一种向驾驶场景视频中添加雾霾效果的方法及系统的制作方法

文档序号:6633417阅读:520来源:国知局
一种向驾驶场景视频中添加雾霾效果的方法及系统的制作方法
【专利摘要】本发明公开了一种向驾驶场景视频中添加雾霾效果的方法及系统,通过获取无雾霾的干净驾驶场景视频;根据基于暗原色先验的单一图像去雾算法,计算所述驾驶场景视频中每一帧图像对应的大气光亮度值信息和深度信息矩阵;根据大气散射模型,获得雾霾图像模型方程,并根据所述雾霾图像模型方程、深度信息矩阵、大气光亮度值信息及预先设置的雾霾浓度参数将每一帧图像生成对应具有雾霾效果的图像;将所有具有雾霾效果的图像合成为含有雾霾效果的驾驶场景视频;在保证较好的仿真效果同时,实现了快速向驾驶场景视频添加雾霾效果,雾霾仿真置信度高,添加速度快,易于实现。
【专利说明】一种向驾驶场景视频中添加雾霾效果的方法及系统

【技术领域】
[0001] 本发明涉及图像处理【技术领域】,尤其涉及的是一种向驾驶场景视频中添加雾霾效 果的方法及系统。

【背景技术】
[0002] 随着计算机图像处理技术的发展和视觉传感器硬件技术的快速提升,基于视觉的 高级驾驶员辅助系统(Vi-ADAS)的研发与应用与日俱增。而近30年来,我国城市化发展和 工业化布局的不合理性,导致大气污染严重恶化,雾霾天气已经成为大部分省市区域性高 发的污染天气。那么,如何测试Vi-ADAS在雾霾天气中的性能,已经成为一个引发研究人员 关注的问题。由于在雾霾天气中能见度较差,环境状态的可重复性极低,因此如果采用传统 的测试手段,不仅存在极大的安全隐患,还势必会引发大量的、低效率的场地测试,耗时费 力,也难以获得具有可对比性的测试数据。针对上述问题,数字虚拟化仿真测试系统被认为 是解决雾霾天气下Vi-ADAS系统测试的行之有效的途径。
[0003] 数字虚拟化仿真测试系统获得驾驶场景视频一般有两种途径。一种是使用3D StudioMax进行三维物体建模,利用DirectX3D,OpenGL等渲染软件渲染虚拟的驾驶场 景,并将渲染场景帧图像合并成驾驶场景视频。另外一种途径是通过安装在数据采集车顶 端的车载工业相机,实际在路面上驾驶车辆录制真实驾驶场景的视频。
[0004] 对第一种视频获得方式而言,需要根据建模和渲染软件提供的环境特效功能,创 建雾霾等大气特效,实现雾霾仿真。这种实现方法存在的问题是,美工人员需要设定较多 的特效参数,并且这些参数值大多根据经验调整,而缺乏实际的物理意义,因此仿真的结果 往往是比较均匀的雾霾遮罩。尽管这种结果能够基本满足在视觉上的特效要求,但是对于 Vi-ADAS测试的仿真置信度要求仍然相差甚远,且效率不高。而针对第二种视频获得方式, 一般通过滤波的方法降低帧图像的对比度,实现雾霾效果的模拟,尽管速度快,但这也是一 种缺乏物理依据的解决方法,受人工干预的影响较大。
[0005] 因此,现有技术还有待于改进和发展。


【发明内容】

[0006] 本发明要解决的技术问题在于,提供一种向驾驶场景视频中添加雾霾效果的方法 及系统,旨在解决现有的向驾驶视频中添加雾霾效果的方法人工干预性强、仿真置信度差 的问题。
[0007] 本发明解决技术问题所采用的技术方案如下: 一种向驾驶场景视频中添加雾霾效果的方法,其中,包括以下步骤: ST100、获取无雾霾的干净驾驶场景视频; ST200、根据基于暗原色先验的单一图像去雾算法,计算所述驾驶场景视频中每一帧图 像对应的大气光亮度值信息和深度信息矩阵; ST300、根据大气散射模型,获得雾霾图像模型方程,并根据所述雾霾图像模型方程、深 度信息矩阵、大气光亮度值信息及预先设置的雾霾浓度参数将每一帧图像生成对应具有雾 霾效果的图像; ST400、将所有具有雾霾效果的图像合成为含有雾霾效果的驾驶场景视频。
[0008] 所述的向驾驶场景视频中添加雾霾效果的方法,其中,所述步骤ST200具体包括: ST211、获得场景视频的第n帧图像/",将灰度化,记灰度化后的结果为 ;其中n=1、2、3……N;N为驾驶场景视频总的巾贞数;&中任意位置一点x的 灰度化方法为:

【权利要求】
1. 一种向驾驶场景视频中添加雾霾效果的方法,其特征在于,包括以下步骤: ST100、获取无雾霾的干净驾驶场景视频; ST200、根据基于暗原色先验的单一图像去雾算法,计算所述驾驶场景视频中每一帧图 像对应的大气光亮度值信息和深度信息矩阵; ST300、根据大气散射模型,获得雾霾图像模型方程,并根据所述雾霾图像模型方程、深 度信息矩阵、大气光亮度值信息及预先设置的雾霾浓度参数将每一帧图像生成对应具有雾 霾效果的图像; ST400、将所有具有雾霾效果的图像合成为含有雾霾效果的驾驶场景视频。
2. 根据权利要求1所述的向驾驶场景视频中添加雾霾效果的方法,其特征在于,所述 步骤ST200具体包括: ST211、获得场景视频的第n帧图像i;,将灰度化,记灰度化后的结果为 ;其中n=l、2、3......N;N为驾驶场景视频总的帧数;&中任意位置一点x的 灰度化方法为:
;其中
分别表示在x的R,G,B三通道色彩值; ST212、根据暗原色先验的单一图像去雾算法,计算对应的暗原色先验映射图DPL ' ST213、选取£)PCS中亮度最大的前0. 1%的像素,作为第n帧图像中的天空区域5^ ; 搜索图中灰度值最大的像素点,该点对应于/M的值即为第n帧图像的大气光 亮度值; ST214、估计第n帧图像对应深度信息矩阵,估计方法为
3. 根据权利要求1所述的向驾驶场景视频中添加雾霾效果的方法,其特征在于,所述 步骤ST200还包括: ST220、当所述驾驶场景视频为实际拍摄的驾驶场景视频时,在获得每一帧图像对应 的深度信息矩阵后,还通过路面分割算法和线性深度插值方法对所述深度信息矩阵进行更 新。
4. 根据权利要求3所述的向驾驶场景视频中添加雾霾效果的方法,其特征在于,所述 步骤ST220具体包括: ST221、设第n帧图像灰度化后的结果为对应的深度信息矩阵为,根据 OTSU全局阈值分割算法,在中分割出路面区域; ST222、采用形态学膨胀算法使所述路面区域连通,用一个与^_$37大小相同的二维 int型矩阵标记路面像素,将在所述路面区域中的像素点标记为1,不 在的像素点标记为〇 ; ST223、扫描,记录其最上面一行像素点的行数以及中第 最中间10个像素的平均灰度Iqp; ST224、计算灰度线性渐变步长
ST225、从第行开始逐行逐像素扫描,对所述深度信息矩阵进行更 新;更新后的深度值为:
,其中, A?/)表示位置为第7行第J列对应的深度值。
5. 根据权利要求1所述的向驾驶场景视频中添加雾霾效果的方法,其特征在于,所述 步骤ST200还包括: ST230、根据基于暗原色先验的单一图像去雾算法,计算出当前帧图像对应的天空区域 和环境大气光亮度值; ST240、计算当前帧与下一帧图像中天空区域的绝对差异和值,判断是否小于一阈值, 若为是,则下一帧图像的天空区域和环境大气光亮度值与当前帧的天空区域和环境大气光 亮度值相同;若为否,则根据暗原色先验的单一图像去雾算法计算下一帧图像的大气光亮 度值。
6. 根据权利要求5所述的向驾驶场景视频中添加雾霾效果的方法,其特征在于,所述 步骤ST240具体包括: ST241、若已获得第n-1帧图像的天空区域为其对应的大气光为; ST242、定义上以i中所有像素坐标点均值为中心,50X25大小的搜索区 域R,扫描上R中所有像素,计算其与上R中所有像素的绝对差异和值 SAD,
ST243、将获得的SAD值与设定的阈值TH_SAD对比,判断是否需要计算第n帧图像的 大气光j,具体判断如下

7. 根据权利要求2所述的向驾驶场景视频中添加雾霾效果的方法,其特征在于,所述 步骤ST300具体包括: ST310、根据大气散射模型,获得对应的雾霾图像模型方程:
:代表第n帧图像增加 雾霾之后的结果;k为可调系数,用于调整模拟雾霾的浓淡程度。
8. -种向驾驶场景视频中添加雾霾效果的系统,其特征在于,包括: 驾驶场景视频获取模块,用于获取无雾霾的干净驾驶场景视频; 大气光及深度信息计算模块,用于根据基于暗原色先验的单一图像去雾算法,计算所 述驾驶场景视频中每一帧图像对应的大气光亮度值信息和深度信息矩阵; 雾霾效果添加模块,用于根据大气散射模型,获得雾霾图像模型方程,并根据所述雾霾 图像模型方程、深度信息矩阵、大气光亮度值信息及预先设置的雾霾浓度参数将每一帧图 像生成对应具有雾霾效果的图像; 雾霾视频生成模块,用于将所有具有雾霾效果的图像合成为含有雾霾效果的驾驶场景 视频。
9. 根据权利要求8所述的向驾驶场景视频中添加雾霾效果的系统,其特征在于,所述 大气光及深度信息计算模块包括: 深度信息计算单元,用于当所述驾驶场景视频为实际拍摄的驾驶场景视频时,计算所 述驾驶场景视频中每一帧图像对应的深度信息矩阵; 深度信息更新单元,用于通过路面分割算法和线性深度插值方法对所述深度信息矩阵 进行更新。
10. 根据权利要求8所述的向驾驶场景视频中添加雾霾效果的系统,其特征在于,所述 大气光及深度信息计算模块包括: 天空区域及大气光计算单元,用于根据基于暗原色先验的单一图像去雾算法,计算出 当前帧图像对应的天空区域和环境大气光亮度值; 对比单元,用于计算当前帧与下一帧图像中天空区域的绝对差异和值,判断是否小于 一阈值,若为是,则下一帧图像的天空区域和环境大气光亮度值与当前帧的天空区域和环 境大气光亮度值相同;若为否,则根据暗原色先验的单一图像去雾算法计算下一帧图像的 大气光亮度值。
【文档编号】G06T11/00GK104408757SQ201410623384
【公开日】2015年3月11日 申请日期:2014年11月7日 优先权日:2014年11月7日
【发明者】王莹, 李文辉, 刘培勋 申请人:吉林大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1