一种确定局部均值分解过程中滑动步长的方法
【技术领域】
[0001]本发明涉及一种数字信号的分析与处理的方法,特别是非平稳信号的自适应时频分解。
【背景技术】
[0002]局部均值分解是一种对信号进行自适应分解的方法,分解过程中需要采用滑动平均法对数据进行平滑处理,以得到局部均值函数和包络估计函数。为了避免出现数据移位现象,滑动步长一般取奇数。进行平滑处理时,局部均值函数和包络估计函数的形状会随滑动步长的变化而变化,滑动步长会影响包络信号和纯调频信号的产生,最终影响信号分解的质量和效果。另外,滑动步长还会影响平滑次数、算法效率以及算法的收敛性等。有研究表明,如果滑动步长确定得不合理,有可能导致算法不收敛。因而在局部均值分解过程中,滑动步长的确定十分关键和重要。
[0003]目前确定局部均值分解过程中的滑动步长的方法主要有三种:一种以相邻极值点间隔最大值的1/3或1/5为滑动步长;另一种以所有相邻极值点间隔的平均值作为滑动步长;还有一种以相邻极值点间隔的最小值作为滑动步长。在对比研究中发现,这三种方法确定的滑动步长,都带有一定程度的经验性,需要根据实际信号的情况进行选取,有时根据上述三种方法确定的步长并不能使分解效果最好。
【发明内容】
[0004]本发明公开了一种在局部均值分解过程中确定滑动步长的方法。本发明采用的技术方案是:
[0005]根据信号相邻极值点间隔的最大值和最小值,确定一系列候选步长;利用这些候选步长对局部均值线段进行滑动平均,得到一系列平滑均值曲线;估算各条平滑均值曲线的功率谱,以低频功率谱能量和高频功率谱能量的比值作为平滑均值曲线的光滑度指标;最后以光滑度指标最大的平滑均值曲线所对应的候选步长作为局部均值分解过程的最佳滑动步长。本方法包括以下步骤:
[0006]1)寻找信号所有的局部极值点。
[0007]2)求取相邻极值点之间的所有间隔步长。
[0008]3)找到间隔步长的最小值和最大值。
[0009]4)以间隔步长最小值和最大值之间的奇数作为候选步长。
[0010]5)分别用各个候选步长对原始信号的局部均值线段进行滑动平均,得到一系列平滑均值曲线。
[0011]6)估算各条平滑均值曲线的功率谱,以低频功率谱能量和高频功率谱能量的比值作为各条平滑均值曲线的光滑度指标。
[0012]7)选取光滑度指标最大的平滑均值曲线所对应的滑动步长作为局部均值分解的最佳步长。
[0013]与已有的方法相比,本发明的优点是:
[0014]1)可以找到最佳的滑动步长,使最终的局部均值分解结果效果最好。
[0015]2)确定步长的过程是自动和自适应的,不需要人工干预。
[0016]3)计算过程比较简单,速度比较快。
【附图说明】
[0017]图1为方法流程图。
[0018]图2为实例信号的波形及其极值点图。
[0019]图3为实例信号的波形及其平滑均值曲线图,图中的点划线为平滑均值曲线。
【具体实施方式】
[0020]结合本发明方法的内容,提供以下分析实例,具体步骤如下:
[0021 ] 1.产生一仿真信号,公式为:x(t) = 18sin(203Tt)cos(303Tt)+30cos(93Tt) (0 < t<1),采样频率为1000取。
[0022]2.找到信号的极值点,如图2中的点所示。
[0023]3.得到相邻极值点间隔的最小值和最大值,分别为7和27。
[0024]4.以间隔的最小值和最大值作为边界得到整数序列,取其中的奇数作为候选步长序列:7、9、11、……、25、27,共11个候选步长。
[0025]5.利用候选步长对信号的局部均值线段进行平滑,得到11条平滑均值曲线。
[0026]6.估算上述11条平滑均值曲线的功率谱,以低频功率谱能量和高频功率谱能量的比值作为平滑均值曲线的光滑度指标,这11条平滑均值曲线的光滑度指标分别为:745.1、720.1、690.9、656.0、617.1、575.8、533.0、490.1、447.8、407.0、368.3。
[0027]7.上述光滑度指标中,745.1最大,其对应的候选步长为7,因此确定7为最佳步长。
[0028]图3中的点划线为滑动步长为7时的平滑均值曲线。从图上可以看出,平滑均值曲线较好地反映了数据的平均变化趋势。
[0029]上述说明仅仅是示例性的一种【具体实施方式】,不能因此而限制本发明的范围及其应用。在本发明公开的技术范围内,任何可轻易想到的变化或替换,都应在本发明的保护范围之内。
【主权项】
1.一种确定局部均值分解过程中滑动步长的方法,其特征在于: 本方法包括以下步骤: 1)寻找信号所有的局部极值点。 2)求取相邻极值点之间的所有间隔步长。 3)找到间隔步长的最小值和最大值。 4)以间隔步长最小值和最大值之间的奇数作为候选步长。 5)分别用各个候选步长对信号的局部均值线段进行滑动平均,得到一系列候选步长对应的平滑均值曲线。 6)估算各条平滑均值曲线的功率谱,以低频功率谱能量和高频功率谱能量的比值作为各条平滑均值曲线的光滑度指标。 7)选取光滑度指标最大的平滑均值曲线所对应的滑动步长作为局部均值分解的最佳步长。2.根据权利要求1所述的方法,其步骤2)?4)的特征在于:首先求得所有间隔步长,寻找间隔步长的最小值和最大值。如果间隔步长的最大值小于等于3,则候选步长取为3;如果间隔步长最大值大于3,则以最小间隔步长和最大间隔步长作为边界,得到一系列整数,取这些整数中的奇数作为候选步长。3.根据权利要求1所述的方法,其步骤6)的特征在于:计算滑动均值曲线的功率谱,将功率谱划分为低频部分和高频部分,以功率谱的低频能量和高频能量之比值作为滑动均值曲线的光滑度指标,比值越大,表明曲线越光滑,光滑度指标也越大。4.根据权利要求1所述的方法,其步骤7)的特征在于:比较一系列平滑曲线的光滑度指标,取光滑度指标最大的平滑曲线所对应的候选步长作为最佳步长。
【专利摘要】本发明公开了一种局部均值分解过程滑动步长的确定方法。本发明首先估算信号所有相邻极点之间的间隔步长,找到间隔步长的最大值和最小值;然后以最小间隔步长和最大间隔步长之间的奇数步长作为一系列候选步长;再用这一系列候选步长对局部均值线段进行滑动平均,得到一系列平滑均值曲线;再估计平滑曲线的功率谱,将功率谱分为高频部分和低频部分;然后以功率谱的低频能量和高频能量之比值作为衡量曲线光滑度的指标,比值越大,表示曲线越光滑;最后选取光滑度指标最大的曲线所对应的候选步长作为局部均值分解过程中的最佳滑动步长。通过本发明公开的方法,能自动找到最合适的滑动步长,使局部均值分解的结果更准确,具有良好的应用前景。
【IPC分类】G06K9/00
【公开号】CN105447461
【申请号】CN201510813245
【发明人】王成栋, 段永强, 秦磊, 吴洋, 王晓光, 贾顺虎
【申请人】电子科技大学
【公开日】2016年3月30日
【申请日】2015年11月20日