双环路频率与功率控制的制作方法

文档序号:6413113阅读:204来源:国知局
专利名称:双环路频率与功率控制的制作方法
技术领域
本发明的领域本发明涉及晶状体乳化器械,较具体地,涉及一种控制晶状体乳化器械的方法。
背景技术
传统上使用超声探头进行晶状体乳化,即破碎眼睛中的白内障并抽吸被破碎的组织碎片。为了得到恰当的操作,必须小心地控制超声探头的功率。使超声探头工作在其谐振频率处可以利用超声换能器的谐振特性。谐振的定义是当系统被驱动于或接近驱动于它的一个自然模式时所出现的现象。
所以,以往技术着重于如何确定换能器的谐振频率。这一问题在理论上已经解决。确定超声换能器的谐振频率的一个典型方法是,比较施加给超声换能器的电压波形与流经该换能器的电流波形之间的相位角。
当给一个电路施加电压时将会有电流流经该电路。当考虑某一特定电路的电压波形和电流波形时,如果该电路是电感性的,则电流波形将落后于电压波形,如果该电路是电容性的,则电压波形将落后于电流波形。电流波形与电压波形的过零点之间的时间差用三角学中的相位角Φ度量。对于纯电阻性的电路,Φ等于零,这时称电压波形和电流波形是同相的。对于纯电感性电路,φ=90°;对于纯电容性电路,φ=90°;这时称电压波形与电流波形是不同相的。
由于只有电阻性元件才能实际消耗功率,所以在一个负载阻抗中若存在电感性或电容性阻抗的成份,则将降低向系统供给功率的效率。
对于含有电阻、电感和电容所有三种元件的电路,则虽然使电路含有各种电抗性的元件,即电阻元件加上由电感、电容元件造成的虚成份,也将存在某些频率使电路的总阻抗表现为纯电阻性的。这些频率等于或接近于谐振频率和/或反谐振频率。
因此,从理论上说,确定某些类型的复杂电路的谐振频率的一个方法可以是,给电路施加一个交流电压并改变其频率直到电压与电流之间的相位角Φ变为零。满足这个条件的频率是该特定电路的实际谐振频率。谐振频率是当电路响应(即导纳)为局部极大时所对应的那个或那些频率;反谐振频率是当响应为局部极小时所对应的那个或那些频率。
当驱动一个既含有电阻性又含有电抗性成份的电路时,需要的是要得知相位角Φ的值,这是因为向负载提供的功率由下式决定功率=VIcos(Φ)其中V是负载阻抗两端的电压降;I是流经负载阻抗的串连电流;而cos(Φ)是电路的功率因子。显然,当相位角为零时,cos(0)=1,于是从功率源向电路的功率转移最大。对于纯电阻性负载,将出现这一情况。
当在实际中应用这些理论原理时,将会遇到一些问题。具体地说,探头的特性将随诸如温度、时间等等环境条件的改变而改变。这些改变将反映在

图1超声探头电路模型中的各个电阻和电抗元件的值的变化。换言之,随着环境因素的改变,超声探头的机械谐振频率也将改变。为了解决这一问题,以往技术的一个方向是通过提供一个锁相电路来保护系统的相位角Φ为零,其例子例如可见下述各美国专利No.5,446,416;No.5,210,509;No.5,097,219;No.5,072,195;No.4,973,876;No.4,484,154;和No.4,114,110。
不过,换能器上的负载将对换能器的振动有阻尼作用。换言之,负载可能衰减换能器的振动。当出现这一情况时,谐振频率可能改变,从而相位角Φ不再为零,结果功率转移将不再是最佳的。因此,除非在电路中作出了改变相位角Φ的准备,否则,就不能够达到最佳的功率转移。
于是,探索了一些不是锁定相位角Φ的方法,例如像美国专利No.4,970,656和No.4,954,960所公开的那样,在一个控制系统中利用一个可调电感来抵消超声换能器的负载阻抗中的容性电抗。另外,在美国专利No.5,431,664中还探讨了把超声换能器的导纳而不是相位角作为可调参数的方法。
美国专利No.5,331,951还纯粹从输出功率的角度来处理这一问题,其中考虑了施加给驱动电路的实际电功率,并在把所供电功率与所希望的换能器功率大小进行比较之后去改变供应电压。该专利还略微涉及到了一种通过提供一个升压稳压器来对功率放大器供应电压,以使该放大器的功耗基本上达到最小化的方法。
在例如美国专利No.4,849,872的另一种方法中,利用了调节相位的功率与频率控制。其中,先确定超声换能器的初始谐振频率,然后导入一个电压波形与电流波形之间的电容性相位角,并通过相位控制电路的相位控制,使该相位角保持在能使振荡器工作频率相对于换能器的串连谐振频率减小的角度上。典型地,该相位角被保持在一个非零的恒定值上。类似地,在美国专利No.4,888,565中利用了一个监视输出信号的功率控制反馈环路和一个频率控制反馈环路来提供最大的电流。该方法要求保持交流电源电流的恒定性。
图1示出了超声晶状体乳化探头在谐振频率附近的电路模型。该模型含有一个电压源1401,该电压源连接在一个与一个串联RLC(电阻一电感一电容)电路1403相并联的1130pF电容1402上,该RLC电路中的电阻为220Ω,电感为1.708H,电容为18pF。
在考虑该电路模型的表观功率时得到了图2和3所示的曲线。从这两个曲线图可以盾出,表观功率的峰值出现在28.661Khz处,这时相位角约为一42°。由于RLC电路1403中的并联电容,这一结果是在预料之中的。
在考察该电路模型的真实功率时得到了图4和5所示的曲线图。从这两个曲线图可以看出,实际功率的峰值出现在28.7kHz处,但这时的相位角约为-24.5°。
当在图1的虚线框1404内设置一个具有计算值27.21mH的补偿电感以抵消图1中的电抗成份时,可得到图6和7所示的表观功率和真实功率信息,现在它们的峰值都出现在28.7kHz处并且相位角约为-0.5°。这样,可以看出,虚线框1404中的电感补偿了并联电容1402,并使电路在谐振时表现为电阻性(零相位)的。这些曲线图清楚地表明,除非加上了接近造成谐振的补偿电感,真实功率能更精确地反映谐振频率的情况。因此,这里把谐振频率定义为真实功率达到(局部)最大值时的频率。不过,如果并联电容被补偿成谐振,则也可以用表观功率来确定谐振频率。如果补偿电感把并联电容1402补偿成接近谐振,则表观功率提供了谐振频率(出现局部极大处的频率)的近似值。
因此,在本技术领域中需要使对超声换能器的功率输出最大化,而不受换能器特性随环境和负载的改变而改变的影响,并且还不需要求一定有固定的相位角或恒定的电流。
本发明公开的内容本发明是根据上述这些问题而开发的。本发明是一种改进的用来向超声换能器提供电功率的晶状体乳化探头驱动电路。该驱动电路有一个功率控制环路和一个频率控制环路。功率控制环路含有一个可变增益放大器,其输出是对一个功率放大器的输入。功率被该功率放大器放大之后被提供给一个变压器,然后再提供给换能器。探测出施加给变压器初级的电压和电流以产生一个正比于功率(真实的或表观的)的信号,并把结果与从一个踏板产生的功率命令相比较。比较后得到的结果被输送给一个第一控制器,后者根据该信息向可变增益放大器发送一个校正信号。另外还用一个相位探测器探测施加给变压器初级的电压波形与电流波形的相位。然后推导出相位角,并将它与一个根据系统的初始标定所确定的相位命令相比较。求和/求差块把比较结果输送给一个第二控制器,后者向一个压控振荡器(VCD)发送一个控制信号。VCO接收该信号并向可变增益放大器发送一个具有固定电压的特定频率。
工作之前,先通过给探头施加一个恒定电压并以一系列的频率去扫描驱动电路来标定晶状体乳化探头。然后选择另一个电压并进行另一次频率扫描。这一过程在一个或多个电压大小下重复,所得到的关于功率和相位随频率变化的信息被存入一个存储器,使得在与某一功率要求相关连的谐振情况下的最佳相位角能被容易地确定,虽然在一定的功率大小范围内相位角可能是恒定的。此外,当功率和相位信息被存入存储器时,利用位于某一谐振频率附近一个范围内的一些频率去生成一个窗口,位于该窗口之外的频率可以不使用。
工作时,踏下踏板提供一个功率命令,以与当时已有的功率比较。这两个功率大小的差值被传送给功率环路控制器。功率环路控制器根据存储在存储器中的信息选择一个为校正当时功率与功率命令之间的差值所需的适当的电压大小,并把该信息输送给可变增益放大器的控制输入端。可变增益放大器把其输出输送给功率放大器。功率放大器的输出被提供给变压器,同时也被提供给功率监视器和相位探测器。然后计算出功率并把它与从脚控装置接收到的功率命令信号相比较,使功率环路再次开始工作。相位探测器将它的相位信息传送给一个求和/求差模块,后者将当时相位与一个计算的相位命令相比较。然后相位命令与当时相位之间的差值被输送给频率环路控制器,后者将向压控振荡器发送一个信号,使它向作为频率环路一端的可变增益放大器的输入端发送某一频率,相位命令是根据标定时取得的信息和当前的功率命令决定的。
下面将参考附图详细说明本发明的另一些特点和优点,以及本发明各个实施例的结构和工作。
附图的简单说明作为本说明书一个构成部分的各个附图示出了本发明的一些实施例,并与说明文字一起用于阐明本发明的原理。
图1示出了工作于其谐振频率附近的超声晶状体乳化探头的电路模型的方框图;图2是根据图1电路模型的表观功率曲线图;图3是根据图1电路模型的与图2表观功率曲线图相关的电压波形与电流波形之间的相位角的曲线图;图4是根据图1电路模型的真实功率曲线图;图5是根据图1电路模型的与图4真实功率曲线图相关的电压波形与电流波形之间的相位角的曲线图;图6是在图5电路模型中加上一个补偿电感后的表观功率和相位角的曲线图;图7是在图5电路模型中加上一个补偿电感后的真实功率和相位角的曲线图;图8示出本发明的晶状体乳化探头系统的方框图;图9示出图8中功率监视器模块为表观功率监视器时的较详细的方框图;图10示出图8中功率监视器模块为真实功率监视器时的较详细的方框图;图11、12、13、14和15示出一个用硬件实现的本发明实施例,其中画出了一个协处理器和一个电可编程的逻辑器件;图16、17、18和19示出一个用硬件实现的本发明实施例,其中画出了用于协处理器的存储器和一个复原电路;图20、21和22示出一个用硬件实现的本发明实施例,其中画出了一个发送接收机和一个神经元集成电路芯片;图23、24、25和26示出一个用硬件实现的本发明实施例,其中画出了一个升压稳压器、一个压控振荡器、一个多重数模转换器、一个可变增益放大器、一个功率放大器、一个第一耦合电容、一个隔离变压器、一个第二耦合电容、一个补偿电感和一个超声换能器;图27和28示出一个用硬件实现的本发明实施例,其中画出了电压和电流的RMS(均方根)/DC(直流)转换器和一个平均功率探测器;图29和30示出了一个用硬件实现的本发明实施例,其中画出了各种辅助硬件电路;以及图31和32示出了一个用硬件实现的本发明实施例,其中画出了各种辅助硬件电路。
实施本发明的模式参见各附图,在这些图中类似的元器件用类似的代号表示,图8示出了本发明的晶状体乳化探头系统,该系统总的用代号1411表示。晶状体乳化探头系统1411包括总的用1412表示的功率环路,总的用1413表示的频率环路,以及总的用1414表示的隔离的换能器电路。
如图8所示,功率环路1412包括功率环路控制器1415、可变增益放大器1416、功率放大器1417、第一耦合电容1418、变压器1436、功率监视器1419、第一求和/求差模块1425、和功率命令信号输入端1426。
功率环路控制器1415有一个向可变增益放大器1416的输出。功率环路控制器1415有两个功能(1)执行求平方根操作(功率正比于电压平方);(2)保证环路的稳定性和保证所希望的系统响应特性。功率环路控制器1415也可以任选地在存储器中存储峰值功率信息,不过这一信息的存储也可由协处理器及协处理器存储器实行。功率放大器1417从可变增益放大器1416的输出端接收输入。功率放大器1417的输出要通过耦合电容1418,该电容的作用是补偿泄漏电感和阻挡来自功率放大器1417的直流成份。然后功率被输送给变压器1436的初级,由此输送给隔离的换能器电路1414。此外,施加给隔离的换能器电路1414的电压和电流由功率监视器1419探测。功率监视器1419产生一个正比于功率(真实的或表观的)信号。
如图9所示,功率监视器1419可以是一个表观功率监视器,它包括一个电压的RMS/DC(均方根/直流)转换器1420,一个电流的RMS/DC转换器1421和一个乘法器1422。它产生一个代表表观功率值的直流信号,然后把该信号输送给第一求和/求差模块1425。或者,功率监视器1419也可以是一个真实功率监视器,它包括一个连接在低通滤波器1424上的电压、电流乘法器1423。这将产生一个真实功率值,然后该值被传送给第一求和/求差模块1425。
第一求和/求差模块1425将由功率监视器1419测得的功率与在功率命令信号输入端1426处输入的功率命令相比较。在硬件方面,这里所讨论的任何求和/求差模块都能用一个差分放大器来实现;在软件方面,该模块的功能通常称为“减法”操作。比较的结果被传送给功率环路控制器1415。在计算出所需校正的大小之后(功率环路控制器1415)根据计算结果向电压增益放大器1416发送一个新的信号。这一计算可以由功率环路控制器1415执行,或者由与功率环路控制器1415相连的任何其他单元,例如协处理器和协处理器存储器单元来执行。这样就完成了功率环路1412的一次循环。
频率环路1413包括频率环路控制器1430,它向压控振荡器1431传送一个信号。后者又给可变增益放大器1416提供输入,其后再给功率放大器1417,然后通过耦合电容1418给到隔离的换能器电路1414。施加给隔离的换能器电路1414的电压波形和电流波形由相位探测器1432探测,然后传送给第二求和/求差模块1433。在第二求和/求差模块1433的相位命令输入端1434处还输入有一个相位命令,该命令是根据系统的初始标定和可能的后续计算确定的。其后第二求和/求差模块1433根据当时相位与相位命令之间的相位差向频率环路控制器1430发送一个误差信号。在计算出所需的校正大小之后,频率环路控制器1430将根据计算结果向压控振荡器1431发送一个新的信号。这一计算可以由频率环路控制器1430执行,也可以由与频率环路控制器1430相连的任何其他单元,例如协处理器和协处理器存储器单元来执行。这样就完成了频率环路1413的一次循环。
现在转到隔离的换能器电路1414,该电路包括隔离变压器1436的次级、第二耦合电容1437、补偿电感1438和超声换能器1439。较具体地说,超声换能器1439和补偿电感1438的并联组合与变压器1436的次级和耦合电容1437相串联。第二耦合电容1437的作用是补偿隔离变压器1436可能泄漏的电感。
补偿电感1438的值的选取使得其电抗大小等于超声换能器1439的固有并联电容的电抗大小(C)。如果用F代表超声换能器的谐振频率,则补偿超声传感器的正确电感值应该等于1除以[(2πF)2C]。众所周知,超声换能器1439的固有并联电容值会有一定的变化,所以在计算补偿电感1438的值时,可以先从超声换能器1439的一些样品导出它们的固有并联电容的平均值,然后再计算补偿电感1438的值。由于补偿电感1438是一个固定值,所以该电路的设计只是为使晶状体乳化探头系统1401的超声换能器1439与补偿电感1438的并联组合表现为纯电阻性而提供一个比较精确的电感值,而留下的小量误差则利用功率环路1412和频率环路1413的结合予以补偿。
晶体乳化探头系统1411有两个分开的和不同的模式。一个是标定模式,这时两个控制环路是开环的,并且除去了两个求和/求差模块1425、1433;另一个是工作模式,这时控制环路是闭环的,使得能对来自踏板的功率命令作出响应。
转到晶状体乳化探头系统1411的工作,在用于实际手术之前,必须首先对整个系统1411进行标定。标定步骤的目的是对系统工作的电压和频率窗口初始化。
简单地说,标定的目的是通过在某一恒定电压下相继地循环一系列频率(频率扫描),然后可能对各不同的电压重复这一扫描以导出不同功率下的谐振频率,来找到电压和频率的工作窗口。该信息被存入存储器,然后在双环路晶状体乳化探头系统1411的控制中被用来确定相位命令。
标定由用户的请求起动。粗略地说,标定由一次或多次频率扫描组成。频率环路控制器1430从一个较低的开始频率出发进行频率扫描,直到一个较高的结束频率。在该频率扫描中,功率环路控制器1415和频率环路控制器1430接收标定命令信号。然后功率环路控制器1415向可变增益放大器1416发送一个命令信号,使后者能输出一个固定的电压。类似地,频率环路控制器1430向压控振荡器1431发送一个信号。压控振荡器1431在接收到该信号后将给可变增益放大器1416提供频率扫描。可变增益放大器1416给频率扫描电压以一个电压增益,产生输出电压。该输出电压作为输入电压传送功率放大器1417。功率放大器1417放大该功率,并通过耦合电容1418(其作用前面已讨论)传送给隔离变压器1436。功率监视器1419确定峰值功率达到局部极大值时的频率,相位探测器1432确定相位过零时的频率。然后在该临界频率周围确定个工作频率窗口。该窗口的后端是这样确定的首先确定达到局部极大峰值功率处的频率和相位角过零频率的一个邻近区。然后从该区域出发,在较低频率下审查频率扫描,以确定发生前一次相位角过零的频率。再在该前一次相位角过零的频率上加上一个固定的频率量,以建立工作频率窗口的后端。工作频率窗口的前端可以用类似方法建立。或者,也可以通过在临界频率的前后建立一个固定的例如1kHz的频带。建立工作频率窗口的目的是保证谐振频率将出现在该窗口内,同时不会遇到其他的相位过零点。关于峰值功率,峰值功率相位、工作功率大小、和频率窗口的信息可以存入存储器。
应该指出,较好的做法可能是,先进行粗略的频率扫描来确定一些感兴趣的一般区域,然后再针对感兴趣的区域进行精细的频率扫描。这样能使对存储器的要求最小化,这是因为存储在存储器中的扫描信息是比较多的,但这些信息只需要暂时存到能导出窗口信息为止;另一方面,窗口信息是比较永久性的,但只需要较少的存储空间。
经一次频率扫描之后,功率环路控制器1415将改变电压增益,从而将以一个不同的电压(功率/激励电平)进行频率扫描,由此得到的相位和功率信息被存入存储器。这一在标定时所取得的数据使得可以确定相位角的改变,从而可以在以后工作时,根据晶状体乳化探头系统1411在工作中从第一和第二求和/求差模块1425和1433导出的误差信号来确定相位命令。
完成了对晶状体乳化探头系统1411的标定(该处理约需4至6秒钟)之后,就可以开始该系统1411的实际工作。在工作中,外科医生踏下一个踏板(未示出),后者将向第一求和/求差模块1425的功率命令信号输入端1426发送一个功率命令。第一求和/求差模块1425根据该新功率命令与系统的当时功率大小之间的差值,向功率环路控制器1415发送一个误差信号。
功率环路控制器1415计算出新的电压要求,并向可变增益放大器1416发送一个信号。类似地,向第二求和/求差模块1433的相位命令信号输入端1434输入一个相位命令信号,该信号是由功率命令和标定时存入的信息来确定的。第二求和/求差模块1433产生一个误差信号并把它传送给压控振荡器1431。压控振荡器1431向可变增益放大器1416的一个输入端输出一个改变了的频率。在两个输入的作用下,可变增益放大器1416将向功率放大器1417输出一个电压,然后后者将把功率传送给隔离变压器1436的次级。隔离变压器1436的次级通过第二耦合电容1437和补偿电感1438把功率传送给超声换能器1439。
在功率放大器1417向隔离的换能器电路1414传送功率的同时,电压和电流波形也被传送(与隔离变压器1436的次级并行地)给功率监视器1419和相位探测器1432。平均功率的直流信号被第一求和/求差模块1425接收,并与功率命令信号输入端1426处的原有功率命令相比较。然后第一求和/求差模块1425向功率环路控制器1415发送一个误差信号。类似地,相位探测器1432测得的相位角被传送给第二求和/求差模块1433,并与相位命令信号输入端1434处的信号比较,比较结果被传送给频率环路控制器1430。其后,如前所述,功率环路控制器1415和频率环路控制器1430分别把校正信号输送给可变增益放大器1416和压控振荡器1431。
应该指出,由于晶状体乳化探头系统1411最终很可能不是一个精确的纯电阻性电路,所以相位命令信号更可能是一个非零的相位命令。系统1411很可能不是纯电阻性电路的原因在于以下几个方面补偿电感1438的值是固定的,但不同电感的值有一个小的容差;对于不同器械,换能器1439的固有并联电容可能不同;以及,环境因素可能引起超声换能器1439的谐振频率的改变。因此,对于某一特定功率值,最佳相位角Φ为零时,电路将是纯电阻性的。如果电路中存在不平衡,则由于电路不是纯电阻性的从而相位角不能为零。不过,平均来说可以预计,最佳相位角一般位在零附近至少20°的范围内。
给出图11-32的目的首先只是让读者能看到图8方框图的详细电路概貌,其次才是给出实现本发明的最佳模式。功率环路控制器1415和频率环路控制器1430的功能在物理硬件上被结合成一个协处理器1441,如图11和12所示。图11和12的协处理器1441被连接到图23所示的压控振荡器1431,即一个符号波发生器上,后者将其信号传送给可变增益放大器1416,该放大器标号为LF412,与多重数模转换器(MDAC,由代号1444表示)相连接。MDAC1444是一个双通道DAC(数模转换器),它向图24所示的升压稳压器电路提供一个信号,后者给图25中所示的含有运算放大器模块LM12的功率放大器1417提供电源和偏置电压。应该指出,为实现本发明不一定需要升压稳压电路。升压稳压电路只是向功率放大器1417提供电源电压的另一种手段,并且使用该电路需要有另一个控制器来计算所需的提升电压输出,并把升压命令输送给升压稳压器。
功率放大器1417的输出通过耦合电容1418传送给隔离变压器1436。如图25右端所示,设置了电流监视器引线1446和电压监视器引线1447,以探测输送给隔离变压器1436的电流和电压。两条监视器引线1446和1447分别从图25通向图27,在那里两个监视器信号被代号为1448和1449的两个LF412运算放大器模块规化。
规化后,功率监视器1419探测递送给第一变压器(变压器初级)1436的功率。具体地说,模块AD36示出了电压RMS/DC转换器1420,类似地,另一个模块AD536示出了电流RMS/DC转换器1421。其后,两个输出被传送给模数转换器模块MAX182(代号1450),后者把正弦波信号转换成直流信号再传送给图11中的协处理器1441。
在图27中,当电压和电流监视器1446,1447的输出被规化后,它们也被传送给相位探测器1432,后者包括两个部分(1)图27中的过零探测运算放大器LM319(代号1451和1452),以及(2)然后是图13的电可编程逻辑器件(EPLD)PLSI1032(代号1453)。当离开图13的EPLD1453之后,输出被传送到图27中的引线滞后低通滤波器模块LF412,再后到模数转换器模块MAX182(代号1450),然后到图11中的协处理器1441。
转到图20,其中模块25是一个NEURON(神经元)芯片1454(“NEUROR”是注册商标)。该芯片有下述功能。当外科医生踏下脚控装置时将有一个功率命令传送给图22的发送接收机模块U23(代号1455)。当发送接收机1455接收到该功率命令时,它将向NEURON芯片U251454发送该命令,然后再传送给图11的协处理器1441。
从上述讨论可见,本发明的几个目的和其他优点已经达到。所选择的各个实施例是为了能最好地阐明本发明的原理及其实际应用,由此使其他熟悉本技术领域的人们能在各种实现中最好地利用本发明并作出适合于他们具体应用的各种修改。由于在不偏离本发明范围的情况下可以对这里所说明和示出的结构和方法作出各种修改,所以希望把前面的说明和附图中所示的全部内容都看成是说明性的而不是限制性的。例如,本发明的硬件实施可以通过与其他硬件的合并或扩展而加以改变,或者可以用软件来替代。在另一个例子中,功率放大器可以从一个能提供电源和偏置电压的升压稳压器获得附加的输入而不会偏离本发明的精神。具体地说,功率环路控制器在接收到关于被比较功率值的误差信号时,它可以向第三个控制器发送一个信号,后者将向升压稳压器提供输入,而其输出又变成功率放大器的一个输入。所以,本发明的广度和范畴不应受到上述任何示例性实施例的限制,而应仅仅由后附权利要求及其等效内容来确定。
权利要求
1.一种驱动晶状体乳化器械的方法,它包括以下步骤(a)接收一个关于功率的命令信号;(b)用一个求和器将该命令信号与当时已有的功率信号相比较;(c)从上述求和器向一个功率环路控制器发送一个误差信号;(d)计算新的电压要求;(e)根据该新电压要求从上述功率环路控制器向一个可变增益放大器发送一个信号;(f)上述可变增益放大器对一个输入电压作用以由来自上述功率环路控制器的信号所控制的电压增益,以产生一个输出电压;(g)把来自上述可变增益放大器的输出电压作为输入电压提供给一个功率放大器;(h)利用功率放大器的输入电压来输出增大的功率;(I)把上述功率提供给一个变压器;(j)用一个功率监视器探测提供给上述变压器的功率;(k)用一个相位探测器探测提供给上述变压器的电压与电流之间的相位差;(l)从上述相位探测器向一个相位差求和器输送一个代表相位差的信号;(m)用上述相位差求和器将该代表相位差的信号与一个相位命令信号相比较;(n)从上述相位差求和器向一个频率环路控制器发送一个误差信号;(o)计算新的频率要求;(p)根据新频率要求从上述频率环路控制器向一个压控振荡器发送一个控制信号;(q)从上述压控振荡器向上述可变增益放大器的输入端发送一个具有步骤(o)中算得频率的固定输出电压。
2.根据权利要求1的驱动晶状体乳化器械的方法,它还包括以下步骤(r)连续地重复步骤(a)至(q)。
3.根据权利要求1的驱动晶状体乳体器械的方法,其中用以步骤来替代步骤(h)(S)从上述功率环路控制器向一个升压稳压器控制器发送一个信号;(t)用该控制器计算所需的升压电压输出;(u)从上述升压控制器向一个升压稳压器发送一个升压命令;(v)从上述升压稳压器向上述功率放大器发送一个输出;以及(w)在上述功率放大器中利用功率放大器输入电压和升压稳压器输出来输出增大的功率。
4.根据权利要求1的驱动晶状体乳的器械的方法,它还包括以下步骤。在步骤(h)和(i)之间,将一个耦合电容放置在上述功率放大器的后面和上述变压器的前面,以补偿上述变压器的泄漏电感和阻挡来自上述功率放大器的任何直流成份。
5.根据权利要求1的驱动晶状体乳化器械的方法,其中步骤(a)中的关于功率的命令信号是根据一个踏板的空间移位量导出的。
6.根据权利要求1的驱动晶状体乳化器械的方法,它还包括以下步骤(x)在上述变压器的输出方提供一个与一个超声换能器相串联的第二耦合电容和一个与该超声换能器相并联的电感,上述电容用来补偿上述变压器的任何泄漏电感以改善上述变压器初级方的功率和相位探测,上述电感用来补偿上述超声换能器的固有并联电容以使其阻抗在谐振时基本上表现为电阻性的。
7.一种标定晶状体乳化器械的方法,它包括以下步骤(a)由一个功率环路控制器和一个频率环路控制器接收一个要标定的命令信号;(b)从上述功率环路控制器向一个可变增益放大器发送一个信号;(c)从上述频率环路控制器向一个压控振荡器发送一个信号;(d)从上述压控振荡器向上述可变增益放大器发出一个电压频率扫描;(e)上述电压增益放大器对频率扫描电压施以电压增益以产生一个输出电压;(f)用上述电压增益放大器的输出电压作为一个功率放大器的输入电压;(g)利用上述功率放大器来输出增大的功率;(h)把上述功率传送给一个变压器;(i)用一个功率监视器探测传送给上述变压器的功率,并把功率大小的值传送给一个功率求和器;(j)用上述功率求和器将已有功率信号与零比较;(k)从上述功率求和器向上述功率环路控制器发送一个误差信号,以存储在存储器中;(l)用一个相位探测器探测提供给上述变压器的电压与电流之间的相位差;(m)从上述相位探测器向一个相位差求和器发送一个代表相位差的信号;(n)用上述相位差求和器将代表相位差的信号与零比较;(o)从上述相位差位求和器向一个频率环路控制器发送一个误差信号,以存储在存储器中;以及(p)从上述功率环路控制器向上述可变增益放大器发送一个信号以改变电压增益。
8.根据权利要求7的标定晶状体乳化器械的方法,它还包括以下步骤(q)多次重复步骤(d)至(p)。
9.根据权利要求7的标定晶状体乳化器械的方法,它还包括以下步骤(r)根据存储在存储器内的关于频率、相位和功率的信息确定某些电压下的最大功率,以能够根据从上述功率求和器和相位求和器导出的误差信号计算出新的频率、相位和功率等参数。
10.根据权利要求8的标定晶状体乳化器械的方法,它还包括以下步骤(s)确定一个能在除了谐振频率附近之外避免零相位点的可工作频度范围。
11.根据权利要求7的标定晶状体乳化器械的方法,它还包括以下步骤在步骤(g)和(h)之间,在上述功率放大器后面和上述变压器前面设置一个耦合电容,用来补偿上述变压器的泄漏电感和阻挡任何来自上述功率放大器的直流成份。
12.根据权利要求7的标定晶状体乳化器械的方法,它还包括以下步骤(s)在上述变压器的输出方提供一个与一个超声换能器相串联的第二耦合电容和一个与该超声换能器相并联的电感,来向上述晶状体乳化器械传送功率。
13.根据权利要求7的标定晶状体乳化器械的方法,其中以下述步骤替代步骤(g)(t)从上述功率环路控制器向一个升压稳压器发送一个信号;(u)从上述升压稳压器向上述功率放大器送出一个输出;(v)在上述功率放大器中利用功率放大器输入电压和升压稳压器输出来输出增大的功率。
14.一种用于晶状体乳化探头系统的电路,它包括一个频率环路控制器,它含有一个与一个压控振荡器的一个输入端相连接的输出端;一个功率环路控制器,它含有一个与一个可变增益放大器的一个输入端相连接的输出端;上述压控振荡器有一个与上述可变增益放大器的一个输入端相连接的输出端;一个功率放大器,它连接在上述可变增益放大器的一个输出端上;上述功率放大器向一个隔离功率变压器输送功率;一个连接在上述隔离功率变压器上的功率监视器,用于探测输送给该变压器的上述功率;一个功率求和器,它的一个输入端连接在上述功率监视器的一个输出端上,它的一个输出端连接在上述功率环路控制器上;一个与施加给上述隔离功率变压器的电压波形和电流波形相连接并探测这两个波形的相位探测器;以及一个相位求和器,它的一个输入端连接在上述相位探测器的一个输出端上,它的一个输出端连接在上述频率环路控制器上。
15.根据权利要求14的用于晶状体乳化探头系统的电路,其中上述功率监视器包括一个与施加给上述隔离功率变压器的电压波形相连接并探测该波形的电压RMS/DC(均方根到直流)转换器;一个与施加给上述隔离功率变压器的电流波形相连接并探测该波形的电流RMS/DC转换器;一个乘法器,它含有一个与上述电压RMS/DC转换器相连接的输入端和另一个与上述电流RMS/DC转换器相连接的输入端,还含有一个与上述功率求和器相连接的输出端。
16.根据权利要求14的用于晶状体乳化探头系统的电路,其中上述功率监视器包括一个乘法器,它含有一个与施加给上述隔离功率变压器的电压波形相连接并探测该波形的输入端和另一个与施加给上述隔离的换能器电路的电流波形相连接并探测该波形的输入端;以及一个低通滤波器,它含有一个与上述乘法器的一个输出端相连接的输入端和一个与上述相位求和器相连接的输出端。
全文摘要
本发明是一种改进的用来向超声换能器提供电功率的晶状体乳化探头驱动电路。该驱动电路含有一个功率控制环路(1412)和一个频率控制环路(1413)。功率控制环路(1412)含有一个可变增益放大器(1416),后者的输出是一个功率放大器(1417)的输入。当功率放大器放大了功率之后,功率被传送给一个变压器(1436),其后再被传送给一个换能器(1439)。施加给变压器初级方的电压和电流被探测,由于产生一个正比于功率(真实的或表观的)信号,该结果被与一个从一个踏板产生的功率命令相比较。比较的结果被发送给一个第一控制器,后者根据该信息向可变增益放大器发送一个校正信号。
文档编号G06F19/00GK1235535SQ97199266
公开日1999年11月17日 申请日期1997年8月22日 优先权日1996年8月29日
发明者凯文·保罗·凯普利 申请人:博士伦外科公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1