一种基于加速度计的人体行为识别方法
【专利摘要】本发明公开一种基于加速度计的人体行为识别分类方法,包括如下步骤:1)收集人体行为样本作为训练集;2)寻找对该训练集识别分类最优的投影矩阵U;3)对无标注数据进行投影;4)对投影后的数据采用最小距离分类器分类,获得识别结果。本发明对标注数据形成的近邻块做局部近似线性的假设,并使块上不同类别之间样本距离足够大,相同类别样本位置顺序信息通过类sigmoid函数惩罚因子尽可能的保留,最后在所有块上目标函数的基础上建立全局目标函数。利用本发明提出的方法能够合适的保留高维空间中样本之间距离的信息,减少识别模型对人工标注样本的依赖,其识别效果优于有代表性的基于线性判别分析的人体行为识别方法。
【专利说明】一种基于加速度计的人体行为识别方法
【技术领域】
[0001]本发明涉及一种模式识别与人工智能技术,特别涉及一种基于加速度计的人体行为识别方法。
【背景技术】
[0002]人类行为识别是一个复杂的问题,横跨很多学科,并且受到了工业信息化领域的极大关注。基本步骤包括感知信号的获取,信息处理和模式分类。最近几年,人们提出了很多有效的方法来自动识别人类行为。这些方法可以归为两类:一类是基于计算机视觉的,另一类是基于加速度传感器的。基于计算机视觉的人类行为分析系统不能很好地应用于工业环境,这是因为该类系统对于光照条件非常敏感。最近几年来基于加速度计的人类行为识别在工业环境中的应用受到越来越多的关注,它可以替代基于计算机视觉的人体行为识别系统。通过固定在人体上的加速度计上的加速度信号,我们可以很好地分析并区分人类的行为,例如走路、跑步和站立。
[0003]通常的基于加速度计人体行为是一种监督学习方法,即通过学习人工标注数据,以获得人体行为识别模型,然后对新的数据进行自动人体行为识别。通常采集到的人体行为特征维数非常高,因此降维方法有助于识别性能的提高。传统的全局线性降维的方法主要是基于线性的,其中线性判别分析被广泛地应用在模式分类问题上。线性判别分析法主要通过全局最大化类间距离的同时使类内样本间距离最小,从而实现不同类别之间的可分性。但是,手工标定人体行为样本数据是费时费力的。采用线性判别分析模型进行训练需要人工大量的标注样本,这使得人体行为模型开发成本大量增加,需要人工大量的标注样本。因此,寻找一个需要标注少量样本即可得到满足要求的人体行为分类方法是非常必要的。
【发明内容】
[0004]本发明的目的在于克 服现有技术的缺点与不足,提供一种基于加速度计的人体行为识别方法,该方法是一种只需要少量人工标注样本的基于加速度计人体行为识别方法。
[0005]本发明的目的通过下述技术方案实现:一种基于加速度计的人体行为识别方法,可以包括以下步骤:
[0006]I)收集N个人体行为样本作为训练集X,即
【权利要求】
1.一种基于加速度计的人体行为识别方法,包括以下步骤: .1)收集人体行为样本作为训练集X,即:X=[X1,X2,…,XN]e Rdxn,样本维数为D,样本个数为N,每个样本有相应的类别标志Ci e Zn; . 2)寻找基于加速度计的人体行为识别分类最优的投影矩阵U; .3)通过对无标注数据Xu进行投影,即=Yu=UtXu; . 4)对Yu采用最小距离分类器分类,以获得人体行为识别的结果; 其特征在于,所述寻找基于加速度计的人体行为识别分类最优的投影矩阵的方法包括以下步骤: 步骤1:建立局部优化目标函数; 步骤2:建立全局优化目标函数; 步骤3:利用拉格朗日乘数法,投影矩阵U由式子XLXt的前d个最小特征值对应的d个特征向量得到。
2.根据权利要求1所述的基于加速度计的人体行为识别方法,其特征在于,所述步骤I中,建立局部优化目标函数的方法为:对每一个已标注的样本Xi,找到同类样本.-Λ,的Ic1近邻和不同类别样本^,...〃\2的k2近邻来形成一个局部块,SP
3.根据权利要求1所述的基于加速度计的人体行为识别方法,其特征在于,所述步骤2中,建立全局优化目标函数的方法为:通过样本选择矩阵,低维空间表达Yi的坐标是从全局坐标Y=U1X= Iiy1, y2,…yN] e RdXN中选择出来的,即: Yi=YSi, (8) 式中,Si e Rnx(k+1)是选择矩阵,令Fi=Ud1,…iK}为指示集合,则选择矩阵的定义如下:
【文档编号】G06K9/62GK103500342SQ201310428353
【公开日】2014年1月8日 申请日期:2013年9月18日 优先权日:2013年9月18日
【发明者】陶大鹏, 金连文, 黎小凤 申请人:华南理工大学