一种太阳帆结构有限元快速建模与后处理方法
【专利摘要】一种太阳帆结构有限元快速建模与后处理方法,(1)设置太阳帆构型方式、支撑臂与帆面连接形式,在帆面上为支撑臂设置预留区域;(2)建立带有预留区域的太阳帆帆面几何模型;(3)设置支撑臂类型,预留区域生成支撑臂几何模型;(4)建立太阳帆帆面以及支撑臂的有限元模型;(5)根据生成的太阳帆帆面以及支撑臂有限元模型,对二者进行有限元方式装配;(6)在有限元模型上设置静力学边界条件与载荷工况;(7)计算支撑臂屈曲载荷,模拟惯性释放的反向加速度,并将该反向加速度施加有限元模型上;(8)进行太阳帆静力学求解,得到支撑臂最大变形和轴向压力;(9)计算屈曲安全因子,根据屈曲安全因子判定构建的太阳帆结构方案的可行性。
【专利说明】一种太阳帆结构有限元快速建模与后处理方法
【技术领域】
[0001]本发明涉及一种结构有限元快速建模与后处理方法,尤其适用于采用支撑臂与薄膜连接的大型超柔度太阳帆结构的力学特性分析。
【背景技术】
[0002]太阳帆是利用太阳在大面积薄膜上的反射光压提供飞行动力的一种航天器。只要有太阳光存在的地方,它就可以一直加速,并最终能获得比普通航天器大得多的速度,它不受燃料的限制,可以在太空中运行更长的时间,所以太阳帆航天器的产生对未来的空间探索具有十分重大的意义。
[0003]光压力指向太阳帆的法线方向,因此通过控制太阳帆与太阳光线的夹角,可以改变光压的大小,并且可以使光压成为动力或者阻力,从而控制太阳帆航天器的飞行速度和角度。通过调整太阳帆的姿态,使太阳光压力方向不在轨道平面内,也可以改变其轨道倾角。因此,理论上太阳帆航天器可以到达太阳系内的任意位置。太阳帆航天器一般由三个部分组成:薄膜帆面、支撑杆和控制中心体。帆面的作用是反射光子,为了获得较大推力,帆面一般都比较大,而且表面具有很高的反射率。帆面通常由很轻薄的聚酯或聚酰亚胺等高分子材料制成,为大柔性结构,其表面镀铝或银。支撑杆用来支撑帆面,使其保持张开的状态。控制中心主要是控制帆和支撑杆的展开,以及携带通信装备等。太阳帆的大小随要执行的任务不同而不同,从几百平方米至几千平方米不等。
[0004]太阳帆材料都十分轻薄,施加稍大的力很可能产生较大变形,但是在地球上难以对如此大的太阳帆进行真空无重力状态下的实验,因此对太阳帆结构进行力学仿真分析十分重要。本发明正是基于这种需要,用有限元方法对太阳帆进行力学分析。
[0005]概念设计是太阳帆设计的初始阶段,这一阶段所提出并基本确定的初始方案对航天器的性能和全寿命周期成本有着很大的影响,对不同结构形式或不同构型尺寸的力学分析进行总结,需要大量数据。如果完全依靠经验来积累数据极其不现实,因此必须在概念设计中考虑到对太阳帆最终设计质量起决定作用的尽可能多的影响因素。对太阳帆力学有限元分析在前期概念设计中是至关重要的环节。
[0006]在对太阳帆进行力学特性分析时,有限元建模是力学分析过程中的棘手问题,费时费力,通常结构形式的微小变化或构型尺寸的改变将会导致有限元分析的重复性工作量。同时,普通的后处理分析无法反映太阳帆真实的力学特性,仅仅通过简单的结果数据完全不能体现大型超柔性帆面的力学特性。有限元建模与后处理对力学分析人员的要求也较高,必将影响相关先进技术在概念设计中的应用与进度。
[0007]因此,利用有限元快速建模技术对太阳帆航天器进行力学建模并实现后处理分析,对空间无约束自由飞行状态的薄膜太阳帆航天器进行力学特性分析是一种有效的技术手段,也成为该领域目前亟待解决的技术问题。
【发明内容】
[0008]本发明的技术解决问题是:克服现有技术的不足,提供一种太阳帆结构有限元快速建模与后处理方法。
[0009]本发明的技术解决方案是:一种太阳帆结构有限元快速建模与后处理方法,步骤如下:
[0010](I)设置太阳帆构型方式以及支撑臂与帆面连接形式,并根据太阳帆的构型方式在帆面间为支撑臂设置预留区域;所述的太阳帆构型方式主要包括方形帆、多边形帆、圆形帆、环形帆、叶形帆;当为方形帆时预留区域为两条对角线区域,多边形帆预留区域为多边形对角线区域,圆形帆与环形帆预留区域为两条垂直直径区域,叶形帆预留区域为叶心区域;预留区域空间大小设置为支撑臂直径的5?10倍柱体空间区域;
[0011](2)根据设置的太阳帆构型方式设置太阳帆帆面薄膜分区,建立带有预留区域的太阳帆帆面几何模型;
[0012](3)根据设置的支撑臂与帆面连接形式设置支撑臂类型,在步骤(2)中的预留区域生成支撑臂几何模型;
[0013](4)设置帆面不同区域、支持臂与集中质量的参数、材料属性以及有限元单元类型、单元大小;根据所述材料属性、有限元单元类型、单元大小、对所述的太阳帆帆面以及支撑臂几何模型进行有限元划分,得到太阳帆帆面以及支撑臂的有限元模型;
[0014](5)根据生成的太阳帆帆面以及支撑臂有限元模型,对二者进行有限元方式装配;
[0015](6)在步骤(5)得到的有限元模型上设置静力学边界条件与载荷工况;
[0016](7)根据支撑臂形状尺寸及材料属性计算支撑臂屈曲载荷,并根据设置载荷工况、太阳帆总质量以及太阳帆帆面面积,计算模拟惯性释放的反向加速度,并将该反向加速度施加在步骤(5)得到的有限元模型上;
[0017](8)根据步骤(7)处理后的有限元模型进行太阳帆静力学求解,得到支撑臂最大变形和轴向压力;
[0018](9)根据得到的支撑臂屈曲载荷与计算的轴向压力,计算屈曲安全因子,根据屈曲安全因子判定构建的太阳帆结构方案的可行性。
[0019]所述步骤(5)中的有限元装配为支撑臂与帆面的一对一节点重复节点消去的有限元装配方式。
[0020]所述步骤(5)中的有限元装配为支撑臂与帆面的一对多节点自由度绑定的有限元装配方式。
[0021]本发明与现有技术相比有益效果为:
[0022](I)应用有限元快速建模方法可以减少大量的重复工作,特别是大型太阳帆结构,其主动、快速、准确的参数化建模特点特别适用于非力学专业人员、前期无经验和无继承设计阶段以及经少许修改(如修改网格的密度)后需要多次重复的环节,可为设计人员节省大量的时间,以利于设计人员有更多的精力来从事产品的构思。
[0023](2)程序便于保存和携带,一个有限元参数化程序文件一般只有几十千字节,最多也只有几百千字节,其数据文件的容量仅为一般通用商业有限元软件数据文件的千分之一,无论是在网上或平常的交流都很方便。
[0024](3)考虑多种太阳帆构型方式与支撑臂连接形式:方形帆、多边形帆、圆形帆、环形帆与叶形帆,端点连接与多点连接。同时考虑了太阳帆帆面与支撑臂的几何干涉问题,避免无预留位置的帆面与支撑臂的有限元节点的重复消去,设置参照支撑臂直径尺寸的空间划分,预留了相应支撑臂结构的位置。由于太阳帆结构仍处于研发阶段,相关技术很不成熟,需要较多的初步方案进行对比,故本发明能够在初步方案设计阶段即可向工程设计人员提供两套截然不同的构型方式,起到事半功倍的效果。
[0025](4)考虑多种太阳帆支撑臂与帆面装配方式,有效与真实结构进行仿真。鉴于设计人员在太阳帆前期设计过程中对太阳帆结构特别是臂与帆的连接设计缺乏经验,故本方法采用两种典型的装配方式进行建模。初始设计时,可采用支撑臂与帆面的一对一节点重复节点消去的有限元装配方式;当设计人员进行详细设计特别是重点考虑帆面角点的应力校核时,为减小帆面角点应力集中,可采用支撑臂与帆面的一对多节点自由度绑定的有限元装配方式。本方法针对太阳帆设计的不同阶段,考虑了不同的结构连接方式,减小了设计人员的工作量并且丰富了设计内容。
[0026](5)由于在静力有限元计算中需加入强制人为自由度约束以满足刚度矩阵非奇异以致求解静力平衡方程,故与真实的空间中无约束自由状态下太阳帆运动有本质差异。虽然商业有限元软件自带的惯性释放功能可以有效的解决该问题,但是对于太阳帆这种大柔度大变形非线性特点而言,商业软件默认的非线性算法与惯性释放功能无法兼容。本发明考虑上述原因,为模拟真实无约束状态以及克服商业软件无法实现二者共存的不足,设置了模拟惯性释放的加速度场功能,将设置的外载荷合力与统计的质量信息计算得到的加速度施加于模型中,更真实的实现了太阳帆结构的力学特性分析。
[0027](6)计算支撑臂受压载荷,校核稳定性。在通常太阳帆力学特性分析中,最容易出现不满足力学要求的是支撑臂轴向轴压载荷,而实际的通用商业有限元分析软件只能特定使用屈曲模块分析压杆稳定性,而在普通静力学分析中无法得到结果。本发明直接根据支撑臂形状尺寸与材料属性计算支撑臂临界失稳载荷,再通过结果变形计算实际轴向受压载荷,进而校核压杆稳定性,给出屈曲安全因子。
[0028](7)鉴于仅从常规的应力与变形结果难以从数值以及云图角度无法有效描述超柔性太阳帆结构特别是其帆面部分的力学特性,本发明特别针对用户关注的沿帆面某一路径的结果进行提取与展示。该路径可以自定义设置,同时结果的提取亦可选择。方便的给出设计人员关心的结构区域的力学特性分析,便于方案对比。
【专利附图】
【附图说明】
[0029]图1为本发明流程图;
[0030]图2为太阳帆支撑臂有限元图;
[0031]图3为太阳帆帆面有限元图;
[0032]图4为太阳帆全部结构有限元示意图;
[0033]图5为用户自定义的两条太阳帆研究路径图;
[0034]图6为太阳帆对角线路径的应力曲线图;
[0035]图7为太阳帆对角线路径的变形曲线图;
[0036]图8为太阳帆中线路径的应力曲线图;
[0037]图9为太阳帆中线路径的变形曲线图。【具体实施方式】
[0038]下面结合附图及实施例对本发明做详细说明,本发明一种太阳帆结构有限元快速建模与后处理方法,如图1所示,步骤如下:
[0039](I)设置太阳帆构型方式以及支撑臂与帆面连接形式,并根据太阳帆的构型方式在帆面上为支撑臂设置预留区域;所述的太阳帆构型方式主要包括方形帆、多边形帆、圆形帆、环形帆、叶形帆;当为方形帆时预留区域为两条对角线区域,多边形帆预留区域为多边形对角线区域,圆形帆与环形帆预留区域为两条垂直直径区域,叶形帆预留区域为叶心区域;预留区域空间大小设置为支撑臂直径的5~10倍柱体空间区域均匀贯穿帆面其间。
[0040]支撑臂与帆面连接形式包括仅在支撑臂端点连接以及多点式连接构型。初始设计时可采用端点式连接方式,若步骤(9)得到的帆面变形与应力过大,可改为多点式连接构型,此构型方式将支撑臂平均分为相应段数,分别于临近的帆面进行连接。
[0041](2)根据设置的太阳帆构型方式设置太阳帆帆面薄膜分区,方形帆按照不同边长的方形块分区,圆形帆与环形帆按照不同的半径圆形设置分区,叶形帆按照每叶片的长度分区,建立带有预留区域的太阳帆帆面几何模型;
[0042](3)根据设置的支撑臂与帆面连接形式设置支撑臂类型,在步骤(2)中的预留区域生成支撑臂几何模型;
[0043]支撑臂的类型一般为立体桁架型与单截面型,立体桁架型为组合多跨铰接桁架构型,单截面型为单一连续截面构型,需设置两种截面的形状;
[0044](4)设置帆面不同区域 、支持臂与集中质量的参数、材料属性以及有限元单元类型、单元大小;根据所述材料属性、有限元单元类型、单元大小、对所述的太阳帆帆面以及支撑臂几何模型进行有限元划分,得到太阳帆帆面以及支撑臂的有限元模型;
[0045](5)根据生成的太阳帆帆面以及支撑臂有限元模型,对二者进行有限元方式装配;有限元装配为支撑臂上一个节点与帆面某一重合的节点进行一对一节点重复节点消去的有限元装配方式,此时,支撑臂与帆面共用该相同节点,具有相同的自由度约束。若步骤(9)得到的帆面变形与应力过大,可设置为支撑臂上某一节点与其相邻的帆面多个节点进行一对多节点自由度绑定的有限元装配方式,此时支撑臂某节点与帆面多个节点具有相同的自由度约束,可将支撑臂一点载荷分散至帆面多点上。
[0046](6)在步骤(5)得到的有限元模型上设置静力学边界条件与载荷工况,边界条件为约束太阳帆几何形心位置处节点的所有自由度,载荷工况在帆面内施加预紧力,在帆面外施加光压;
[0047](7)根据支撑臂形状尺寸计算支撑臂截面惯性矩Ibeam,再结合材料属性Eb.与长度I计算屈曲载荷A = π H,n并根据设置光压载荷工况P、太阳帆总质量m以及太
PS
阳帆帆面面积S,计算模拟惯性释放的反向加速度〃并将该反向加速度施加在步骤
/〃,
(5)得到的有限元模型上;
[0048](8)根据步骤(7)处理后的有限元模型进行太阳帆静力学求解,其静力学方程为:[0049]
【权利要求】
1.一种太阳帆结构有限元快速建模与后处理方法,其特征在于步骤如下: (1)设置太阳帆构型方式以及支撑臂与帆面连接形式,并根据太阳帆的构型方式在帆面间为支撑臂设置预留区域;所述的太阳帆构型方式主要包括方形帆、多边形帆、圆形帆、环形帆、叶形帆;当为方形帆时预留区域为两条对角线区域,多边形帆预留区域为多边形对角线区域,圆形帆与环形帆预留区域为两条垂直直径区域,叶形帆预留区域为叶心区域;预留区域空间大小设置为支撑臂直径的5?10倍柱体空间区域; (2)根据设置的太阳帆构型方式设置太阳帆帆面薄膜分区,建立带有预留区域的太阳帆帆面几何模型; (3)根据设置的支撑臂与帆面连接形式设置支撑臂类型,在步骤(2)中的预留区域生成支撑臂几何模型; (4)设置帆面不同区域、支持臂与集中质量的参数、材料属性以及有限元单元类型、单元大小;根据所述材料属性、有限元单元类型、单元大小、对所述的太阳帆帆面以及支撑臂几何模型进行有限元划分,得到太阳帆帆面以及支撑臂的有限元模型; (5)根据生成的太阳帆帆面以及支撑臂有限元模型,对二者进行有限元方式装配; (6)在步骤(5)得到的有限元模型上设置静力学边界条件与载荷工况; (7)根据支撑臂形状尺寸及材料属性计算支撑臂屈曲载荷,并根据设置载荷工况、太阳帆总质量以及太阳帆帆面面积,计算模拟惯性释放的反向加速度,并将该反向加速度施加在步骤(5)得到的有限元模型上; (8)根据步骤(7)处理后的有限元模型进行太阳帆静力学求解,得到支撑臂最大变形和轴向压力; (9)根据得到的支撑臂屈曲载荷与计算的轴向压力,计算屈曲安全因子,根据屈曲安全因子判定构建的太阳帆结构方案的可行性。
2.根据权利要求1所述的一种太阳帆结构有限元快速建模与后处理方法,其特征在于:所述步骤(5)中的有限元装配为支撑臂与帆面的一对一节点重复节点消去的有限元装配方式。
3.根据权利要求1所述的一种太阳帆结构有限元快速建模与后处理方法,其特征在于:所述步骤(5)中的有限元装配为支撑臂与帆面的一对多节点自由度绑定的有限元装配方式。
【文档编号】G06F17/50GK103886126SQ201410023662
【公开日】2014年6月25日 申请日期:2014年1月17日 优先权日:2014年1月17日
【发明者】杨辰, 刘宇飞, 张兴华, 侯欣宾, 王立 申请人:中国空间技术研究院