基于实数延时神经网络的同步双频功率放大器建模方法

文档序号:6353310阅读:695来源:国知局
专利名称:基于实数延时神经网络的同步双频功率放大器建模方法
技术领域
本发明涉及建立双频功率放大器行为模型的方法,特别是涉及一种基于实数延时 神经网络的同步双频功率放大器建模方法。
背景技术
随着无线通信系统业务的不断增长,有限的频谱资源变得日益拥挤,为了提高频 谱利用效率,各种调制技术相继出现。虽然新的调制方式提高了频谱的利用率,但是也对射 频前端提出了更高的要求。这些调制方式多为非恒包络的,调制方式的效率越高,信号的 峰均比越大。为了能使功率放大器高效率的工作,功率放大器多工作在接近饱和区甚至截 止区,对于高峰均比的信号,功率放大器会产生严重的非线性失真,并且随着系统带宽的增 加,功率放大器也会产生记忆效应。这样不可避免的对功率放大器的线性指标提出了更高 的要求。常用的线性化技术有负反馈法(Feedback)、前馈法(Feedforward)、包络消 除与恢复技术(EE&R)、非线性部件进行线性放大(LINC)、组合模拟锁定环路通用调制器 (CALLUM)、各种预失真方法。在现代通信系统中,预失真技术是一种主流技术。该技术的基本思想是在非线性 功率放大器的前面插入一个非线性器件,让两者的非线性特性相互抵消来达到线性化的目 的。为了很好的实现非线性的抵消,预失真器就可以用功率放大器模型的逆模型来描述。因 此对功率放大器进行建模对于准确的预测功率放大器的非线性特性来说是至关重要的,可 以说预失真的过程就是功率放大器模型建立的过程。功率放大器的模型可以分为两类物理模型和行为模型。物理模型是根据射频电 路内部的具体结构而建立的,这需要丰富而且深入的电路知识,过程较为复杂,而行为模型 就不需要考虑功率放大器的内部结构,仅仅将功率放大器当做一个整体,在功率放大器的 输入和输出数据之间建立一种非线性的关系,以此来描述功率放大器的特性,这便是行为 模型。本发明所建立的功率放大器模型也就是行为模型。在窄带通信系统中,功率放大器的非线性特性可以认为是静态的,此时的功率放 大器可以说是无记忆的。而随着通信带宽的增加,功率放大器的非线性特性开始跟频率相 关。在时域上就表现为功率放大器的输出信号不仅跟当前的输入信号相关,同时也和以前 的输入信号相关,这就是记忆效应。因此,功率放大器的行为模型也分为无记忆模型和有记 忆模型。早期的功率放大器建模多采用无记忆模型,主要有=Saleh模型和幂级数模型。但 是在现代通信系统中,记忆效应越来越明显。有记忆的功率放大器模型主要可分为两类 Volterra级数模型和神经网络模型。Volterra级数是对泰勒级数的扩展,该模型适用于弱 非线性系统。不过系统的参数会随着阶次和记忆深度的增加而迅速增加,故计算量和收敛 性受到了影响。神经网络能够逼近任意非线性的函数,学习方式灵活,因此在微波非线性电 路方面得到了广泛的应用。
3
然而,目前的功率放大器建模大多是针对单频功率放大器,即针对单输入单输出 的功率放大器建模,而较少针对双频功率放大器,即多输入多输出的功率放大器建模。因 为双频功率放大器中的两个频段的信号之间会有单频功率放大器所不曾遇到的相互影响 (如带间交叉调制),加大了元件的非线性效应,对这种多输入多输出的模型描述比单输入 单输出更为复杂,实现较为不便,且精度较低。

发明内容
本发明所要解决的技术问题是提供一种基于实数延时神经网络的同步双频功率 放大器建模方法,能够很好地描述同步双频功率放大器的非线性特性和记忆效应,实现方 便,复杂度低,收敛速度快,且具有较高的精度。为了解决上述问题,本发明公开了一种基于实数延时神经网络的同步双频功率放 大器建模方法,包括以下步骤步骤101,建立同步双频功率放大器的实数延时神经网络模型;步骤102,将两路宽带多载波信号作为同步双频功率放大器的基带输入信号;步骤103,采集同步双频功率放大器的输入和输出数据;步骤104,确定实数延时神经网络模型参数,并训练模型。进一步地,所述在采集功率放大器的输入和输出数据后,还包括同步输入和输出数据。进一步地,所述同步输入和输出数据采用将功率放大器的基带I/Q信号做复相关 来进行。进一步地,所述确定的实数延时神经网络模型参数包括实数延时神经网络模型的 记忆深度和隐层单元个数。进一步地,所述实数延时神经网络模型的记忆深度的数值按照自然数从小到大的 顺序选择。进一步地,所述隐层单元个数m与输入单元数η的关系为m = 2n+l。进一步地,所述方法还包括检验模型,所述检验模型的过程为将用于检验的输入数据作为神经网络模型的输入;采集神经网络模型的输出数据;将神经网络模型的输出数据和实际测量输出数据在时域上进行对比;将神经网络模型的输出数据和实际测量输出数据做傅里叶变换,在频域上进行对 比。进一步地,所述检验模型还包括根据对比的结果来判断神经网络模型的误差是否达到指标,若是,则结束;反之, 则重新确定模型参数,并训练模型。与现有技术相比,本发明具有以下优点本发明的基于实数延时神经网络的同步双频功率放大器建模方法采用实数延时 神经网络模型作为建模方法的基础。实数延时结构用来描述功率放大器的记忆效应,采用 此结构,神经网络模型可看成是静态模型,故能减轻模型的复杂度,神经网络采用三层前馈 结构,分别为输入层、隐层及输出层,使用反向转播算法,用来逼近同步双频功率放大器的非线性特性。神经网络模型不存在多项式模型中性能受到阶次大小而无法收敛的问题,而 且神经网络模型功能强大,不用考虑具体的电路结构以及同步双频功率放大器不同输入输 出信号之间的相互联系和影响,可以通过设定网络结构和参数,来描述任意结构的电路模 型。另外,神经网络模型学习方式灵活,根据系统精度要求,可以方便的改变模型训练函数, 记忆深度,隐层单元个数及其他一些模型结构参数。本发明使用Levenberg-Marquardt算 法来进行模型训练,该算法迭代次数少,收敛速度快。在输入端的实数延时结构可以有效的 描述网络的记忆效应,而且可以灵活的调整记忆深度,简单易行。模型中的基于实数延时神 经网络的同步双频功率放大器的建模方法,能够很好地描述同步双频功率放大器的非线性 特性和记忆效应,实现方便,复杂度低,收敛速度快,且具有较高的精度。


图1是本发明的基于神经网络模型的同步双频功率放大器的建模方法实施例一 的流程图;图2是本发明的神经网络模型的结构示意图;图3是本发明的神经网络模型的同步双频功率放大器的建模方法实施例二的流 程图;图4a是本发明的神经网络模型的输出信号I。utl和对应的实际测量的输出信号在 时域上的对比图;图4b是本发明的神经网络模型的输出信号Q。utl和对应的实际测量的输出信号在 时域上的对比图;图4c是本发明的神经网络模型的输出信号I。ut2和对应的实际测量的输出信号在 时域上的对比图;图4d是本发明的神经网络模型的输出信号Q。ut2和实际测量的输出信号在时域上 的对比图;图5a_5b是在输入两路基带信号时,本发明的神经网络模型的输出信号和实际测 量的输出信号在频域上的对比图。
具体实施例方式为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实 施方式对本发明作进一步详细的说明。参照图1,示出本发明的基于神经网络模型的同步双频功率放大器的建模方法实 施例一,包括以下步骤步骤101,建立同步双频功率放大器的实数延时神经网络。参照图2,示出建立的同步双频功率放大器的实数延时神经网络模型,该模型中的 神经网络共有三层前馈结构,分别为输入层、隐层及输出层,采用反向转播算法,用来逼近 同步双频功率放大器的非线性特性。实数延时结构用来描述同步双频功率放大器的记忆效应。假设同步双频功率放大器的基带输入信号用Iinl (η),Qinl (η),Iin2 (η)和Qin2 (η) 四个分量来表示,同步双频功率放大器的基带输出信号用Ioutl(n),Qoutl (η), Iout2 (η)和Qout2 (η)来表示。考虑到功率放大器的记忆效应,前述的基带输出信号I。utl(n),Qoutl (η), Iout2 (η)和Q。ut2(n)就可以表示成当前时刻和以前时刻的输入信号的非线性函数。假设基带 输入信号Iinl (η)和Qinl (η)的记忆深度分别是P1和Q1,Iin2 (η)和Qin2 (η)的记忆深度是P2 和q2,则基带输出信号可由下面的表达式描述Ioutl (n)= f1 [Iinl (η), Iinl (η_1), · · · Iinl (η-ρ) ;Qinl (η), Qinl (η_1), · · · Qinl (η、);Iin2 (η),Iin2 (η-1),· · · Iin2 (η_ρ2) ; Qin2 (η),Qin2 (η_1),· · · Qin2 (n_q2)]Qoutl (η)= f2 [Iinl (η), Iinl (η-1), . . . Iinl (η-ρ》;Qinl (η), Qinl (η-1), . . . Qinl (n-q^ ;Iin2 (η),Iin2 (η-1),· · · Iin2 (η_ρ2) ; Qin2 (η),Qin2 (η_1),· · · Qin2 (n_q2)]Iout2 (η)= f3[Iinl (η),Iinl (η-1),· · · Iinl (η—ρ) ;Qinl (η),Qinl (η-1),· · · Qinl (n-q);Iin2 (η),Iin2 (η-1),· · · Iin2 (η_ρ2) ; Qin2 (η),Qin2 (η_1),· · · Qin2 (n_q2)]Qout2 (η)= f4[Iinl (η) , Iinl (η-1), · · · Iinl (η-ρ) ;Qinl (η), Qinl (η-1), · · · Qinl (n-q);Iin2 (η),Iin2 (η-1),· · · Iin2 (η_ρ2) ; Qin2 (η),Qin2 (η_1),· · · Qin2 (n_q2)]将上述的非线性关系用图2所示的同步双频功率放大器的实数延时神经网络模
型表示,表达式如下
mI outM) = Y4W2lkQKn) + ^
k=\ mQoutl (η) = X W22kQl (η) + b22
k=\ mIout2 (η) = X W23kQl (η) + b23
k=\ mQout2 (η) = Yj W24kQl (η) + b\
k=\其中Ql (η) = f(net\ (η)) k = 1,2,· · · m
PlQiPinet\{η) = £ V1uIml{η-/) + Σ W1klQinl( "0+ Σ 4Λ 2(η "0+ Σ ν β 2(η ~0 + bI
i=0 i=0 i=0 i=0步骤102,将两路宽带多载波信号作为同步双频功率放大器的基带输入信号。步骤103,采集同步双频功率放大器的输入和输出数据;采集数据的具体过程为采集功率放大器的输入和输出信号,并以I/Q数据文件进行保存。其中,输入输出 信号的采集可以用电脑软件来进行。同步输入和输出数据。输入和输出数据的同步可以通过将功率放大器的基带I/Q 信号做复相关来进行。步骤104,确定实数延时神经网络模型参数,并训练模型。确定的模型参数包括模型的记忆深度和隐层单元个数其中,按照自然数从小到大的顺序选择记忆深度的数值Pl,Q1, p2, q2。隐层单元个 数根据经验来确定,如果输入单元数为n,则隐层单元个数m = 2n+l。采用Levenberg-Marquardt算法来训练模型,将同步后的部分输入输出数据作为 模型的输入和输出,训练模型参数达到期望误差。其中,采用同步后的输入输出数据中前一 半的数据作为神经网络模型的输入和输出,训练神经网络至模型收敛。
6
参照图3,示出本发明的基于神经网络模型的同步双频功率放大器的建模方法实 施例二,进一步地,在实施例一的基础上,本方法还包括步骤105,检验模型。将同步后的输入输出数据中后一半输入输出数据用于模型的检验。模型检验的具 体过程为将用于检验的输入数据作为神经网络模型的输入;采集神经网络模型的输出数据;将神经网络模型的输出数据和实际测量输出数据在时域上进行对比;将神经网络模型的输出数据和实际测量输出数据做傅里叶变换,在频域上进行对 比。根据时域和频域上神经网络模型的输出数据和实际测量输出数据的吻合度来判 断神经网络模型的误差是否达到指标,即误差是否在允许的范围内。如果误差达到指标,则 说明建立的模型符合要求,反之,则不符合要求,此时,则需要返回重新确定模型的记忆深 度,以重新训练模型。参照图4a-4d,示出以两路不同的 WCDMA (Wideband Code DivisionMultiple Access,宽带码分多址)三载波信号作为同步双频功率放大器的输入信号时,神经网络模 型的输出信号和实际测量的输出信号在时域上的对比。其中,图4a、4b、4c和4d分别为两 路基带信号的I/Q分量的对比,蓝色的实线表示实际测量的输出信号,红色的点表示神经 网络模型的输出信号。可以看出,这四个图中红色点与蓝色实线基本吻合,说明模型的精度 已达到指标。参照图5a和5b,示出以两路不同的WCDMA三载波信号作为同步双频功率放大器的 输入信号时,神经网络模型的输出信号和实际测量的输出信号在频域上的对比。时域和频 域的检验是同一种检验的两个方面,两者相互补充,因此频域上的模型检验结果应该和时 域检验结果得出一样结论。其中,图5a和5b分别是两路基带信号的对比,蓝色线表示实际 测量的输出信号,红色线表示神经网络模型的输出信号,可以看出,两种线具有较高的吻合 度,与时域检验的结果相同,则说明模型的精度已达到指标。本发明的基于实数延时神经网络的同步双频功率放大器建模方法采用实数延时 神经网络模型作为建模方法的基础。实数延时结构用来描述功率放大器的记忆效应,采用 此结构,神经网络模型可看成是静态模型,因此能减轻模型的复杂度。另外,神经网络采用 三层前馈结构,分别为输入层、隐层及输出层,使用反向转播算法,用来逼近同步双频功率 放大器的非线性特性。因此,本发明的基于实数延时神经网络的同步双频功率放大器建模 方法能够很好地描述同步双频功率放大器的非线性特性和记忆效应,实现方便,复杂度低, 收敛速度快,且具有较高的精度。以上对本发明所提供的基于实数延时神经网络的同步双频功率放大器建模方法 进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实 施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术 人员,依据本发明的思想,在具体实施方式
及应用范围上均会有改变之处,综上所述,本说 明书内容不应理解为对本发明的限制。
权利要求
1.一种基于实数延时神经网络的同步双频功率放大器建模方法,其特征在于,包括以 下步骤步骤101,建立同步双频功率放大器的实数延时神经网络模型;步骤102,将两路宽带多载波信号作为同步双频功率放大器的基带输入信号;步骤103,采集同步双频功率放大器的输入和输出数据;步骤104,确定实数延时神经网络模型参数,并训练模型。
2.如权利要求1所述的方法,其特征在于,所述在采集功率放大器的输入和输出数据 后,还包括同步输入和输出数据。
3.如权利要求2所述的方法,其特征在于,所述同步输入和输出数据采用将功率放大 器的基带I/Q信号做复相关来进行。
4.如权利要求1所述的方法,其特征在于,所述确定的实数延时神经网络模型参数包 括实数延时神经网络模型的记忆深度和隐层单元个数。
5.如权利要求4所述的方法,其特征在于,所述实数延时神经网络模型的记忆深度的 数值按照自然数从小到大的顺序选择。
6.如权利要求4所述的方法,其特征在于,所述隐层单元个数m与输入单元数η的关系 为m = 2n+l。
7.如权利要求1所述的方法,其特征在于,所述方法还包括检验模型,所述检验模型的 过程为将用于检验的输入数据作为神经网络模型的输入;采集神经网络模型的输出数据;将神经网络模型的输出数据和实际测量输出数据在时域上进行对比;将神经网络模型的输出数据和实际测量输出数据做傅里叶变换,在频域上进行对比。
8.如权利要求7所述的方法,其特征在于,所述检验模型还包括根据对比的结果来判断神经网络模型的误差是否达到指标,若是,则结束;反之,则重 新确定模型参数,并训练模型。
全文摘要
本发明提供了一种基于实数延时神经网络的同步双频功率放大器建模方法,包括建立同步双频功率放大器的实数延时神经网络模型;将两路宽带多载波信号作为同步双频功率放大器的基带输入信号;采集同步双频功率放大器的输入和输出数据;确定实数延时神经网络模型参数,并训练模型。本发明的一种基于实数延时神经网络的同步双频功率放大器建模方法,能够很好地描述同步双频功率放大器的非线性特性和记忆效应,实现方便,复杂度低,收敛速度快,且具有较高的精度。
文档编号G06N3/08GK102081751SQ20111002009
公开日2011年6月1日 申请日期2011年1月18日 优先权日2011年1月18日
发明者冯正和, 陈文华, 黄梓宏 申请人:清华大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1