遥感图像检索方法及系统的制作方法
【专利摘要】本发明实施例公开了一种遥感图像检索方法及系统,先根据待研究目标区域的边界点集确定待研究目标区域的外接矩形,根据所述外接矩形的边界点集确定备选遥感图像集,所述备选遥感图像集中的各景遥感图像的边界点集所确定的范围与所述最小外接矩形的边界点集所确定的范围存在交集,也就是说,备选遥感图像集中的各景遥感图像是包括或部分包括所述目标区域的,在计算平均云量时,只计算遥感图像中交集范围内的平均云量,将待研究目标区域的平均云量小于预设阈值的遥感图像作为检索结果。本申请实施例提供的一种遥感图像检索方法及系统,只判断待研究目标区域内是否有云,而不关心非目标区域的云覆盖情况,提高了检索精度。
【专利说明】遥感图像检索方法及系统
【技术领域】
[0001]本发明涉及图像检索【技术领域】,更具体地说,涉及一种遥感图像检索方法及系统。【背景技术】
[0002]近年来,地球观测卫星数量不断增加,已经积累了大量的遥感图像数据,通过对遥感图像的处理,可以获取丰富的信息,如地表参数等。而遥感图像的质量对信息提取的有效性有重要的影响,例如,遥感图像中的云覆盖,不管是厚云覆盖还是薄云覆盖,都对地表参数等的提取有不可忽视的影响,因此,一般用户都倾向于对无云或有较少云覆盖的遥感图像进行处理。
[0003]目前常用的一种遥感图像检索方法为平均云量(平均云量是指遥感图像上云的象元个数占该遥感图像总象元个数的百分比)限定法,该方法允许用户限定平均云量值,在进行遥感图像检索时,计算遥感图像库中每一景遥感图像的平均云量,将平均云量小于用户限定的平均云量值的遥感图像确定为用户所检索的图像,该种方法虽然实现简单,但是,由于云在空间上和时间上分布的无规律性,基于平均云量的图像检索方法无法遴选出合适的遥感图像数据,例如两景遥感图像分别为A和B,其中,A遥感图像上的平均云量为10%,B遥感图像上平均云量为30%,从平均云量的衡量指标看,A遥感图像要优于B遥感图像;但是,在进行信息提取时,如果A遥感图像上10%的云刚好覆盖在待研究目标区域上空,而B遥感图像上30%的云刚好都没有覆盖在待研究目标区域上空,那么,针对该待研究目标区域的信息提取而言,B遥感图像要优于A遥感图像。因此,基于平均云量的遥感图像检索方法检索到的遥感图像数据有可能是无效图像数据。
[0004]由此可知,基于平均云量的遥感图像的检索方法的检索结果的准确性较低,因此,如何提高遥感图像检索的准确性成为亟待解决的问题。
【发明内容】
[0005]本发明的目的是提供一种遥感图像检测方法及系统,以提高遥感图像检索的准确性。
[0006]为实现上述目的,本发明提供了如下技术方案:
[0007]一种遥感图像检索方法,包括:
[0008]获取待研究目标区域的边界点集;
[0009]依据所述待研究目标区域的边界点集确定包含所述待研究目标区域的最小外接矩形;
[0010]依据所述最小外接矩形的边界点集,确定备选遥感图像集,所述备选遥感图像集中的各景遥感图像的边界点集所确定的范围与所述最小外接矩形的边界点集所确定的范围存在交集;
[0011]确定所述备选遥感图像集中,每一景遥感图像的边界点集确定的范围与所述待研究目标区域的边界点集所确定的范围的交集范围;[0012]统计所述备选遥感图像集中,每一景遥感图像中所确定的交集范围内的平均云量,将平均云量小于预设阈值的遥感图像作为检索结果。
[0013]上述方法,优选的,所述获取待研究目标区域的边界点集包括:
[0014]获取所述待研究目标区域周围的四个点的坐标,其中,所述待研究目标区域在所述四个点的坐标所确定的范围内。
[0015]上述方法,优选的,所述获取待研究目标区域的边界点集包括:
[0016]获取所述待研究目标区域的矢量边界;
[0017]对所述矢量边界进行解析,获取所述待研究目标区域的各个边界点的坐标。
[0018]上述方法,优选的,所述获取待研究目标区域的边界点集包括:
[0019]获取所述待研究目标区域的地物类型分类图;
[0020]对所述地物类型分类图进行解析,获取所述待研究目标区域的各个边界点的坐标。
[0021]上述方法,优选的,所述确定所述备选遥感图像集中,每一景遥感图像的边界点集确定的范围与所述待研究目标区域的边界点集所确定的范围的交集范围包括:
[0022]将所述待研究目标区域的边界点集中,在遥感图像边界点集所确定的范围内的点确定为第一边界点集;
[0023]将所述遥感图像的边界点集中,在所述待研究目标区域边界点集所确定的范围内的点确定为第二边界点集;
[0024]将所述第一边界点集和所述第二边界点集的并集所确定的范围确定为交集范围。
[0025]一种遥感图像检索系统,包括:
[0026]获取模块,用于获取待研究目标区域的边界点集;
[0027]外接矩形确定模块,用于依据所述待研究目标区域的边界点集确定包含所述待研究目标区域的最小外接矩形;
[0028]备选遥感图像集确定模块,用于依据所述最小外接矩形的边界点集,确定备选遥感图像集,所述备选遥感图像集中的各景遥感图像的边界点集所确定的范围均与所述最小外接矩形的边界点集所确定的范围存在交集;
[0029]交集范围确定模块,用于确定所述备选遥感图像集中,每一景遥感图像的边界点集确定的范围与所述待研究目标区域的边界点集所确定的范围的交集范围;
[0030]检索结果确定模块,用于统计所述备选遥感图像集中,每一景遥感图像中所确定的交集范围内的平均云量,将平均云量小于预设阈值的遥感图像作为检索结果。
[0031]上述系统,优选的,所述获取模块包括:
[0032]第一获取单元,用于获取所述待研究目标区域周围的四个点的坐标,其中,所述待研究目标区域在所述四个点的坐标所确定的范围内。
[0033]上述系统,优选的,所述获取模块包括:
[0034]第二获取单元,用于获取所述待研究目标区域的矢量边界;
[0035]第一解析单元,用于对所述矢量边界进行解析获取所述待研究目标区域的各个边界点的坐标。
[0036]上述系统,优选的,所述获取模块包括:
[0037]第三获取单元,用于获取所述待研究目标区域的地物类型分类图;[0038]第二解析单元,用于对所述地物类型分类图进行解析,获取所述待研究目标区域的各个边界点的坐标。
[0039]上述系统,优选的,所述交集范围确定模块包括:
[0040]第一确定单元,用于将所述待研究目标区域的边界点集中,在所述遥感图像边界点集所确定的范围内的点确定为第一边界点集;
[0041]第二确定单元,用于将所述遥感图像的边界点集中,在所述目标边界点集所确定的范围内的点确定为第二边界点集;
[0042]第三确定单元,用于将所述第一边界点集和所述第二边界点集的并集所确定的范围确定为交集范围。[0043]通过以上方案可知,本申请提供的一种遥感图像检索方法及系统,先根据待研究目标区域的边界点集确定待研究目标区域的外接矩形,根据所述待研究目标区域的外接矩形的边界点集确定备选遥感图像集,所述备选遥感图像集中的各景遥感图像的边界点集所确定的范围与所述最小外接矩形的边界点集所确定的范围存在交集,也就是说,备选遥感图像集中的各景遥感图像是包括或部分包括所述目标区域的,在计算平均云量时,只计算遥感图像中交集范围内的平均云量,即只计算遥感图像中待研究目标区域的平均云量,将待研究目标区域的平均云量小于预设阈值的遥感图像作为检索结果,因此,本申请实施例提供的一种遥感图像检索方法及系统,只判断待研究目标区域内是否有云,而不关心非目标区域的z?覆盖情况,提闻了检索精度。
【专利附图】
【附图说明】
[0044]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0045]图1为本申请实施例提供的一种遥感图像检索方法的流程图;
[0046]图2为本申请实施例提供的确定备选遥感图像集中,每一景遥感图像的边界点集确定的范围与待研究目标区域的边界点集所确定的范围的交集范围流程图;
[0047]图3为本申请实施例提供的一种遥感图像检索系统的结构示意图;
[0048]图4为本申请实施例提供的一种获取模块的结构示意图;
[0049]图5为本申请实施例提供的另一种获取模块的结构示意图;
[0050]图6为本申请实施例提供的又一种获取模块的结构示意图;
[0051]图7为本申请实施例提供的一种交集范围确定模块的结构示意图。
[0052]说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三” “第四”等(如果存在)是用于区别类似的部分,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示的以外的顺序实施。
【具体实施方式】
[0053]下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0054]请参阅图1,图1为本申请实施例提供的一种遥感图像检索方法的流程图,可以包括:
[0055]步骤SlOl:获取待研究目标区域的边界点集;
[0056]所述待研究目标区域即用户所关注的对象,其可以是某个区域,也可以是某种地物类型等。
[0057]所述待研究目标区域的边界点集可以是由用户直接输入的所述待研究目标区域的边界点集,例如,用户可以通过GPS (Global Positioning System,全球定位系统)在待研究目标区域的周围测量四个点的位置,其中,所述待研究目标区域在所述四个点所确定的范围内,所述待研究目标区域的边界点集可以是由用户直接输入的所述待研究目标的四个点的坐标。具体的,在待研究目标区域的测量哪四个点的位置不做具体限定,只要这四个点所确定的范围包括所述待研究目标区域即可。
[0058]所述获取待研究目标区域的边界点集的步骤也可以为:
[0059]获取所述待研究目标区域的矢量边界;
[0060]由于某些区域的矢量边界是公开的,如,行政区域的矢量边界、某些湖泊的矢量边界等,所以,所述矢量边界也可以是用户以矢量数据文件的形式提供的。
[0061]对所述矢量边界进行解析,获取所述待研究目标区域的各个边界点的坐标。
[0062]例如,可以利用GDAL (Geospatial Data Abstraction Library)库进行 Shape 格式的矢量数据解析,从而获得目标的边界点集。
[0063]具体如何解析属于本领域的公知常识,这里不再赘述。
[0064]所述获取待研究目标区域的边界点集的步骤还可以为:
[0065]获取所述待研究目标区域的地物类型分类图;
[0066]所述待研究目标区域的地物类型分类图可以由一景已知的待研究目标区域的遥感图像进行地物分类处理得到。
[0067]对所述地物类型分类图进行解析,获取所述待研究目标区域的各个边界点的坐标。
[0068]具体如何解析属于本领域的公知常识,这里不再赘述。
[0069]当然,上述获取待研究目标区域的边界点集的方法可以同时存在,具体使用哪种方法可以由用户选择确定。
[0070]步骤S102:依据所述待研究目标区域的边界点集确定包含所述待研究目标区域的最小外接矩形;优选的,可以按如下方法确定所述待研究目标区域的最小外接矩形:
[0071]本申请实施例中,所述待研究目标区域的边界点坐标为二维坐标,即每一个边界点的坐标由第一维坐标值和第二维坐标值组成。
[0072]所述待研究目标区域的最小外接矩形的左上角的坐标的第一维坐标值为所述待研究目标区域的所有边界点坐标的第一维坐标值中的最小值,所述待研究目标区域的最小外接矩形的左上角的坐标的第二维坐标值为所述待研究目标区域的所有边界点坐标的第二维坐标值中的最小值;[0073]所述待研究目标区域的最小外接矩形的右下角的坐标的第一维坐标值为所述待研究目标区域的所有边界点坐标的第一维坐标值中的最大值,所述待研究目标区域的最小外接矩形的右下角的坐标的第二维坐标值为所述待研究目标区域的所有边界点坐标的第二维坐标值中的最大值;
[0074]基于所述待研究目标区域的最小外接矩形的左上角的坐标和右下角的坐标,可以确定,所述待研究目标区域的最小外接矩形的右上角的坐标的第一维坐标值为所述待研究目标区域的所有边界点坐标的第一维坐标值中的最大值,所述待研究目标区域的最小外接矩形的右上角的坐标的第二维坐标值为所述待研究目标区域的所有边界点坐标的第二维坐标值中的最小值;
[0075]同理,所述待研究目标区域的最小外接矩形的左下角的坐标的第一维坐标值为所述待研究目标区域的所有边界点坐标的第一维坐标值中的最小值,所述待研究目标区域的最小外接矩形的左下角的坐标的第二维坐标值为所述待研究目标区域的所有边界点坐标的第二维坐标值中的最大值。
[0076]具体的,假设所述待研究目标区域的边界点集为:
[0077]P= (P1 (X1, Y1),p2 (x2, y2),..., pn (xn, yn)}
[0078]那么,所述待研究目标区域的最小外接矩形的左上角的坐标为:
[0079](min (x” X2,, xn),min (y” y2,..., yn));
[0080]所述待研究目标区域的最小外接矩形的右下角的坐标为:
[0081 ] (max (X1, x2,..., xn),max (y” y2,..., yn));
[0082]所述待研究目标区域的最小外接矩形的右上角的坐标为:
[0083](max (X1, x2,..., xn),min (y” y2,..., yn));
[0084]所述待研究目标区域的最小外接矩形的左下角的坐标为:
[0085](min (X1, X2,, xn),max (y” y2,..., yn));
[0086]步骤S103:依据所述最小外接矩形的边界点集,确定备选遥感图像集,所述备选遥感图像集中的各景遥感图像的边界点集所确定的范围与所述最小外接矩形的边界点集所确定的范围存在交集;
[0087]在确定所述待研究目标区域的最小外接矩形后,在遥感图像库中查找与所述最小外接矩形所确定的范围有交集的遥感图像,也就是说,所述备选遥感图像集中的每一景遥感图像都与所述最小外接矩形有交集。因此,备选遥感图像集中的各景遥感图像是包括目标区域,或者,部分包括目标区域的(即只包括目标区域的一部分)。
[0088]具体在判断所述待研究目标区域的最小外接矩形所确定的范围是否与遥感图像的边界点集所确定的范围有交集时,可以依据下述方法进行判断:
[0089]当所述待研究目标区域的最小外接矩形的四个顶点中,至少有一个顶点在所述遥感图像的边界点集所确定的范围内时,确定所述待研究目标区域的最小外接矩形所确定的范围与遥感图像的边界点集所确定的范围有交集。
[0090]所述遥感图像的边界点集可以从遥感图像的元数据中获取。
[0091]步骤S104:确定所述备选遥感图像集中,每一景遥感图像的边界点集确定的范围与所述待研究目标区域的边界点集所确定的范围的交集范围;
[0092]确定遥感图像的边界点集所确定的范围与所述待研究目标区域的边界点集所确定的范围的方法有很多,例如:基于双向链表求两个多边形交集的方法,该方法对应每个多边形建立一个由多边形的顶点按预设顺序组成的链表,对两个多边形的各边依次求交,把计算得到的交点分别插入两个链表中,得到扩充后的两个链表,任意选择一个扩充后的链表,为叙述方便,将所选择的扩充后的链表记为第一链表,另一个扩充后的链表记为第二链表,在第一链表中任意选择一个交点作为第一起点,然后依次对第一链表中的点进行遍历,当遇到交点时,跳转到第二链表中相同的交点位置,然后以该交点为第二起点,依次对第二链表按相同的方向进行遍历,当遇到交点时,再跳转到第一链表中相同的交点位置,然后以该交点为第三起点,再次对第一链表按相同方向进行遍历,以此类推,直到遇到第一起点为止,两个链表中所遍历的顶点及交点构成两个多变行的交集。[0093]步骤S105:统计所述备选遥感图像集中,每一景遥感图像中所确定的交集范围内的平均云量,将平均云量小于预设阈值的遥感图像作为检索结果。
[0094]所述预设阈值可以默认设置为10%,也可以作为检索条件由用户设定。
[0095]在确定检索结果后,就可以把作为检索结果的遥感图像返回给客户。
[0096]本申请实施例提供的一种遥感图像检索方法,先根据待研究目标区域的边界点集确定待研究目标区域的外接矩形,根据所述待研究目标区域的外接矩形的边界点集确定备选遥感图像集,所述备选遥感图像集中的各景遥感图像的边界点集所确定的范围与所述最小外接矩形的边界点集所确定的范围存在交集,也就是说,备选遥感图像集中的各景遥感图像是包括或部分包括所述目标区域的,在计算平均云量时,只计算遥感图像中交集范围内的平均云量,即只计算遥感图像中待研究目标区域的平均云量,将待研究目标区域的平均云量小于预设阈值的遥感图像作为检索结果,因此,本申请实施例提供的一种遥感图像检索方法及系统,只判断待研究目标区域内是否有云,而不关心非目标区域的云覆盖情况,提闻了检索精度。
[0097]而且,由于只计算交集范围内的平均云量,而不是整个遥感图像的平均云量,因此,计算量减小,所以,本申请实施例提供的遥感图像检索方法还提高了检索速度。
[0098]优选的,本申请实施例中,所述确定所述备选遥感图像集中,每一景遥感图像的边界点集确定的范围与所述待研究目标区域的边界点集所确定的范围的交集范围流程图如图2所示,可以包括:
[0099]步骤S201:将所述待研究目标区域的边界点集中,在遥感图像边界点集所确定的范围内的点确定为第一边界点集;
[0100]具体的,假设所述待研究目标区域的边界点集为:
[0101 ] P= (P1 (X1, Y1),P2 (x2, y2),..., Pn (xn, yn)};
[0102]遥感图像的边界点集为:
[0103]Q= (Q1 (X1, Y1),Q2 (X2, Y2),...,Qm (Xm, Ym)};
[0104]那么,可以依据第一公式,即公式(1),确定所述待研究目标区域边界点集中的第i (I ^ i ^ η)个点Pi (Xi, Yi)落在所述遥感图像边界点集所确定的范围内:
【权利要求】
1.一种遥感图像检索方法,其特征在于,包括: 获取待研究目标区域的边界点集; 依据所述待研究目标区域的边界点集确定包含所述待研究目标区域的最小外接矩形; 依据所述最小外接矩形的边界点集,确定备选遥感图像集,所述备选遥感图像集中的各景遥感图像的边界点集所确定的范围与所述最小外接矩形的边界点集所确定的范围存在交集; 确定所述备选遥感图像集中,每一景遥感图像的边界点集确定的范围与所述待研究目标区域的边界点集所确定的范围的交集范围; 统计所述备选遥感图像集中,每一景遥感图像中所确定的交集范围内的平均云量,将平均云量小于预设阈值的遥感图像作为检索结果。
2.根据权利要求1所述的方法,其特征在于,所述获取待研究目标区域的边界点集包括: 获取所述待研究目标区域周围的四个点的坐标,其中,所述待研究目标区域在所述四个点的坐标所确定的范围内。
3.根据权利要求1所述的方法,其特征在于,所述获取待研究目标区域的边界点集包括: 获取所述待研究目标区域的矢量边界; 对所述矢量边界进行解析,获取所述待研究目标区域的各个边界点的坐标。
4.根据权利要求1所述的方法,其特征在于,所述获取待研究目标区域的边界点集包括: 获取所述待研究目标区域的地物类型分类图; 对所述地物类型分类图进行解析,获取所述待研究目标区域的各个边界点的坐标。
5.根据权利要求1所述的方法,其特征在于,所述确定所述备选遥感图像集中,每一景遥感图像的边界点集确定的范围与所述待研究目标区域的边界点集所确定的范围的交集范围包括: 将所述待研究目标区域的边界点集中,在遥感图像边界点集所确定的范围内的点确定为第一边界点集; 将所述遥感图像的边界点集中,在所述待研究目标区域边界点集所确定的范围内的点确定为第二边界点集; 将所述第一边界点集和所述第二边界点集的并集所确定的范围确定为交集范围。
6.一种遥感图像检索系统,其特征在于,包括: 获取模块,用于获取待研究目标区域的边界点集; 外接矩形确定模块,用于依据所述待研究目标区域的边界点集确定包含所述待研究目标区域的最小外接矩形; 备选遥感图像集确定模块,用于依据所述最小外接矩形的边界点集,确定备选遥感图像集,所述备选遥感图像集中的各景遥感图像的边界点集所确定的范围均与所述最小外接矩形的边界点集所确定的范围存在交集; 交集范围确定模块,用于确定所述备选遥感图像集中,每一景遥感图像的边界点集确定的范围与所述待研究目标区域的边界点集所确定的范围的交集范围; 检索结果确定模块,用于统计所述备选遥感图像集中,每一景遥感图像中所确定的交集范围内的平均云量,将平均云量小于预设阈值的遥感图像作为检索结果。
7.根据权利要求6所述的系统,其特征在于,所述获取模块包括: 第一获取单元,用于获取所述待研究目标区域周围的四个点的坐标,其中,所述待研究目标区域在所述四个点的坐标所确定的范围内。
8.根据权利要求6所述的系统,其特征在于,所述获取模块包括: 第二获取单元,用于获取所述待研究目标区域的矢量边界; 第一解析单元,用于对所述矢量边界进行解析获取所述待研究目标区域的各个边界点的坐标。
9.根据权利要求6所述的系统,其特征在于,所述获取模块包括: 第三获取单元,用于获取所述待研究目标区域的地物类型分类图; 第二解析单元,用于对所述地物类型分类图进行解析,获取所述待研究目标区域的各个边界点的坐标。
10.根据权利要求6所述 的系统,其特征在于,所述交集范围确定模块包括: 第一确定单元,用于将所述待研究目标区域的边界点集中,在所述遥感图像边界点集所确定的范围内的点确定为第一边界点集; 第二确定单元,用于将所述遥感图像的边界点集中,在所述目标边界点集所确定的范围内的点确定为第二边界点集; 第三确定单元,用于将所述第一边界点集和所述第二边界点集的并集所确定的范围确定为交集范围。
【文档编号】G06F17/30GK103530409SQ201310512374
【公开日】2014年1月22日 申请日期:2013年10月25日 优先权日:2013年10月25日
【发明者】吴远峰, 申茜, 李俊生, 张兵 申请人:中国科学院对地观测与数字地球科学中心