非传统阻尼矩阵识别方法

文档序号:6607193阅读:460来源:国知局
专利名称:非传统阻尼矩阵识别方法
技术领域
本发明涉及对海洋工程结构物的非传统阻尼矩阵识别方法,特别涉及一种仅利用 少数低阶实测复模态的非传统阻尼矩阵识别方法。
背景技术
海洋平台等大型工程结构在其服役期间都会表现出某种程度的能量耗散,只要涉 及结构的能量耗散,阻尼在结构的响应过程中就起着至关重要的作用。传统意义上讲,这种 能量耗散归因于结构固有的阻尼,材料、连接与非结构性构件的内部摩擦是影响结构阻尼 的重要因素。为便于数学处理,通常假定阻尼矩阵是质量矩阵与刚度矩阵的线性组合,即常 用的“比例阻尼”模型,然而这种模型将导致系统的频率和振型皆为实数。实际上,真实的 振动系统并不一定表现出这一性质。非传统阻尼模型才是更普遍的现象,较比例阻尼模型 更符合工程问题的本质特性。该模型的特点是阻尼矩阵无法被结构的无阻尼振型解耦,在 对结构进行动力学分析的时候会导致复振型。目前工程上比较广泛接受的一种非传统阻尼 模型是1992年由美国国家地震研究中心的Liang博士等人提出的。Liang等人认为系统的 阻尼矩阵可以表达为一个对角阵和比例阻尼矩阵之和,然而对角阵选取的合理与否直接影 响度该模型的精度。Lancaster (1961)提出了利用结构的特征值和特征向量直接计算结构的质量矩 阵、刚度矩阵及阻尼矩阵的方法。这种方法只适用于粘滞阻尼体系,并且需要一种特别的关 于质量矩阵与阻尼矩阵的归一方法。就如Lancaster说的那样,该方法的不足之处在于需 要对振型归一化,但是现有的测试方法还无法获得归一化后的振型,从而限制了该方法的
进一步应用。Hasselman (1972)研究了两种阻尼形式,即比例阻尼与非比例阻尼形式。该方法通 过确定加速度信号的一致部分与积分部分的相位差,进而构造阻尼矩阵的非对角线元素。 但是,该方法只有在测试数据无噪声时才能成立。Beliveau(1976)利用结构的固有频率、阻尼比、振型及相位角进行阻尼矩阵的识 别。该方法用到了贝叶斯与牛顿拉普拉斯理论,通过逐步迭代获得阻尼矩阵。对每一个特 征向量,该方法要求解η阶线性方程,从而降低了该方法的有效性。同时,该方法虽然可考 虑参数的不确定性,但并不意味着能获得比较理想的结果。Ibrahim(1983)假定已知结构的有限元模型以及实测复模态。在此基础上将振型 进行质量归一化。该方法可应用于较多自由度的体系,但是该方法只能对实测位置处单元 的阻尼矩阵进行识别。Fabunmi, Chang与VorWald(1988)提出了在频域内利用强迫振动信息进行阻尼矩 阵识别的技术。其前提是已知结构的质量矩阵、刚度矩阵以及频率响应。虽然应用这种方 法获得的阻尼矩阵能够在一定程度上重现实测数据,但是往往很难获得与真实阻尼矩阵完 全一致的阻尼估计矩阵。Minas与Inman(1991)假定质量矩阵与刚度矩阵从有限元模型获得,特征值与特征向量由试验测试获得。求解阻尼体系的特征方程重可获得结构的阻尼矩阵。但是,该方 法仅限于对称的正定阻尼矩阵形式。Chen, Ju与Tsuei (1996)用频域信息估计结构的阻尼矩阵。该方法虽然可考虑噪 声影响,但必须在多个频率处进行求解。Gaylard(1996)用质量做为权函数提出了阻尼矩阵识别的确定性方法。该方法是 一种时域方法,计算工作量大,同时要用到卷积。他们的算例表明,在阻尼矩阵识别的迭代 过程中,用识别后的质量矩阵代替真实的质量矩阵能显著降低阻尼矩阵识别时的鲁棒性。 从另一个算例也可以看出,该方法只有在瑞利阻尼时才能获得较好的结果。Srikantha(2007)对现有频域阻尼识别方法进行了总结,将现有方法分为三类 矩阵方法,模态方法及改进方法,并用四个不同的算例进行对文中所列方法的优缺点进行 了对比。George (2009)在前期研究的基础上将模态阻尼识别模型从传统阻尼形式推广到 了非传统阻尼形式。但他们的模型针对的是线性框架结构,而且其识别结果为模态阻尼比。上述方法一方面需要较高阶的实测振型,另一方面对实测振型的归一化、变量矩 阵的选择也提出了较高的要求,而这些条件又是实际工程应用中无法完全提供的,从而限 制了进一步工程应用。

发明内容
本发明提出一种仅利用少数低阶实测复模态的非传统阻尼矩阵识别方法,该方法 所涉及的变量矩阵形式、数值具有通用性,并且实测模态无需质量归一化处理。为解决上述技术问题,本发明非传统阻尼矩阵识别方法,其特征在于,包括如下步 骤A、建立结构有限元数值模型,获取拟识别结构的质量矩阵Mt与刚度矩阵Kt,以结 构的阻尼矩阵Ct为待识别项;B、选取标准基向量Wi,其中i代表结构的模态阶次,并将质量矩阵Mt、刚度矩阵Kt 及标准基向量Wi数据存储入专用存储器中;C、利用传感器获取结构动力响应信号;D、利用模态参数识别技术得到模态参数λ j, Oj,同时将其存储入所述专用存储器 中;E、确定初始单元矩阵分布形态及初始值Cetl ;F、阻尼矩阵识别F1、从所述专用存储器中读取上述步骤B、D中存储的数据,即Wi、Mt、Kt、Aj., Oj ;F2、构造线性方程组,将Ct引入方程组中,通过求解该方程组获得新的估计阻尼矩 阵C,使C尽可能的逼近Ct;进一步地,所述F2步骤中包括如下步骤F21、结构振动信号及模态参数提取利用传感器测试实际结构,并提取模态频率f、模态振型Φ及模态阻尼系数ξ,其
F22、构造线性方程组+ λ ω]θ.ιΦ + λ^ω]Μ(Φ 二 0 ;F23、建立非传统阻尼矩阵Ct与初始阻尼矩阵Ctl的关系, 其中Ne为系统的单元数量;α ρ为修正系数;并且ρ = 1,2, -,NeXNc,Nc为子矩 阵Cu的个数fu为第1个单元的第k个在整体坐标系下的子矩阵;F23、根据上述F21及F22步骤获取估计阻尼矩阵 其中中第ρ个元素。进一步地,所述E步骤中,当Cetl的分布形态完全未知,三维结构可假定为12X12 的无非零元素的矩阵,二维、一维结构分别假定为12X12、6X6的无非零元素的矩阵;当Cetl 的分布形态已知或部分已知时,只需关心非零元素。进一步地,所述E步骤中,确定Cetl初始值时,当有参考数据时取参考值,当无参考 数据时可假定初始值为常数。进一步地,所述B步骤中i < =结构的总自由度数目。与现有技术相比,本发明的优点和积极效果是1)本发明可识别非传统阻尼形式的阻尼矩阵,较现有技术而言,所需实测模态阶 数更少,并且实测模态可以是复数的形式,与现有某些技术的明显区别在于无需实数化的 近似处理;2)本发明以初始单元阻尼矩阵Cetl作为变量矩阵,较现有技术而言,该变量矩阵的 分布形态、数值可根据实际情况变化。即使在Cetl完全未知的情况下,可选用常规的矩阵(如 单位阵等)来替代,具有通用性;3)本发明亦可识别结构的阻尼系数,与现有技术相比,本发明可以实现阻尼系数 的跳跃式识别,如当只测得结构的第三阶模态而无第一、第二阶模态时,应用本发明可正确 识别出实测的结构第三阶阻尼系数。同时,随着实测模态阶数的增多,更高阶的未测出的阻 尼系数其识别精度也会提高;总之,对于如海洋平台等大型结构,借助动力测试数据获得该结构的所有模态是 不可能实现的,尤其对于环境激励下结构的动力响应测试问题,而本发明中所需要的数据 为无需质量归一化的少数低阶复模态,因此,可以进行环境激励下的海洋平台结构非传统 阻尼矩阵的识别,具有实际应用价值。


为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以 根据这些附图获得其他的附图。图1 本发明的导管架式海洋平台结构有限元模型图;图2 导管架式海洋平台结构的真实阻尼矩阵;图3 利用前2阶实测模态识别的阻尼矩阵与真实阻尼矩阵对比图;图4 利用前3阶实测模态识别的阻尼矩阵与真实阻尼矩阵对比图;表1 导管架式海洋平台结构的前10阶阻尼比;表2 利用前2阶实测模态识别的前10阶识别阻尼比与真实阻尼比;表3 利用前3阶实测模态识别的前10阶识别阻尼比与真实阻尼比。
具体实施例方式为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例 中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是 本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员 在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明的创新之处在本算例中的体现为1)平台结构单元阻尼矩阵分布形态完 全未知;2)只有低阶模态信息测得,本例取前三阶;3)实测振型无需归一化、配对等问题, 无需实数化近似处理。下面结合附图和具体实施方式
对本发明作进一步详细的说明。一,具体算法a)建立结构有限元数值模型,获取拟识别结构的质量矩阵Mt与刚度矩阵Kt,以结 构的阻尼矩阵Ct为待识别项;b)选取标准基向量Wi,i代表结构的模态阶次,并且i < =结构的总自由度数目,
ο]
如对于一个5自由度的结构,辟=
;然后将质量矩阵Mt、刚度矩阵Kt及标准基向量Wi数
据存储入专用存储器中。这样处理的优势在于标准基向量Wi来源于数学概念,形式、数值 相对固定,后期的方程构造更具普适性;c)获取结构动力响应信号,其或是加速度,和/或是速度,和/或是位移。d)利用模态参数识别技术得到模态参数λ ” Φρ其中λ ” Oj均为复数形式,无 需进行简化处理,同时将其存储入所述专用存储器中;e)变量矩阵选取以初始单元阻尼矩阵Cetl作为变量矩阵。①Cetl分布形态确定当Cetl的分布形态完全未知,三维结构可假定为12X12的无非零元素的矩阵,二 维、一维结构分别假定为12X12、6X6的无非零元素的矩阵;当Ce0的分布形态已知或部分 已知时,只需关心非零元素,相对于分布形态完全未知的情况,需修正的未知数数目得到降 低,但可看做分布形态完全未知情况的特例。
②Cetl初始值的确定当有参考数据时取参考值,该参考值可来源于传统阻尼模型;当无参考数据时可 假定初始值为常数(如取为1)。这样处理的优势在于①Cetl的分布形态可根据实际情况变化,能够更好的反映结 构的实际阻尼分布特性;②变量矩阵的选取更具通用性,可应用现有研究资料提供一个初 始单元阻尼矩阵Cf即使无此条件时亦可采用常数阵来替代,工程应用前景好。f)阻尼矩阵识别①从专用存储器中读取上述步骤a)、b)中存储的数据,S卩Mt、Kt、ω,;②结构振动信号及模态参数提取借助传感器测试实际结构,利用模态参数识别方法提取模态频率f、模态振型Φ 及模态阻尼系数ξ,其中乂 =^xl80/(2;r)。③构造线性方程组ω7Τ Φ;. + λ ω]€ιΦ + λ^ω^Φ, = 0,假设可构造Nm个,其
中Nm = NiXNj,并且 为所取标准基向量的个数,Ni为实测模态的阶数。④建立非传统阻尼矩阵Ct与初始阻尼矩阵Ctl的关系,即非传统阻尼矩阵Ct认为 是对初始阻尼矩阵Ctl修正的结果,
NeC0-^C7
/二ι 其中Ne为系统的单元数量;α ρ为修正系数;并且ρ = 1,2, -,NeXNc,Nc为子矩 阵Cu的个数fu为第1个单元的第k个在整体坐标系下的子矩阵。⑤将步骤④带入步骤③,得 其中
t τ M = M Φ
j'j t I
^ji = ^Jc0O,.
K]. = ωτΚ.Φ.
J1J t ι与
cIji = ⑦步骤⑥写成矩阵的形式 其中C1"为NmX (NeXn)复矩阵;α为NeXn的列向量;f卞为Nm维的列向量。⑧复数矩阵转变为实数矩阵,写成统一的形式分别用Re (ζ)与Im(z)记为复数ζ的实部和虚部,则可将步骤⑥转变为Gc = d其中,
巧为广义逆矩阵。⑩估计阻尼矩阵 的获取 其中中第ρ个元素。二、三维海洋平台应用实施例1、以四腿导管架平台模型进行研究,见图1。该模型共有40个管单元组成,其中 4根平台腿离散为20个单元。所用材料的杨氏模量为2. 1 X IO11Pa,泊松比为0. 3,密度为 7860Kg/m3,即单位长度的质量为9. 825Kg/m。为构造非传统阻尼矩阵,首先假定该平台模型Cn= IO-5Kn,然后令真实阻尼矩阵, 即非传统阻尼矩阵为Ct= YnCn,并且参数Yn服从均值为0方差为4. 5的高斯分布。真实 阻尼矩阵Ct见图2,导管架式海洋平台结构的前10阶阻尼比见表1。表1导管架式海洋平台结构的前10阶阻尼比 2、初始阻尼矩阵分布形态及初始值因初始单元阻尼矩阵未知,假定其具有与单元刚度矩阵一致的分布形态,又因其 初始值也未知,故假定各元素均为常数1。因此,各单元初始阻尼矩阵为 3、标准基向量的选取平台模型共离散为40个单元,即Ne = 40 ’总自由度数为120,理论上标准基向量 可取120个,具体数目可根据需修正未知数的个数确定,本例取120个。4、阻尼矩阵识别假定只有前两阶模态能够测得,即Ni = 2,识别后的阻尼矩阵与真实阻尼矩阵对 比见图3,阻尼比的对比情况见表2。表2利用前2阶实测模态识别的前10阶识别阻尼比与真实阻尼比 表2说明在初始单元阻尼矩阵未知且只有前2阶模态信息时,应用本发明后实测 模态的前两阶阻尼比均可得到很好的估计。图3表明,估算的阻尼矩阵亡与真实阻尼矩阵Ct 在分布形态上是一致的,保证了真实阻尼矩阵的非传统阻尼分布特性,同时 在数值上也比 较接近Ct,证明非传统阻尼矩阵的识别结果也比较好。当第3阶模态亦可测得时,即前三阶模态均可测得时,本工况主要研究随着模态 阶次的增加,本发明的识别精度是否能够得到提高。应用本发明,识别后的阻尼矩阵与真实 阻尼矩阵对比见图4,阻尼比的对比情况见表3。表3利用前3阶实测模态识别的前10阶识别阻尼比与真实阻尼比 表3表明,本发明不仅可以准确估计实测模态阻尼系数,同时,随着实测模态阶次 的增加,未测出的模态阻尼系数其识别精度也会提高。图4也说明非传统阻尼矩阵整体识 别精度得到提高。总之,算例充分证明本发明在只有少数低阶实测复模态时即可比较准确的识别出 结构的非传统阻尼分布特性,并且能够以矩阵的形式表示。
最后应说明的是以上实施例仅用以说明本发明的技术方案,而非对其限制;尽 管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解其依然 可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替 换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精 神和范围。
权利要求
非传统阻尼矩阵识别方法,其特征在于,包括如下步骤A、建立结构有限元数值模型,获取拟识别结构的质量矩阵Mt与刚度矩阵Kt,以结构的阻尼矩阵Ct为待识别项;B、选取标准基向量wi,其中i代表结构的模态阶次,并将质量矩阵Mt、刚度矩阵Kt及标准基向量wi数据存储入专用存储器中;C、利用传感器获取结构动力响应信号;D、利用模态参数识别技术得到模态参数λj、Φj,同时将其存储入所述专用存储器中;E、确定初始单元矩阵分布形态及初始值Ce0;F、阻尼矩阵识别F1、从所述专用存储器中读取上述步骤B、D中存储的数据,即wi、Mt、Kt、λj、Φj;F2、构造线性方程组,将Ct引入方程组中,通过求解该方程组获得新的估计阻尼矩阵使尽可能的逼近Ct;FSA00000216216200011.tif,FSA00000216216200012.tif
2.根据权利要求1所述的非传统阻尼矩阵识别方法,其特征在于,所述F2步骤中包括 如下步骤F21、结构振动信号及模态参数提取利用传感器测试实际结构,并提取模态频率f、模态振型Φ及模态阻尼系数ξ,其中 f^fI1 XlSO/(2π) ·,F22、构造线性方程组 ^tKA,. +λιω]€ Φ +Xfm1jM^i 二 O ;F23、建立非传统阻尼矩阵Ct与初始阻尼矩阵Ctl的关系,Ne则Ne NcCr =C0I=I k=\其中Ne为系统的单元数量;α ρ为修正系数;并且P = 1,2,-,NeXNc,Nc为子矩阵C1, k的个数Ku为第1个单元的第k个在整体坐标系下的子矩阵; F23、根据上述F21及F22步骤获取估计阻尼矩阵 .Ne Nc/=1 k=\其中%为矛中第ρ个元素。
3.根据权利要求1或2所述的非传统阻尼矩阵识别方法,其特征在于,所述E步骤中, 当Cetl的分布形态完全未知,三维结构可假定为12X12的无非零元素的矩阵,二维、一维结 构分别假定为12X12、6X6的无非零元素的矩阵;当Ce0的分布形态已知或部分已知时,只需关心非零元素。
4.根据权利要求3所述的非传统阻尼矩阵识别方法,其特征在于,所述E步骤中,确定 Ce0初始值时,当有参考数据时取参考值,当无参考数据时可假定初始值为常数。
5.根据权利要求4所述的非传统阻尼矩阵识别方法,其特征在于,所述B步骤中i< =结构的总自由度数目。
全文摘要
本发明为解决环境激励下现有模态测试技术中只有低阶的模态信息能够获得的现状,克服现有阻尼矩阵识别方法在一定程度上需要相对高阶模态信息的问题,提出新的能够处理三维空间问题的基于单元矩阵分解的非传统阻尼体系阻尼矩阵识别方法,这种方法所需要的实测振型可以是复振型,不需要质量归一化,能更好的适应目前只有有限的低阶模态能够相对准确测得的现状,与基于输出响应的模态参数识别技术结合,可以进行环境激励下的海洋平台结构非传统阻尼矩阵的识别。
文档编号G06F17/16GK101916242SQ20101024457
公开日2010年12月15日 申请日期2010年7月30日 优先权日2010年7月30日
发明者刘福顺, 李华军, 梁丙臣, 王卫英, 王树青 申请人:中国海洋大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1