一应力水平下退化量分布参数时序建模;主要包括产品样本退化轨迹时序检验、样本均值时序退化建模和样本方差时序退化建模;步骤四、基于退化量分布的加速退化建模;对于加速退化试验,将不同单一应力水平下的退化量分布参数时序折合至同一应力水平,即正常应力水平;假设加速退化试验中共有k个应力水平Sj,j=1,2,…,k,每个应力水平下的采样间距均为Δt,各应力水平下的采样个数为mj,则各应力水平下的试验时间长度为τj=Δt·mj;则所述的基于退化量分布的加速退化建模包括样本均值时序加速退化建模和样本方差时序加速退化建模;步骤五、基于退化量分布的寿命预测;主要包括样本均值时序预测、样本方差时序预测和寿命预测三个部分,所述的样本均值时序预测,具体为将各应力水平下的样本均值时序的趋势项fti和随机项分别折合至正常应力,根据时序模型最小均方误差预测原理,由公式(10)其中,其中 分别为 的趋势项、周期项,b为 的退化率,f0为 的初值,p,ηj,εt为 的自回归模型阶数、自回归系数、白噪声,q、ωj、aj、 分别为 的角频率个数、角频率、幅值、相位, 为(t j)时刻下样本均值时序的随机项,g(t)为单调非线性回归函数,当某一应力水平下试验总时间为τ时,该应力水平下的样本均值时序趋势项和随机项的 向前l步最佳预测值 计算公式分别为其中, 为(τ+l j)时刻样本均值时序的随机项;对正常应力下样本均值时序的趋势项和随机项分别进行预测至某一给定时刻,该给定时刻的选取原则是该时刻应至少能超过该产品平均寿命;样本均值时序的周期项向前l步最佳预测值 计算公式为将周期项预测至与正常应力下趋势项和随机项预测的相同时刻,再与正常应力下趋势项和随机项直接相加,得到各应力下折合为正常应力下样本均值时序的预测时序;再对各应力折合为正常应力下样本均值时序的预测时序按各应力下的产品样本个数进行加权平均后得到产品正常应力下样本均值时序的预测时序 所述的样本方差时序预测,具体如下将各应力下的样本方差时序折合至正常应力,由公式(21),其中,px、ηxj、εxt为相关系数平稳随机项rxt的自回归模型阶数、自回归系数、白噪声,fst为样本方差时序趋势项,xt为样本方差时序相关系数平稳项,fxt为相关系数平稳趋势项,bs为样本方差的时序的退化率,bx为待定系数,rx(t j)为(t j)时刻的相关系数平稳随机项,当某一应力水平下试验总时间为τ时,该应力水平下的样本方差时序的向前l步最佳预测值 计算公式为对正常应力下样本方差时序预测至与正常应力下样本均值时序预测的相同时刻,得到各应力下折合为正常应力下样本方差时序的预测时序;再对各应力折合为正常应力下样本方差时序的预测时序按各应力下的产品样本个数进行加权平均后得到产品正常应力下样本方差时序的预测时序 所述的寿命预测,具体如下根据被试产品以往失效情况的经验,假设产品的失效阈值D为某一常数,得到退化量或退化量的线性变换yt在t时刻到达失效阈值D的概率,其中t=1,2,...,即常数失效阈值D下产品可靠度Rt(a)当性能退化量服从正态分布或对数正态分布时,yt服从正态分布,若yt随t单 调上升,产品可靠度若yt随t单调下降,产品可靠度(b)当性能退化量服从威布尔分布时,yt服从极值分布,若yt随t单调上升,产品可靠度若yt随t单调下降,产品可靠度其中s0t为 的正平方根,此时,产品寿命定义为产品性能穿越失效阈值的概率为Rt时,所对应的时刻t,而并非产品性能第一次穿越失效阈值的时刻,因此t时刻的可靠度Rt实际上也反映的是可靠度与寿命的关系;若产品的失效阈值D服从某一分布,该分布的类型根据被试产品以往的失效情况的经验得到。当yt代表产品性能退化量或退化量的单调非线性变换时,由于原始退化时序经过了初值化预处理,yt的初值为1或1的与退化量相同的非线性变换,表示为D0,此时,yt在t时刻到达D的概率,其中t=1,2,...,即随机失效阈值下产品可靠度Rt变为(a)若yt随t单调上升,失效阈值D应不小于yt的初值D0,产品可靠度为(40)其中fD(D)表示D的分布密度函数, (yt)表示yt在t时刻的分布密度函数;(b)若yt随t单调下降,失效阈值D应不大于yt的初值D0,产品可靠度为(41)。。FSA00000213458800011.tif,FSA00000213458800012.tif,FSA00000213458800013.tif,FSA00000213458800014.tif,FSA00000213458800015.tif,FSA00000213458800016.tif,FSA00000213458800017.tif,FSA00000213458800018.tif,FSA00000213458800019.tif,FSA00000213458800021.tif,FSA00000213458800022.tif,FSA00000213458800023.tif,FSA00000213458800024.tif,FSA00000213458800025.tif,FSA00000213458800026.tif,FSA00000213458800027.tif,FSA00000213458800028.tif,FSA00000213458800029.tif,FSA000002134588000210.tif,FSA000002134588000211.tif,FSA00000213458800031.tif,FSA00000213458800032.tif,FSA00000213458800033.tif,FSA00000213458800034.tif,FSA00000213458800035.tif,FSA00000213458800036.tif,FSA00000213458800037.tif,FSA00000213458800038.tif,FSA00000213458800039.tif,FSA000002134588000310.tif
2.根据权利要求1所述的基于退化量分布非平稳时序分析的性能退化预测方法,其特 征在于步骤三中所述的产品样本退化轨迹时序检验,具体为在产品性能退化过程中,将每个产品样本退化轨迹时序yti分为确定性时序dti和平稳 随机时序rti的叠加,并将yti的确定性部分dti进一步分解为单调趋势项fti和周期项Cti的 叠加Yti = dti+rti = fti+cti+rti(6)单调趋势项fti采用线性回归函数描述如下 fti = bit+f0i其中h表示退化轨迹时序yu的退化率,f0i表示fti的初值,t为时刻; fti采用可转化为线性回归函数的单调非线性回归函数描述如下 fti = big(t)+f0i(7)其中g(t)为单调非线性回归函数,与样本i无关,当g(t) =t时,公式(7)与公式(6) 相同;从yti减去fti后,Cti采用适用于挖掘数据潜在周期性规律的潜周期模型描述,则有 其中q、ω”…、%分别为Cti的角频率个数、角频率、幅值、相位,与样本i无关; 再从yti_fti减去Cti后,对剩下的随机项rti进行平稳性检验和正态性检验,检验通过 的rti采用传统平稳时序分析方法中自回归模型描述 其中PiSrti的自回归模型阶数,%为rti的自回归系数,eti为rti的白噪声。
3.根据权利要求1所述的基于退化量分布非平稳时序分析的性能退化预测方法,其特 征在于步骤三中所述的产品样本均值时序退化建模,具体如下 样本均值灭具有与样本退化轨迹时序相同的结构和类型,其公式为 其中Jt、ζ分别为灭的趋势项、周期项,b为只的退化率,&为天的初值,P、、、et为5的自回归模型阶数、自回归系数、白噪声,灭各项建模方法与yti相同;从歹,减去Z和δ;后,对巧采用轮次检验法进行平稳性检验,若巧通过了平稳性检验, 继续对f建模;否则调整Z和ζ模型的参数,重新对Z和g建模,直至5通过平稳性检 验。
4.根据权利要求1所述的基于退化量分布非平稳时序分析的性能退化预测方法,其特 征在于步骤三中所述的产品样本方差时序退化建模,具体如下对于样本方差 ,各样本退化轨迹的周期项Cti理论上相同,S卩。二巧,且各样本退化 轨迹已进行初值化处理,样本退化轨迹的初值^ = &,有 即公式(4)成立的条件满足,则式(3)第二项为相关系数平稳时序; 将式(3)第一项称为V的趋势项fst,第二项称为V的相关系数平稳项Xt,有 sf=/st+xt(12)则样本方差V趋势项fst的模型为 fst = bsg2 (t)(13)其中bs表示样本方差乂的退化率; 样本方差■?/相关系数平稳项Xt的模型为Xt=fxtrxnD、Xt>f 2xt(14)其中fxt表示相关系数平稳项xt的确定性部分,称为相关系数平稳趋势项,是关于t的 非零函数,rxt表示相关系数平稳项xt的随机性部分,称为相关系数平稳随机项,是平稳时 序,\为rxt的标准差,与t无关,σ xt为Xt的标准差,是关于t的非零函数; IxtI的均值函数得到 oxt = beE(|xt|) = fxt σ r(15) 即相关系数平稳项xt为IxtI的均值模型E(|Xt|)与平稳时序rxt之积,E (I Xt I)采用单 调回归函数描述E(|xt|) = bxg(t)(19)其中bx为待定系数;从Xt中除去相关系数平稳趋势项fxt后,对剩余的相关系数平稳随机项rxt采用轮次检 验法进行平稳性检验,若检验通过,对rxt采用自回归模型描述 其中px、nxJ> ε xt为rxt的自回归模型阶数、自回归系数、白噪声;否则,调整fxt的模型参数,重新对fxt建模,直到rxt通过平稳性检验,则退化量分布样 本方差V的最终表达式为
5.根据权利要求1所述的基于退化量分布非平稳时序分析的性能退化预测方法,其特 征在于步骤四中所述的样本均值时序加速退化建模,具体如下根据疲劳累积损伤等效原理,产品在第i个应力水平Si下工作τ i时间的累积退化量 等于此产品在第j个应力水平h下工作、时间的累积退化量,其中i,j = `1,2,…,k, i Φ j ;将加速退化试验的样本均值时序在应力水平Sp j = 1,2,…,k下的试验持续时间 τ」及采样间距At在保持折算前后采样个数不变的情况下,按样本均值时序退化率-应力 水平关系折算为正常应力水平Stl下的试验持续时间τ 0J及采样间距Δ tj ;以bj表示在第j个应力水平Sj下样本均值时序的退化率,则bj与应力水平的关系采 用传统的加速模型表示 (22)其中,A、B都是待定参数,φ ^^为应力水平S」的已知函数;由公式(22)得到正常应力下样本均值时序的退化率Iv则有 (23)折算到正常应力下的试验持续时间为 在保持折算前后采样个数不变的情况下,折算到正常应力水平下的采样间距为 以此类推,将所有应力水平Sj下的样本均值时序折算到正常应力水平S。。对不同应力水平下样本均值时序的趋势项进行采样间距折合;对样本均值时序不同应 力水平下的随机项进行采样间距折合;不同应力水平样本均值时序的周期项理论上相同。
6.根据权利要求1或5所述的基于退化量分布非平稳时序分析的性能退化预测方法, 其特征在于步骤四中所述的样本方差时序加速退化建模,具体如下在加速退化试验中,假设在同一失效阈值下,各应力水平下产品的寿命分布样本方差 相同,则有 其中,s , s' 2均表示第j个应力水平下寿命分布样本方差,其大小与应力水平无关, D为产品失效阈值,与应力水平无关,b,,为第j个应力水平下第i个样本退化轨迹的退化 率,bj为第j个应力水平下退化量分布样本均值的退化率;在同一时刻下,各应力水平下产品的退化量分布样本方差退化率为 其中, 表示第j个应力水平下退化量分布样本方差退化率;当公式(26)中远小于^且…远小于1时,(、-!^…相对公式(26)中其他各 项很小忽略不计,则公式(26)近似为 则在第j个应力水平下,退化量分布样本方差的退化率~与寿命分布样本方差s' 2 仅相差b/的D2倍;基于退化量分布样本均值退化率…与应力水平的关系,即公式(22),建立产品样本方 差时序的退化率与应力水平的关系 其中,A、B都是待定参数,φ〈0为应力水平Sj的已知函数,采用该关系得到正常应力 水平下样本方差时序的退化率,根据疲劳累积损伤等效原理对不同应力水平下样本方差时 序进行采样间距折合,从而得到正常应力水平下样本方差时序;对不同应力水平下样本方 差时序各项进行采样间距折合。
全文摘要
本发明公开了基于退化量分布非平稳时序分析的加速退化试验产品寿命预测方法,主要包括步骤一、试验数据采集及预处理;步骤二、退化量分布的参数估计;步骤三、退化量分布参数时序建模;步骤四、基于退化量分布的加速退化建模;步骤五、基于退化量分布的寿命预测;该方法不仅能够对加速应力下所有样本退化的统计规律进行宏观描述,对加速退化过程的退化量分布参数时序分析全面,并能将加速应力下的退化量分布外推至正常应力,得到反映产品加速退化随机过程波动性规律的产品可靠度与寿命关系预测,提高了寿命预测及可靠性评估结果的可信度,且与正常应力水平下的性能退化预测相比更加省时高效。
文档编号G06F19/00GK101894221SQ201010242568
公开日2010年11月24日 申请日期2010年8月2日 优先权日2010年8月2日
发明者姜同敏, 李晓阳, 王立 申请人:北京航空航天大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1