基于自回归滑动平均模型的光伏发电功率超短期预测方法
【专利摘要】本发明公开了一种基于自回归滑动平均模型的光伏发电功率超短期预测方法,包括输入数据得到自回归滑动平均模型参数;输入光伏发电功率预测所需输入数据到根据上述自回归滑动平均模型的参数确定的自回归滑动平均模型中得到预测结果。通过对光伏发电过程中的光伏发电功率进行预测,为新能源发电实时调度、新能源发电日前计划、新能源发电月度计划、新能源发电能力评估和弃光电量估计提供关键信息。通过引入复合数据源有效提高光伏发电功率超短期预测精度,从而实现在保障电网安全稳定经济运行的前提下有效提高新能源上网电量目的。
【专利说明】基于自回归滑动平均模型的光伏发电功率超短期预测方法
【技术领域】
[0001]本发明涉及新能源发电过程中光伏发电功率预测【技术领域】,具体地,涉及一种基于复合数据源自回归滑动平均模型的光伏发电功率超短期预测方法。
【背景技术】
[0002]我国风电进入规模化发展阶段以后所产生的大型新能源基地多数位于“三北地区”(西北、东北、华北),大型新能源基地一般远离负荷中心,其电力需要经过长距离、高电压输送到负荷中心进行消纳。由于风、光资源的间歇性、随机性和波动性,导致大规模新能源基地的风电、光伏发电出力会随之发生较大范围的波动,进一步导致输电网络充电功率的波动,给电网运行安全带来一系列问题。
[0003]截至2014年4月,光伏发电装机容量已达到435万千瓦,约占甘肃电网总装机容量的13%,同时甘肃成为我国光伏发电装机规模最大的省份。目前,甘肃电网风电、光伏发电装机超过甘肃电网总装机容量的1/3。随着新能源并网规模的不断提高,光伏发电不确定性和不可控性给电网的安全稳定经济运行带来诸多问题。准确预估可利用的发电光资源是对大规模光伏发电优化调度的基础。对光伏发电过程中的光伏发电功率进行预测,可为新能源发电实时调度、新能源发电日前计划、新能源发电月度计划、新能源发电能力评估和弃光电量估计提供关键信息。
【发明内容】
[0004]本发明的目的在于,针对上述问题,提出一种基于自回归滑动平均模型的光伏发电功率超短期预测方法,以实现高精度光伏发电功率超短期预测的优点。
[0005]为实现上述目的,本发明采用的技术方案是:
[0006]一种基于自回归滑动平均模型的光伏发电功率超短期预测方法,包括输入数据得到自回归滑动平均模型参数;
[0007]输入光伏发电功率预测所需输入数据到根据上述自回归滑动平均模型的参数确定的自回归滑动平均模型中得到预测结果。
[0008]根据本发明的优选实施例,所述输入数据得到自回归滑动平均模型参数包括,步骤101、输入模型训练基础数据;
[0009]步骤102、模型定阶;
[0010]步骤103、采用矩估计方法对定阶的ARMA(p,q)模型参数进行估计。
[0011]根据本发明的优选实施例,所述步骤101输入模型训练基础数据,输入数据包括,光伏电站基础信息、历史辐照度数据、历史功率数据和地理信息系统数据。
[0012]根据本发明的优选实施例,所述步骤102模型定阶:
[0013]采用残差方差图法进行模型定阶,具体为设Xt为需要估计的项,Xt+ xt_2,xt_n为已知历史功率序列,对于ARMA (p,q)模型,模型定阶即确定模型中参数P和q的值;[0014]用系列阶数逐渐递增的模型拟合原始序列,每次都计算残差平方和然后画
出阶数和σ的图形,当阶数由小增大时σ会显著下降,达到真实阶数后σ的值会逐渐趋于平缓,甚至反而增大,
[0015]拟合误差的平方和/(实际观测值个数-模型参数个数),
[0016]实际观测值个数指拟合模型时实际使用的观察值项数,对于具有N个观察值的序列,拟合AR(p)模型,则实际使用的观察值最多为N-p,模型参数个数指所建立的模型中实际包含的参数个数,对于含有均值的模型,模型参数个数为模型阶数加1,对于N个观测值的序列,ARMA模型的残差估计式为:
[0017]
【权利要求】
1.一种基于自回归滑动平均模型的光伏发电功率超短期预测方法,其特征在于,包括输入数据得到自回归滑动平均模型参数; 输入光伏发电功率预测所需输入数据到根据上述自回归滑动平均模型的参数确定的自回归滑动平均模型中得到预测结果。
2.根据权利要求1所述的基于自回归滑动平均模型的光伏发电功率超短期预测方法,其特征在于,所述输入数据得到自回归滑动平均模型参数包括,步骤101、输入模型训练基础数据; 步骤102、模型定阶; 步骤103、采用矩估计方法对定阶的ARMA(p,q)模型参数进行估计。
3.根据权利要求2所述的基于自回归滑动平均模型的光伏发电功率超短期预测方法,其特征在于,所述步骤101输入模型训练基础数据,输入数据包括,光伏电站基础信息、历史辐照度数据、历史功率数据和地理信息系统数据。
4.根据权利要求3所述的基于自回归滑动平均模型的光伏发电功率超短期预测方法,其特征在于,所述步骤102模型定阶: 采用残差方差图法进行模型定阶,具体为设Xt为需要估计的项,xt-1; xt-2)...,xt_n为已知历史功率序列,对于ARMA (p,q)模型,模型定阶即确定模型中参数P和q的值; 用系列阶数逐渐递增的模型拟合原始序列,每次都计算残差平方和然后画出阶数和σ的图形,当阶数由小增大时,会显著下降,达到真实阶数后σ的值会逐渐趋于平缓,甚至反而增大, σ2α =拟合误差的平方和/ (实际观测值个数-模型参数个数), 实际观测值个数指拟合模型时实际使用的观察值项数,对于具有N个观察值的序列,拟合AR (P)模型,则实际使用的观察值最多为Ν-Ρ,模型参数个数指所建立的模型中实际包含的参数个数,对于含有均值的模型,模型参数个数为模型阶数加1,对于N个观测值的序列,ARMA模型的残差估计式为:
5.根据权利要求4所述的基于自回归滑动平均模型的光伏发电功率超短期预测方法,其特征在于,所述步骤103采用矩估计方法对定阶的ARMA (p,q)模型参数进行估计具体步骤为: 将光伏电站历史功率数据利用数据序列X1, X2,..., Xt表示,其样本自协方差定义为
6.根据权利要求5所述的基于自回归滑动平均模型的光伏发电功率超短期预测方法,其特征在于,所述输入光伏发电功率预测所需输入数据到根据上述自回归滑动平均模型的参数确定的自回归滑动平均模型中得到预测结果的步骤包括, 步骤201、输入功率预测基础数据; 步骤202、对输入的基础数据进行噪声滤波及数据预处理; 步骤203、根据确定的参数建立自回归滑动平均模型,并将处理后的数据输入从而得到预测结果。
7.根据权利要求6所述的基于自回归滑动平均模型的光伏发电功率超短期预测方法,其特征在于,还包括, 步骤204、将预测结果输出至数据库中,并通过图表及曲线展示预测结果、并展示预测与实测结果的对比。
8.根据权利要求7所述的基于自回归滑动平均模型的光伏发电功率超短期预测方法,其特征在于,所述输入功率预测基础数据包括资源监测系统数据和运行监测系统数据,所述资源监测系统数据包含光资源监测数据;所述运行监测系统数据包括光伏组件监测数据、升压站监测数据和数据采集与监视控制系统数据。
9.根据权利要求7所述的基于自回归滑动平均模型的光伏发电功率超短期预测方法,其特征在于,所述噪声滤波及数据预处理具体为:噪声滤波模块对监测系统实时采集得到的带有噪声的数据进行滤波处理,去除坏数据和奇异值;数据预处理模块对数据进行对齐、归一化处理和分类筛选处理。
10.根据权利要求7所述的基于自回归滑动平均模型的光伏发电功率超短期预测方法,其特征在于,所述自回归滑动平均模型为:
【文档编号】G06Q50/06GK103927601SQ201410163598
【公开日】2014年7月16日 申请日期:2014年4月22日 优先权日:2014年4月22日
【发明者】汪宁渤, 路亮, 刘光途, 王定美, 吕清泉 申请人:国家电网公司, 国网甘肃省电力公司, 甘肃省电力公司风电技术中心